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Abstract
We analyse a 3-wave kinetic equation, derived from the elastic beam wave equation on
the lattice. The ergodicity condition states that two distinct wavevectors are supposed to be
connected by a finite number of collisions. In this work, we prove that the ergodicity condition
is violated and the equation domain is broken into disconnected domains, called no-collision
and collisional invariant regions. If one starts with a general initial condition, whose energy
is finite, then in the long-time limit, the solutions of the 3-wave kinetic equation remain
unchanged on the no-collision region and relax to local equilibria on the disjoint collisional
invariant regions.Toour best knowledge, this is thefirst time that the violationof the ergodicity
condition is observed and proved for a kinetic equation.
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1 Introduction

Having the origin in theworks ofBenney-Saffman-Newell [6, 7],Hasselmann [25, 26], Peierls
[45, 46] and Zakharov [55], wave kinetic equations have been shown to play important roles
in a vast range of physical examples and this is why a huge and still growing number of
situations have used WT theory: inertial waves due to rotation; Alfvén wave turbulence in
the solar wind; waves in plasmas of fusion devices; and many others, as discussed in the
books of Nazarenko [38], Zakharov et al. [55] and the review papers of Newell and Rumpf
[39, 40].

We consider the quadratic elastic beam wave equation (Bretherton-type equation) (see
Benney-Newell [5], Bretherton [8] and Love [34])

∂2ψ

∂T 2 (x, T ) + (� + c)2ψ(x, T ) + λψ2(x, T ) = 0,

ψ(x, 0) = ψ0(x),
∂ψ

∂T
(x, 0) = ψ1(x),

(1)

for x being on Z
3, T ∈ R+, c ∈ R is some real constant, λ is a small constant describing the

smallness of the nonlinearity. Equations of type (1) have beenwidely studied in control theory,
and have been shown to have a Schrödinger structure (see, for instance, Burq [9], Fu-Zhang-
Zuazua [19], Haraux [24], Lebeau [28], Lions [33], and Zuazua-Lions [56].) The analysis of
(1) is also an interesting mathematical question of current interest (see, for instance, Hebey-
Pausader [27], Levandosky-Strauss [32], Pausader [43] Pausader-Strauss [44].)

We obtain the 3-wave kinetic equation

∂t f (k, t) = Qc[ f ](k), f (k, 0) = f0(k), ∀k ∈ T
3,

Qc[ f ](k) =
∫
T6

K (ω, ω1, ω2)δ(k − k1 − k2)δ(ω − ω1 − ω2)[ f1 f2 − f f1

− f f2]dk1dk2
− 2

∫
T6

K (ω, ω1, ω2)δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f2 f − f f1

− f1 f2]dk1dk2,

(2)

where K (ω, ω1, ω2) = [√8ω(k)ω(k1)ω(k2)]−1, with

ω(k) = ω0 +
3∑
j=1

2
(
1 − cos(2πk j )

)
,

and T
d is the periodic torus [0, 1]d .

One of the main challenges in understanding the behaviors of solutions to the 3-wave
kinetic equations is the so-called ergodicity, which is quite typical for 3-wave processes.
Ergodicity has played a very important role and has a long history in physics [3, 29–31] andwe
refer to the lecture notes [51] [Section 17] for amore detailed discussion. To define ergodicity,
we will need the concept of the connectivity between two wave vectors k and k′, which we
briefly discuss here, leaving the precise definition for later. Given a wave vector k, a wave
vector k′ is understood to be connected to k in a collision if either ω(k′) = ω(k)+ω(k′ − k),
ω(k) = ω(k′) + ω(k − k′), or ω(k + k′) = ω(k) + ω(k′).

ErgodicityCondition (E):For every k, k′ ∈ T
3\{0}, there is a finite sequence of collisions

such that k is connected to k′.
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When the Ergodicity Condition (E) is violated, the system is partitioned into smaller
subsystems which are dynamically disconnected and each subsystem thermalizes by itself.

