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Abstract. We study unique continuation properties for a kinetic equation. We establish suffi-
cient conditions on the interaction potential and on the behavior of the solution at the initial and
terminal times that ensure the solution is identically zero. Our strategy adapts that of Escau-
riaza et al. (2006) [13], combining the logarithmic convexity of certain quantities—which yields
quadratic exponential decay at infinity of the solution—with a suitable Carleman inequality,
which provides a lower bound for the L2-norm of the solution in an appropriate annular domain.

1. Introduction

We consider the following transport equation (see [10, Chapter XXI]):

(1.1)

#

Btfpt, x, vq ` v ¨ ∇xfpt, x, vq `Krf spt, x, vq “ 0, pt, x, vq P r0, 1s ˆ R2N ,

fp0, x, vq “ f0px, vq, px, vq P R2N ,

where f “ fpt, x, vq is the density distribution of particles at time t P r0, 1s and position x P RN ,
with N ě 1, v P RN is the velocity, f0 : R2N Ñ R is the initial distribution, and Krf s : r0, 1s ˆ

RN ˆ RN Ñ R is a collision operator, which could be nonlinear.
Our goal is to investigate the unique continuation properties of solutions to (1.1): namely, we

aim to establish sufficient conditions on the collision operator K and on the behavior of a solution
f at two different times, t “ 0 and t “ 1, that ensure f ” 0 in r0, 1s ˆ R2N .

1.1. Motivations and literature overview. The main motivation comes from G. H. Hardy’s
uncertainty principle (see [24]; cf. also the generalization due to Morgan in [30]):1

If fpxq “ O
´

e´|x|
2

{β2
¯

and f̂pξq “ O
´

e´4|ξ|
2

{α2
¯

, with 1{αβ ą 1{4, then f ” 0.

Moreover, if 1{αβ “ 1{4, then f is a constant multiple of e´|x|
2

{β2

. Throughout this paper, we use
the notation

f̂pξq “
1

p2πq
N
2

ż

RN

e´iξ¨xfpxqdx

for the Fourier transform of f .
While the assumptions above are pointwise bounds, an L2-Hardy uncertainty principle can be

formulated as well (see [9, 34]):

If e|x|
2

{β2

f and e4|ξ|
2

{α2
pf P L2

`

RN
˘

, with 1{αβ ě 1{4, then f ” 0.

This result can be interpreted as a sharp uniqueness result for the free solution of the Schrödinger
equation (see [7, 13]),

#

i Btu` ∆u “ 0, pt, xq P p0,`8q ˆ RN ,

up0, xq “ fpxq, x P RN ,

where i denotes the imaginary unit, the unknown ψ : R` ˆ RN Ñ C is the wave function of the
particle, and ψ0 P L2pRN q is the initial datum. The statement is as follows:

If up0, xq “ O
´

e´|x|
2

{β2
¯

and upT, xq “ O
´

e´|x|
2

{α2
¯

, with T {αβ ą 1{4, then u ” 0.
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1 We also refer to the textbooks [37, 25, 38, 33] for alternative proofs and further information.
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Moreover, if T {αβ “ 1{4, then u has as initial data a constant multiple of e´p1{β2
`i{4Tq|y|

2

.
Similarly, an L2 statement holds:

If e|x|
2

{β2

up0, xq, e|ξ|
2

{α2

upx, T q P L2
`

RN
˘

, with T {αβ ě 1{4, then u ” 0.

This research line was carried out in the fundamental papers [13, 12, 17, 8, 18, 15]. These results
were generalized to semi-linear equations and to the covariant Schrödinger evolution in [16, 3, 6,
5]. Unique continuation results of this kind have been also established for the Kortweg–de Vries
equation (see, e.g., [32, 14]), several nonlocal dispersive models (see [28]), the Navier–Stokes system
(see, e.g., [11]), and discrete Schrödinger-type equations were studied in [4, 27, 20, 21, 1, 29, 22, 19].
We refer to [23] for a survey of this type of dynamical versions of Hardy’s uncertainty principle.