It was shown that (see [51]) under the Ergodicity Condition (E), the only stationary
solutions of the spatially homogeneous Boltzmann equations (2) take the forms

1

βω(k)
,

in which β can be computed via the conservation laws.
The aim of this work is to develop a rigorous analysis and prove that the Ergodicity

Condition (E) is violated for the equation (2). We will show that the domain of integration
is broken into disconnected domains. Those subregions are then proved to be dynamically
disconnected. There is one region, in which if one starts with any initial condition, the
solutions remain unchanged as time evolves. In general, the equilibration temperature will
differ from region to region. We call it the “no-collision region”. The rest of the domain is
divided into disconnected regions, each has their own local equilibria. If one starts with any
initial condition, whose energy is finite on one subdomain, the solutions will relax to the
local equilibria of this subregion, as time evolves, and as thus each subsystem thermalizes by
itself. Those subregions are named “collisional invariant regions”, due to the fact that we can
rigorously establish unique local collisional invariants on each of them, using the conservation
of energy. This confirms Spohn’s prediction and enlightening physical intuitions [51] on the
behavior of 3-wave systems. To our best knowledge, this is the first example in which the
important ergodicity condition is violated for a kinetic equation. We also remark that the
3-wave kinetic equation considered in this work describes the translation invariant system
and the results proven (decomposition of the frequency space T

d into disjoint equivalence
classes under connectedness via collisions, that are invariant under the flow) do not hold for
the spatially inhomogenous version of the equation.

In addition to 3-wave kinetic equations, 4-wave kinetic equations have also played an
important role in wave turbulence and have been first studied in the work of Escobedo and
Velazquez in [16, 17] as well as several other works [2, 11, 13, 14, 21, 37, 52, 53].

2 From the Bretheton equation to the 3-wave kinetic equation

For the sake of completeness, in this section, we recall the formal derivation of the 3-wave
kinetic equation from the Bretheton equation for the general dimension d > 2. We follow
the same strategy of [36, 51] to put the equation on a lattice


 = 
(D) = {1, . . . , 2D}d , (3)

for some constant D ∈ N.
The discretized equation is now

∂T Tψ(x, T ) = −
∑
y∈


O1(x − y)ψ(y, T ) − λ(ψ(x, T ))2,

ψ(x, 0) = ψ0(x), ∂Tψ(x, 0) = ψ1(x),∀(x, T ) ∈ 
 × R+,

(4)

where O1(x−y) is a finite difference operator that wewill express below in the Fourier space.
We remark that a similar beam dynamics of non-acoustic chains has also been considered in
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[4][Section 7]. To obtain the lattice dynamics, we introduce the Fourier transform

ψ̂(k) =
∑
x∈


ψ(x)e−2π ik·x , k ∈ 
∗ = 
∗(D) =
{
0, . . . ,

2D

2D + 1

}d
, (5)

which is a subset of the d-dimensional torus [0, 1]d . We also define the mesh size to be

hd =
(

1

2D + 1

)d

. (6)

At the end of this standard procedure, (4) can be rewritten in the Fourier space as a system
of ODEs

∂T T ψ̂(k, T ) = −ω(k)2ψ̂(k, T )

− λ
∑

k1,k2∈
∗
ψ̂(k1, T )δ(k − k1 − k2)ψ̂(k2, T ),

ψ̂(k, 0) = ψ̂0(k), ∂T ψ̂(k, 0) = ψ̂1(k),

(7)

where the dispersion relation takes the discretized form

ωk = ω(k) = sin2(2πhk1) + · · · + sin2(2πkd) + c, (8)

with k = (k1, · · · , kd).
We define the inverse Fourier transform to be

f (x) =
∑
k∈
∗

f̂ (k)e2π ik·x . (9)

We also use the following notations∫



dx = hd
∑
x∈


, 〈 f , g〉 = hd
∑
x∈


f (x)∗g(x), (10)

where if z ∈ C, then z̄ is the complex conjugate, as well as the Japanese bracket

〈x〉 =
√
1 + |x |2, ∀x ∈ R

d . (11)

And
∑
k∈
∗

=
∫


∗
dk. (12)

Moreover, for any N ∈ N\{0}, following precisely [36] [equation (2.9)], we define the
delta function δN on (Z/N )d as

δN (k) = |N |d1(k mod 1 = 0), ∀k ∈ (Z/N )d . (13)

In our computations, we omit the sub-index N and simply write

δ(k) = |N |d1(k mod 1 = 0), ∀k ∈ (Z/N )d . (14)

Remark 1 Note that, the above definition of the discrete delta function follows the classical
definition of Lukkarinen-Spohn [36] [equation (2.9)], commonly used in the derivation of
wave kinetic equations. The factor |N |d is needed as it guarantees the convergence of the
discrete delta function to the continuum delta function in the limit of N going to ∞.
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Equation (7) can now be expressed as a coupling system

∂

∂T
q(k, T ) = p(k, T ),

∂

∂T
p(k, T ) = −ω2(k)q(k, T )

− λ

∫
(
∗)2

dk1dk2δ(k − k1 − k2)q(k1, T )q(k2, T ),

q(k, 0) = ψ̂0(k), p(k, 0) = ψ̂1(k), ∀(k, T ) ∈ 
∗ × R+,

(15)

which, under Spohn’s transformation (see [51])

a(k, T ) = 1√
2

[
ω(k)

1
2 q(k, T ) + i

ω(k)
1
2

p(k, T )
]
, (16)

leads to the following system of ordinary differential equations

∂

∂T
a(k, T ) = iω(k)a(k, T ) − iλ

∫
(
∗)2

dk1dk2δ(k − k1 − k2)[8ω(k)21ω(k1)
2ω(k2)

2]− 1
2

×
[
a(k1, T ) + a∗(−k1, T )

][
a(k2, T ) + a∗(−k2, T )

]
,

a(k, 0) = a0(k) = 1√
2

[
ω(k)q(k, 0) + i

ω(k)
p(k, 0)

]
,∀(k, T ) ∈ 
∗ × R+.

(17)

In order to absorb the quantity iω(k)â(k, σ, T ) on the right hand side of the above system,
we set

α(k, T ) = a(k, T )e−iω(k)T . (18)

The following system can be now derived for αT (k)

∂

∂T
α(k, T ) = −iσλ

∑
k1,k2∈
∗

δ(k − k1 − k2)[8ω(k)2ω(k1)
2ω(k2)

2]− 1
2 ×

×
[
α(k1, T ) + α∗(−k1, T )

][
α(k2, T ) + α∗(−k2, T )

]
e−iT (−ω(k1)−ω(k2)+ω(k)).

(19)

Consider the two-point correlation function

fλ,D(k, T ) = 〈αT (k,−1)αT (k, 1)〉. (20)

In the limit of D → ∞, λ → 0 and T = λ−2t = O(λ−2), the two-point correlation function
fλ,D(k, T ) has the limit

lim
λ→0,D→∞ fλ,D(k, λ−2t) = f (k, t)

which solves the 3-wave equation (2), by the standard formal derivation of [51].

Remark 2 As a consequence of the definition (13)–(14), the delta function δ(k − k1 − k2) in
the collision operator of (2) means that there exists a vector z ∈ Z

d such that k = k1+k2+ z.
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3 Main results

Let us first normalize the dispersion ω as

ω(k) = ω0 +
3∑
j=1

2
(
1 − cos(2πk j )

)
, (21)

where 2 < ω0 < 3, and k = (k1, k2, k3). This will result in an addition factor 4 comparison
to the dispersion relation defined in (8), leading to a factor of 4 to the kernel K (ω, ω1, ω2).
In our proof, we suppose K (ω, ω1, ω2) is [ω(k)ω1(k)ω1(k)]−1 for the sake of simplicity.

For ∞ > m ≥ 1, let S be a Lebesgue measurable subset of T
3 such that its measure is

strictly positive, we introduce the function space Lm(S), defined by the norm

‖ f ‖Lm (S) :=
(∫

S
| f (p)|mdp

) 1
m

. (22)

In addition, we also need the space L∞(S), defined by the norm

‖ f ‖L∞(S) := esssupp∈S | f (p)|. (23)

We denote by Cm(S), m = 0, 1, 2, . . . , the restrictions of all continuous and m-time dif-
ferentiable functions on T

3 onto S. The space C0(S) = C(S) is endowed with the usual
sup-norm (23). In addition, for any normed space (Y , ‖ · ‖Y ), we define

C([0, T ), Y ) :=
{
F : [0, T ) → Y

∣∣F is continuous from [0, T ) to Y
}

(24)

and

C1((0, T ), Y ) :=
{
F : (0, T ) → Y

∣∣F is continuous and differentiable from (0, T ) to Y
}
,

(25)

for any T ∈ (0,∞]. The above definitions can also be extended to the spaces C([0, T ], Y ),
C1((0, T ], Y ) for any T ∈ (0,∞).