In particular, we recall the following results from [13, Theorem 3] about a solution u P

Cpr0, T s; L2
`

RN
˘

q of
#

i Btψpt, xq ` 1
2∆ψpt, xq ` V pt, xqψpxq “ 0, pt, xq P p0,`8q ˆ RN ,

ψp0, xq “ ψ0pxq, x P RN .
(1.2)

If there exist positive constants α and β such that T {αβ ą 1{4, and

}e|x|
2

{β2

up0, ¨q}L2pRN q, }e|x|
2

{α2

upT, ¨q}L2pRN q ă 8,

and the potential V : R` ˆRN Ñ C is bounded and either V pt, xq “ V1pxq `V2pt, xq, with V1 real-
valued and supr0,T s }eT

2
|x|

2
{pαt`βpT´tqq

2

V2ptq}L8pRN q ă `8 or limRÑ`8 }V }L1pr0,T s;L8pRN zBRqq “

0, then u ” 0.

1.2. Main result. In this note, we prove that result analogous to those for (1.2) also holds for
(1.1).

Theorem 1.1 (Unique continuation for (1.1)). Let us suppose that the collision operator K, which
could be nonlinear, satisfies

}Krf s}L2pr0,1sˆR2N q ď CK}f}L2pr0,1sˆR2N q,(1.3)

Krvf spt, x, vq “ vKrf spt, x, vq, for all pt, x, vq P r0, 1s ˆ R2N ,(1.4)

Krf spt, x, vq ď 0, when fpt, x, vq ě 0, for all pt, x, vq P r0, 1s ˆ R2N ,(1.5)
ż

R2N

Krf sgdxdv “

ż

R2N

Krgsfdxdv for f, g P L2pr0, 1s ˆ R2N q,(1.6)

supprKrf ss Ă r7{8, 1s ˆ tx P RN | |x| ď ρu ˆ RN for f P L2pr0, 1s ˆ R2N q(1.7)

where ρ is a fixed positive constant. Moreover, let us suppose that the there exist R0 ą 0, γ ą 12
such that if the initial datum f0 is not the zero function, it satisfies, for any R ą R0

(1.8)
ż

`

γ{2´2{3
˘

Rď|x|ď

`

γ{2`1{3
˘

R

ż

γ
2 Rď|v|ďγR

|v|2|f0|2 dv dx ě c2e
´c1R

2β

,

for a positive constant β, 0 ă β ă 1, and c1 ą 0, c2 ě 0 are constants depending on R0, γ, β.
Let us assume that (1.1) has a strong non-negative solution f such that f, |v|f P

C1pr0, 1s; H1pRN , L2pRN qqq. If

}|v|eφfp0, ¨, ¨q}L2pRNˆRN q ă 8 and }|v|eφfp1, ¨, ¨q}L2pRNˆRN q ă 8,

where

φpt, x, vq “ φ1pt, xq ` φ2pt, vq,(1.9)

φ1pt, xq “
M1|x|2

pt` 1q2
`M0|x|2,(1.10)

φ2pt, vq “ M2|v|2t2,(1.11)

with M2,M1,M0 ą 0 such that M2 `M0 ě 4M1, then

fpt, ¨, ¨q ” 0 for all t P r0, 1s.
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Remark 1.2. An example of K is as follows. Let Mpzq : R` Ñ R`, be a bounded function in
CcpR`q, we define

Lrf spt, x, vq “ χtPr7{8,1s

ż

|y|ďρ

Mp|x´ y|qfpt, y, vqdy, for x P RN , |x| ď ρ,

and
Lrf spxq “ 0, for x P RN , |x| ą ρ.

The proof of Theorem 1.1 is given in Section 3. Following the strategy of [13], it combines two
main tools, which are contained in Section 2. The first one is the logarithmic convexity of certain
quantities, which essentially yield quadratic exponential decay at infinity of f (see Lemma 2.2);
the second one is a lower-bound for the L2-norm of the solution in a suitable annular domain, for
which we need a suitable Carleman inequality (see Lemmas 2.3–2.5).

1.3. Further comments and extensions. The current work is a test case of the method for the
simple case of the linear transport equation (1.1). However, the method has the potential to be
extended to various more complicated kinetic equations. In forthcoming works, we will analyze

(1.12)

#

BtW ` k ¨ ∇xW “ KrW s, pt, x, kq P p0,`8q ˆ RN ,

W p0, x, kq “ W0px, kq, px, kq P RN ,

where the collision operator K can be of classical type [2], nonlinear wave kinetic type [36] and
nonlinear quantum kinetic type for 1 Ø 2 collisions [35] and 2 Ø 2 collisions [31]. Those cases are
much harder, but highly relevant for applications.