Let us state our main theorem.

Theorem 3 Under the assumption that there exists a positive, classical solution f in
C([0,∞),C1(T3)) ∩ C1((0,∞), C1(T3)) of (2), with the initial condition f0 ∈ C(T3),
f0(k) ≥ 0 for all k ∈ T

3.
There exist subsets V, I ⊂ T

3 such that the torus T
3 can be decomposed into disjoint

subsets as follows

T
3 = I ∪

⋃
x∈V

S(x), (26)

where S(x) ∩ S(y) = ∅ and S(x) ∩ I = ∅ for x, y ∈ V. The set I is not empty and is
called the “no-collision region”. The set S(x) is called the “collisional-invariant region”.
The solution f behaves differently on each sub-region.

(I) On I the solution stays the same for all time

f (t, k) = f0(k), ∀t ≥ 0, ∀k ∈ I.

123



On the wave turbulence theory: ergodicity... Page 7 of 41    19 

(II) Let x be inV, suppose that the Lebesgue measure L (S(x)) of S(x) is strictly positive,
let Ex ∈ R+ be a constant and assume further that it is indeed the local energy of the
initial condition on S(x) ∫

S(x)
f0(k)ω(k)dk = Ex .

Suppose that

1

ax

∫
S(x)

dk = L (S(x))

ax
=Ex , (27)

with ax ∈ R+; the local equilibrium on the collision invariant region S(x) can be
uniquely determined as

1

axω(k)
. (28)

Then, the following limits always holds true

lim
t→∞

∥∥∥∥ f (t, k) − 1

axω(k)

∥∥∥∥
L1(S(x))

= 0. (29)

and

lim
t→∞

∣∣∣∣
∫
S(x)

ln[ f ]dk −
∫
S(x)

ln

[
1

axω(k)

]
dk

∣∣∣∣ = 0. (30)

If, in addition, there is a positive constant M∗ > 0 such that f (t, k) < M∗ for all
t ∈ [0,∞) and for all k ∈ S(x), then

lim
t→∞

∥∥∥∥ f (t, ·) − 1

axω(k)

∥∥∥∥
L p(S(x))

= 0, ∀p ∈ [1,∞). (31)

If we assume further that f0(k) > 0 for all k ∈ S(x), there exists a constant M∗ such
that f (t, k) > M∗ for all t ∈ [0,∞) and for all k ∈ S(x).

Remark 4 In the above theorem, we assume the well-posedness of the equation. As this piece
of analysis is quite subtle and long, we reserve it for a separate paper.

Remark 5 Notice that, according to our result, the torus T
3 can be decomposed into disjoint

subsets as follows

T
3 = I ∪

⋃
x∈V

S(x), (32)

where S(x) ∩ S(y) = ∅ and S(x) ∩ I = ∅ for x, y ∈ V. However, those disjoint subsets
might be topologically disconnected sets.

Remark 6 Since our solutions are assumed to be are regular and non-measured, in (II) of
the above theorem, the condition that L (S(x)) > 0 is essential. When L (S(x)) = 0, it
follows that 1

ax

∫
S(x) dk = ∫

S(x) f0(k)ω(k)dk = 0, and those cases are negligible due to
the assumption on our solutions. The case when L (S(x)) = 0 is more interesting when
the solutions are measures and this problem is being investigated and will be reported in an
upcoming work.
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The above two theorems assert that those subregions are all non-empty. In the no-collision
region I, any wavevector k ∈ I is totally disconnected to other wavevectors, and thus the
solutions on I do not change as time evolves. In each of the collisional invariant regions
S(x), as time goes to infinity, the solutions converge in the L1(S(x))-norm to 1

axω(k) . In
the classical case, to obtain the convergence, we need more regularity on the solutions: we
assume that the solutions are in C([0,∞),C1(T3)) ∩ C1((0,∞), C1(T3)).