2. Log-convexity and Carleman estimate

On L2pRN q, whose inner product is denoted by p¨, ¨q, let us consider the following abstract
kinetic equation

(2.1) Btg ` Tg “ Lg ` G,

where G is some source force, L is a collision operator satisfying

(2.2) pLh, kq “ ph, Lkq,

and T is a transport operator satisfying the following properties

pTg, gq “ 0,(2.3)
pTh, kq “ ´ph, Tkq,(2.4)

Teϕ “ eϕTϕ,(2.5)
T phkq “ pThqk ` hTk,(2.6)

where ϕ, h, k are functions on L2pRN q such that the integrals and operators in (2.3), (2.4) and
(2.5) are well-defined.

Let us define the function

(2.7) W :“ eϕg,

where g is the solution of the equation (2.1) and ϕpt, xq is some bounded function in C8pr0, 1sˆRN q.
We prove that, under suitable conditions, W is logarithmically convex.

Lemma 2.1 (Abstract log-convexity lemma). If there exist positive constants C0, C1 and C2, such
that

pBt ` T q2ϕ` pBtt ` BtT qϕ ě ´C0, pt, xq P r0, 1s ˆ RN ,(2.8)

}eϕLf}L2 ď C1}f}L2 , for all f P L2pRN q,(2.9)

C2 :“ sup
tPr0,1s

}eϕGptq}L2

}fptq}L2

,(2.10)

then W ptq is logarithmically convex in r0, 1s and there exists a constant N ą 0 such that

W ptq ď eN pC0`C1`C2
1`C2`C2

2qW p0q1´tW p1qt.(2.11)
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Proof. We first observe that W satisfies the following equation

(2.12) BtW ` TW ´ G̃ “ pBtϕ ` TϕqW ` LW,

where
G̃ “ Geϕ.

Define the function

(2.13) Mptq “ pW ptq,W ptqq,

and take the derivative of logM ,

(2.14)

d

dt
plogMq “

9M

M
“

2pBtW,W q

M
“

“
2p´TW ` pBtϕ` TϕqW,W q

M
`

2pLW ` G̃,W q

M

“
2ppBtϕ` TϕqW,W q

M
`

2pLW ` G̃,W q

M
,

where in the last line, we have used (2.3).
Let us consider the first term on the right hand side of (2.14) and set

(2.15) P “ 2ppBtϕ` TϕqW,W q.

Differentiating in time the above expression yields

(2.16)

9P “ 2ppBttϕ` BtTϕqW,W q ` 4ppBtϕ` TϕqW, BtW q

“ 2ppBttϕ` BtTϕqW,W q ` 4ppBtϕ` TϕqW, pBt ` T qW q

´ 4ppBtϕ` TϕqW,TW q,

where in the last line, we have employed the identity BtW “ pBt ` T qW ´ TW .
Now, by (2.4) and (2.6), the last term on the right hand side of (2.16) can be rewritten in the

following way

(2.17)
ppBtϕ` TϕqW,TW q “ p´T ppBtϕ` TϕqW q,W q

“ ´ pppTBt ` T 2qϕqW,W q ´ pppBt ` T qϕqTW,W q,

which leads to

(2.18) ppBtϕ` TϕqW,TW q “ ´
1

2
pppTBt ` T 2qϕqW,W q.

Putting together the two identities (2.16) and (2.18) leads to

(2.19)
9P “ 2pppBt ` T q2ϕqW,W q ` 4ppBtϕ` TϕqW, pBt ` T qW q ` 2ppBttϕ` BtTϕqW,W q

` 2ppBttϕ` BtTϕqW,W q,

which, by the polarization identity, can be expressed as

(2.20)
9P “ 2pppBt ` T q2ϕqW,W q ` }BtW ` TW ` ppBt ` T qϕqW }2L2

´ }BtW ` TW ´ ppBt ` T qϕqW }2L2 ` 2ppBttϕ` BtTϕqW,W q.

We, therefore, also have the following identities by multiplying both sides of (2.20) with M

(2.21)
9PM “ 2pppBt ` T q2ϕqW,W qM ` }BtW ` TW ` ppBt ` T qϕqW }2L2}W }2L2

´ }BtW ` TW ´ ppBt ` T qϕqW }2L2}W }2L2 ` 2ppBttϕ` BtTϕqW,W qM,

and

(2.22)

9MP “ 4pppBt ` T qϕqW,W qpBtW,W q

“pBtW ` ppBt ` T qϕqW,W q2 ´ pBtW ´ ppBt ` T qϕqW,W q2

“pBtW ` TW ` ppBt ` T qϕqW,W q2 ´ pBtW ` TW ´ ppBt ` T qϕqW,W q2,

where the last line follows from (2.3).
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Now, let us consider the time derivative of P
M , which is 9PM´ 9MP

M2 , and can be computed by
substracting (2.21) and (2.22) and then dividing by M2, as follows

(2.23)

d

dt

ˆ

P

M

˙

“ 2pppBt ` T q2ϕqW,W q{M ` }BtW ` TW

` ppBt ` T qϕqW }2L2}W }2L2{M2

´ }BtW ` TW ´ ppBt ` T qϕqW }2L2}W }2L2{M2

` pBtW ` TW ´ ppBt ` T qϕqW,W q2{M2

´ pBtW ` TW ` ppBt ` T qϕqW,W q2{M2 ` 2ppBttϕ` BtTϕqW,W q{M.

By the Cauchy-Schwarz inequality

} 9W ` TW ` ppBt ` T qϕqW }2L2}W }2L2{M2 ě pBtW ` TW ` ppBt ` T qϕqW,W q2{M2,

and the positiveness of pBtW ` TW ´ ppBt ` T qϕqW,W q2{M2, we deduce from (2.23) that

(2.24)
d

dt

ˆ

P

M

˙

ě 2pppBt ` T q2ϕqW,W q{M ´ }BtW ` TW

´ ppBt ` T qϕqW }2L2}W }2L2{M2 ` 2ppBttϕ` BtTϕqW,W q{M,

which, by (2.12), leads to

(2.25)
d

dt

ˆ

P

M

˙

ě 2pppBt ` T q2ϕqW,W q{}W }2L2 ´ }LW ` G̃}2L2{}W }2L2

` 2ppBttϕ` BtTϕqW,W q{}W }2L2 .

Using the hypothesis (2.8), (2.9) and (2.11), from (2.25), we deduce

(2.26)
d

dt

ˆ

P

M

˙

ě 2C0 ´ 2C2
1 ´ 2C2

2 .

As a consequence of (2.14), we have

(2.27)

d2

dt2
plogMq “

d

dt

ˆ

P

M

˙

`
d

dt

˜

2peϕLf ` G̃,W q

M

¸

ě 2C0 ´ 2C2
1 ´ 2C2

2 `
d

dt

˜

2peϕLf ` G̃,W q

}W }2L2

¸

,

which, by putting the terms on the right-hand side to the left-hand side, implies

(2.28)
d

dt

˜

d

dt
plogMq ´

2peϕLf ` G̃,W q

}W }2L2

´ p2C0 ´ 2C2
1 ´ 2C2

2qt

¸

ě 0

for all t P r0, 1s.

The above inequality proves that d
dt plogMq ´

2peϕLf`G̃,W q

}W }2
L2

´ p2C0 ´ 2C2
1 ´ 2C2

2qt is indeed an

increasing function on the time interval r0, 1s. In other words

(2.29)

d

dt
plogMqps1q ´

2peϕLf ` G̃,W q

}W }2L2

ps1q ´ p2C0 ´ 2C2
1 ´ 2C2

2qs1

ě
d

dt
plogMqps2q ´

2peϕLf ` G̃,W q

}W }2L2

ps2q ´ p2C0 ´ 2C2
1 ´ 2C2

2qs2

for 0 ď s2 ď s1 ď 1.
Using the fact that

2peϕLf ` G̃,W q

}W }2L2

ď 2C1 ` 2C2,

we get the conclusion of the lemma. □

As a consequence of Lemma 2.1, we deduce a log-convexity property for the solution of (1.1).
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Lemma 2.2 (Log-convexity properties for (1.1)). Let us suppose that (1.1) possess a strong solution
f P C1pr0, 1s, H1pRN , L2pRN qqq.

If }eφfp0, ¨, ¨q}L2pRNˆRN q, }eφfp1, ¨, ¨q}L2pRNˆRN q ă 8, then }eφfpt, ¨, ¨q}L2pRNˆRN q is logarith-
mically convex in r0, 1s and there exist universal constants N ,K8 depending only on K satisfying

}eφfpt, ¨, ¨q}L2pRNˆRN q ă eN pK2
8`K8q}eφfp0, ¨, ¨q}

1´t
L2pRNˆRN q

}eφfp1, ¨, ¨q}tL2pRNˆRN q, t P r0, 1s.

Proof. Let us define u :“ eφf , T “ ´v ¨ ∇x, and L “ K. In order to apply the abstract result of
Lemma 2.1, we need to check that conditions (2.8) and (2.9) hold.

Step 1. Condition (2.8). First, let us expand

(2.30) pBt ` T q2φ “ Bttφ ` 2v ¨ ∇xBtφ ` v ¨ ∇xpv ¨ ∇xφq,

and compute explicitly (2.30) for φ to be the function defined in (1.9)

(2.31)

pBt ` T q2φ2 “ 2M2|v|2,

Btφ1 “ ´
M12|x|2

pt` 1q3
, ∇xBtφ1 “ ´

4M1x

pt` 1q3
,

2v ¨ ∇xBtφ1 “ ´
8M1x ¨ v

pt` 1q3
, ∇xφ1 “

2M1x

pt` 1q2
` 2M0x,

v ¨ ∇xφ1 “
2M1x ¨ v

pt` 1q2
` 2M0x ¨ v, v ¨ ∇xpv ¨ ∇xφ1q “

2M1|v|2

pt` 1q2
` 2M0|v|2,

Bttφ1 “
M1|x|26

pt` 1q4
, Bttφ1 ` BtTφ1 ě

6M1|x|2

pt` 1q4
´

4M1x ¨ v

pt` 1q3
,

Bttφ2 ` BtTφ2 ě 2M2|v|2.

Combining the inequalities in (2.31) yields

(2.32)
pBt ` T q2φ` pBtt ` BtT qφ

ě 2pM2 `M0q|v|2 `
2M1|v|2

pt` 1q2
´

12M1x ¨ vpt` 1q

pt` 1q4
`

M1|x|24pt` 1q2

pt` 1q6
.

Using the fact that M2 `M0 ě 4M1, we obtain

pBt ` T q2φ` pBtt ` BtT qφ ě 0.(2.33)

As a consequence, Condition (2.8) is satisfied.
Step 2. Condition (2.9). It is straightforward that for each t in the interval r0, 1s, the following

inequality holds true, for CK ą 0 depending on ρ

}eφLu}L2pR2N q ď CK}u}
L2pR2N q

,(2.34)

which implies Condition (2.9). The conclusion of the proposition then follows from Lemma 2.1. □

As a second step, we turn to the proof of an L2-Carleman inequality.

Lemma 2.3 (Carleman inequality). Let us suppose that the collision operator K satisfies (1.3)-
(1.7) and that (1.1) possess a strong compactly supported solution f P C1pr0, 1s, H1pRN , L2pRN qqq.

The following Carleman inequality holds

(2.35)
ż 1

0

ż

RNˆRN

e2φf2pBt ` v ¨ ∇xq2φdx dv dt ď

ż 1

0

ż

RNˆRN

e2φ|pBt ` v ¨ ∇xqf |2 dxdv dt,

where φ P C8pr0, 1s ˆ R2N q is a function satisfying

pBt ` v ¨ ∇xq2φ ě 0, for all pt, x, vq P r0, 1s ˆ R2N ,

on the support of f .

Proof. Letting
g :“ eφf,



UNCERTAINTY PRINCIPLES FOR A KINETIC EQUATION 7

we compute

(2.36)

eφpBtf ` v ¨ ∇xfq “ eφpBtpe
´φgq ` v ¨ ∇xpe´φgqq

“ eφp´Btφe
´φg ` Btge

´φ ´ v ¨ ∇xφe
´φg ` v ¨ ∇xge

´φq

“ Btg ` v ¨ ∇xg ´ pBtφ ` v ¨ ∇xφqg.

Letting
A “ ´v ¨ ∇x,

S “ Btφ` v ¨ ∇xφ,

we can write (2.36) as

eφpBtf ` v ¨ ∇xfq “ Btg ´ Ag ´ Sg.(2.37)

Moreover, the operator St ` rS,As can be computed explicitly as:

(2.38)
St ` rS,As “ Bttφ ` 2v ¨ ∇xBtφ ` v ¨ ∇xpv ¨ ∇xφq

“ pBt ` v ¨ ∇xq2φ.

We now follow the standard method of the L2-Carleman inequality (see [26]). The symmetric
and skew-aymmetric part of the space-time operator Bt ´ S ´ A are ´S and Bt ´ A respectively
and the commutator r´S, Bt ´ As is St ` rS,As. As a consequence, we can bound Btg ´ Ag ´ Sg
as follows:

(2.39)

}Btg ´ Ag ´ Sg}2L2pr0,1sˆR2N q “ }Btg ´ Ag}2L2pr0,1sˆR2N q ` }Sg}2L2pr0,1sˆR2N q

´ 2

ż 1

0

ż

R2N

SgpBtg ´ Agqdxdv dt

ě 2

ż 1

0

ż

R2N

gr´S, Bt ´ Asg dxdv dt

“ 2

ż 1

0

ż

R2N

pStg ` rS,Asgqg dxdv dt

“ 2

ż 1

0

ż

R2N

g2pBt ` v.∇xq2φdxdv dt,

which yields (2.35). □

As a consequence of Lemma 2.3, we deduce the following lower-bound on the L2-norm of vf in
a suitable domain in r0, 1s ˆ R2N .

Lemma 2.4 (Lower bound on the (localized) L2-norm of vf). Let R, β, δ, γ be positive
constants and 0 ă β ă 1, 2 ą δ ą 2β, γ ą 12. Let us suppose that the collision op-
erator K satisfies (1.3)-(1.7) and that equation (1.1) possesses a strong solution f such that
f, |v|f P C1pr0, 1s, H1pRN , L2pRN qqq.

Let us define

(2.40) ΩRpfq :“

˜

ż 1

0

ż

γ
2 R´1ď|v|ďγR`1

ż

Rď|x|ďR`1

|fv|2 dx dv dt

¸
1
2

.

If

(2.41)
ż 1

0

ż

R2N

|f |2 dx dv dt ď A2,

and there exist R0, C1, C2 ą 0 such that, for R ą R0,

(2.42)
ż 2

3

1
3

ż

|x|ďR

ż

γ
2 Rď|v|ďγR

|v|2|f |2 dv dx dt ě C2e
´C1R

2β

,

then there exist positive constants c1, c2, R˚ depending on δ and A such that for R ą R˚:

(2.43) |ΩRpfq|2 ě c2e
´c1R

δ

.
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Proof. Step 1. Construction of the weight functions. Let us define

(2.44) ϕpt, xq :“
|x|2

pR ` 1q2
` 16tp1 ´ tq,

on R` ˆ R2N , and the following cut-off function of f :

(2.45) gpt, x, vq :“ θRpxqθ

ˆ

|x|2

pR ` 1q2
` 16tp1 ´ tq

˙

ρRpvqfpt, x, vq,

where θR, ρR are functions in C8
c pRN q and θ is a function in C8pRq, satisfying

‚ θRpxq “ 1 if |x| ď R and θRpxq “ 0 if |x| ě R ` 1;
‚ θpzq “ 0 if |z| ď 1 and θpzq “ 1 if |z| ě 3;
‚ ρRpvq “ 1 if γ

2R ď |v| ď γR and ρRpvq “ 0 if |v| ą γR ` 1 or |v| ă
γ
2R ´ 1.

We observe that gpt, x, vq is compactly supported in r0, 1s ˆ R2N and gpt, x, vq “ fpt, x, vq if

(2.46) pt, x, vq P B :“
!

0 ď t ď 1, |x| ď R,
γ

2
R ď |v| ď γR :

|x|2

pR ` 1q2
` 16tp1 ´ tq ě 3

)

.

We can see that

(2.47) BR :“

„

1

4
,
3

4

ȷ

ˆ t|x| ď Ru ˆ

!γ

2
R ď |v| ď γR

)

Ă B.

Using (1.1), we deduce the following equation for g:

(2.48)

Btg ` v ¨ ∇xg ` θRpxqθ

ˆ

|x|2

pR ` 1q2
` 16tp1 ´ tq

˙

ρRpvqKf

“ gθRρRθ
1 ` gθρRv ¨ ∇xθR`

` pBtf ` v ¨ ∇xfqθRθρR ` θRpxqθ

ˆ

|x|2

pR ` 1q2
` 16tp1 ´ tq

˙

ρRpvqKf

“ fθRρRθ
1 ` fθρRv ¨ ∇xθR.

Step 2. Estimates on the right-hand side of (2.48). Let us consider the first term fθRρRθ
1 on

the right-hand side of (2.48). Observe that θ1pzq is supported in 1 ď |z| ď 3, which leads to |ϕ| ď 3
on the considered domain. We can estimate the L2-norm with weight e2αϕ of the first term on the
right hand side of (2.48) as follows:

(2.49)

ˆ
ż 1

0

ż

R2N

|fθRρRθ
1|2e2αϕ dxdv dt

˙1{2

ď Ce3α
ˆ

ż 1

0

ż

R2N

|f |2 dxdv dt

˙1{2

ď Ce3αA,

in which eαϕ is bounded by e3α on the domain of integration and C is some universal constant
that varies from line to line.

Since ∇xθR is supported in the interval R ď |x| ď R ` 1, we can estimate the second term on
the right hand side of (2.48) as follows

(2.50)

ˆ
ż 1

0

ż

R2N

|fθρRv ¨ ∇xθR|2e2αϕ dx dv dt

˙1{2

ď Ce17α

˜

ż 1

0

ż

γ
2 R´1ď|v|ďγR`1

ż

Rď|x|ďR`1

|fv|2 dxdv dt

¸1{2

“ Ce17αΩRpfq,

where we have used the fact that
ϕpt, x, vq ď 17

on the domain of integration.
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Inequality (2.48), in combination with the 2 inequalities (2.49), (2.50), yields
(2.51)

}eαϕpBtg ` v ¨ ∇xgq}L2pr0,1sˆR2N q ď

›

›

›

›

eαϕθRpxqθ

ˆ

|x|2

pR ` 1q2
` 16tp1 ´ tq

˙

ρRpvqKrf s

›

›

›

›

L2pr0,1sˆR2N q

` Ce17αΩRpfq ` Ce3αA.

Step 2. Application of the Carleman inequality. By Lemma 2.3, the left hand side of (2.51) can
be bounded from below as follows:

(2.52) }eαϕpBtg ` v ¨ ∇xgq}L2pr0,1sˆR2N q ě α1{2}eαϕg
a

pBt ` v ¨ ∇xq2ϕ}L2pr0,1sˆR2N q.

We now estimate

(2.53) pBt ` v ¨ ∇xq2ϕ “
2|v|2

pR ` 1q2
´ 32.

For v in the support of g, |v| ą
γ
2R ´ 1, which yields

(2.54) pBt ` v ¨ ∇xq2ϕ ě
1

pR ` 1q2

´γ

2
R ´ 1

¯2

´ 32 ą 1,

when γ ą 12 and R is chosen sufficiently large.
Putting together the three estimates (2.51), (2.52) and (2.54), we obtain

(2.55) α1{2}eαϕg}L2pr0,1sˆR2N q ď CKe
3α}f}L2pr0,1sˆR2N q ` Ce17αΩRpfq ` Ce3αA,

where C is some universal constant that varies from line to line.
Step 3. Conclusion of the argument. For α “ Rδ pδ ą 2βq and R large enough, we obtain

(2.56) Rδ{2}eαϕg}L2pr0,1sˆR2N q ď Ce17αΩRpfq ` CKe
3αA ` Ce3αA,

where C is some universal constant that varies from line to line.
Note that for R ą R0

}eαϕg}L2pr0,1sˆR2N q ě }eαϕf}L2pr 1
3 ,

2
3 sˆt|x|ďRuˆt γ

2 Rď|v|ďγRuq,

which, due to the fact that ϕ ě 32
9 for t P

“

1
3 ,

2
3

‰

Ă
“

1
4 ,

3
4

‰

, is bounded from below as

}eαϕf}L2pr 1
3 ,

2
3 sˆt|x|ďRuˆt γ

2 Rď|v|ďγRuq ě e
32
9 α}f}L2pr 1

3 ,
2
3 sˆt|x|ďRuˆt γ

2 Rď|v|ďγRuq.

Taking into account (2.42) and the choice α “ Rδ, the above estimate becomes

}eαϕf}L2pr 1
3 ,

2
3 sˆt|x|ďRuˆt γ

2 Rď|v|ďγRuq ě Ce
23
9 Rδ

´C1R2β

ě Ce3R
δ

,

where the last inequality holds true for R sufficiently large and δ ą 2β, C, C 1 are universal constants
varying from lines to lines.

Using the above estimate, we then deduce from (2.56) that

(2.57) Rδ{2e3R
δ

ď Ce17R
δ

ΩRpfq ` pCK ` Cqe3R
δ

.

The conclusion of the lemma follows. □

We deduce another lower bound on a (localized) L2-norm of vf .

Lemma 2.5 (Lower bound on the (localized) L2-norm of vf). Let us suppose that the collision
operator K satisfies (1.3)-(1.7) and that equation (1.1) possesses a strong non-negative solution f
such that f, |v|f P C1pr0, 1s; H1pRN , L2pRN qqq.

Let us adopt the notations γ, β from Lemma 2.4. Then following inequality holds true:

(2.58)
ż 2

3

1
3

ż

γ
2 Rď|v|ďγR

ż

|x|ďR

|vf |2 dxdv dt ě

ż 2
3

1
3

ż

γ
2 Rď|v|ďγR

ż

|x|ďR

|vf0px´ vt, vq|2 dxdvdt.

Moreover, if f0 satisfies (1.8), then there exist constants C1,C2 ą 0 such that the following inequality
holds true:

(2.59)
ż 2

3

1
3

ż

γ
2 Rď|v|ďγR

ż

|x|ďR

|vf |2 dxdv dt ě C1e
´C2R

2β

.
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Proof. We have

fpt, x, vq “ ´

ż t

0

Krf spt´ s, x´ vs, vqds ` f0px´ vt, vq.(2.60)

Since K ď 0 (owing to (1.5)), from (2.60) we deduce

fpt, x, vq ě f0px´ vt, vq.(2.61)

Integrating the inequality (2.61) in x and v on the domain t
γ
2R ď |v| ď γRu ˆ t|x| ď Ru yields

ż

γ
2 Rď|v|ďγR

ż

|x|ďR

|vf |2 dx dv ě

ż

γ
2 Rď|v|ďγR

ż

|x|ďR

|vf0px´ vt, vq|2 dxdv.

This proves (2.58). Moreover, if f0 satisfies (1.8), we can further estimate the right-hand side and
deduce that (2.59) holds. □

3. Proof of Theorem 1.1

By putting together the lemmas contained in Section 2, we can prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that f ‰ 0, we can assume after a possible multiplication by a
constant, dilation, translation that the conditions of Lemma 2.4 are satisfied. Fix positive constants
R ą 0, 0 ă β ă 1, γ ą 8. We start by noting that |v|f satisfies the following equation:

(3.1) Btp|v|fqpt, x, vq ` v ¨ ∇xp|v|fqpt, x, vq `Kr|v|f spt, x, vq “ 0, pt, x, vq P r0, 1s ˆ R2N .

Step 1. Log-convexity. Applying Lemma 2.2 to (3.1), we deduce

(3.2) sup
tPr0,1s

}eφ|v|fpt, ¨, ¨q}2L2pRNˆRN q ď C,

where C depends on the norms }eφ|v|fp0, ¨, ¨q}L2pRNˆRN q, }eφ|v|fp1, ¨, ¨q}L2pRNˆRN q. This mplies

(3.3)

ż

Rď|x|ďR`1

ż

γ
2 R´1ď|v|ďγR`1

|v|2|f |2 exp

ˆ

M1|x|2

pt` 1q2
` M2|v|2pt` 1q2 ` M0|v|2

˙

dx dv

ď

ż

RN

ż

RN

|v|2|f |2 exp

ˆ

M1|x|2

pt` 1q2
` M2|v|2pt` 1q2 ` M0|v|2

˙

dx dv

ď C.

Using the fact that
|x|2

pt` 1q2
ě
R2

4
,

on the domain of integration of (3.3), we deduce that

(3.4)
ż 1

0

ż

Rď|x|ďR`1

ż

γ
2 R´1ď|v|ďγR`1

|v|2|f |2 dv dxdt ď Ce´
M1R2

4 ,

where C is a universal constant that varies from line to line.
Step 2. Lower-bound. Owing to Lemma 2.5 (since condition (1.8) holds), we have the following

estimate:
ż 2

3

1
3

ż

|x|ďR

ż

γ
2 Rď|v|ďγR

|vf |2 dxdv dt ě c2e
´c1R

2β

.

Furthermore, from Lemma 2.4 and the estimate above, we deduce

(3.5)
ż 1

0

ż

Rď|x|ďR`1

ż

γ
2 R´1ď|v|ďγR`1

|vf |2 dx dv dt ě c1
2e

´c1
1R

δ

,

for 2β ă δ ă 2, δ ą 1.
Step 3. Conclusion of the proof. Combining the two inequalities (3.4) and (3.5) yields

c1
2e

´c1
1R

δ

ď Ce´
M1R2

4 ,

which leads to a contradiction as R tends to infinity since δ ă 2. □
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