Let us also mention that this asymptotic behavior of the solutions to this 3-wave equations
is very different from what is observed in spatially homogeneous and isotropic capillary or
acoustic kinetic wave equations. It is showed in [50] that if one looks for a solution whose
energy is a constant for all time to one of these isotropic capillary/acoustic kinetic wave
equations, then this solution can exist only up to a finite time, after this time, some energy is
lost to infinity. In otherwords, the solution exhibits the so-called energy cascade phenomenon.

4 The analysis of the 3-wave kinetic equation

In our proof, as discussed above, we suppose K (ω, ω1, ω2) is [ω(k)ω1(k)ω1(k)]−1 for the
sake of simplicity. We assume, when needed that the Lebesgue measure of each collisional
region L (S(x)) is strictly positive due to Remark 6.

4.1 No-collision, collisional regions and the 3-wave kinetic operator on these local
disjoint sets

In this section x, y, z are nowused for frequency vectors, in contrast to the previous discussion
in equation ((1)) and the previous sections. Therefore, that the notations will now be unlinked
from what they were in prior sections.

4.1.1 Collisional invariant regions

For a vector x = (x1, x2, x3) ∈ T
3, we say that the wave vector x is connected to the wave

vector y = (y1, y2, y3) ∈ T
3 by a forward collision if and only if

F
f
x (y) :=

3∑
j=1

2[cos(2π(y j − x j )) + cos(2πx j ) − cos(2π y j )] − 6 − ω0 = 0. (33)

In a forward collision, a particle with wave vector y − x merges with a particle with wave
vector x , resulting in a new particle with wave vector y. Following Remark 2, we could see
that y − x does not need to belong to T

d . Indeed, there exists a vector z ∈ Z
d such that

y − x − z ∈ T
d . In this collision, the conservation of energy ω(y) = ω(x) + ω(y − x),

describing by equation (33), needs to be satisfied. Therefore, given a particle withwave vector
x , there maybe no wave vector y such that the conservation of energy is guaranteed. In other
words, there may be no y such that x is connected to y by a forward collision.

On the other hand, we say that the wave vector x is connected to the wave vector y =
(y1, y2, y3) ∈ T

3 by a backward collision if and only if

Fb
x (y) :=

3∑
j=1

2[cos(2π y j ) + cos(2π(x j − y j )) − cos(2πx j )] − 6 − ω0 = 0. (34)
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Different from forward collisions, in a backward collision, a particle with wave vector x is
broken into two particles, one with wave vector y, and the other one with wave vector x − y.
Again, in a backward collision, the conservation of energy ω(x) = ω(y) + ω(x − y) needs
to be satisfied; and therefore, for a given wave vector x , it could happen that one cannot
break x into y and x − y, such that the energy conservation (34) is satisfied. Again, following
Remark 2, we could see that x− y does not need to belong toT

d . Indeed, there exists a vector
z ∈ Z

d such that x − y − z ∈ T
d .

Finally, we say that the wave vector x is connected to the wave vector y or the wave vector
y is connected to the wave vector x by a central collision if and only if

Fc
x (y) = Fc

y(x) :=
3∑
j=1

2[cos(2π y j ) + cos(2π(x j )) − cos(2π(x j + y j ))] − 6 − ω0 = 0.

(35)

Similarly to the above types of collisions, in a central collision, we require thatω(x)+ω(y) =
ω(x + y) and this conservation of energy is not always satisfied. Following Remark 2, we
could see that y + x does not need to belong to T

d . Indeed, there exists a vector z ∈ Z
d such

that y + x − z ∈ T
d .

Note that if y is connected to x by a forward collision, then x is connected to y by a
backward collision.Moreover, if y is connected to x by a central collision, then x is connected
to y by a central collision and x + y is connected to both x and y by backward collisions.
We simply say that x and y are connected by one collision; or x is connected to y and y is
connected to x by one collision.

If a wave vector k is not connected to any other wave vectors in forward collisions, the
second term in the collision operator Qc[ f ](k)∫

T6
[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f2 f − f f1 − f1 f2]dk1dk2

vanishes, no matter how we choose the function f .
If a wave vector k is not connected to any other wave vectors in backward collisions, the

first term in the collision operator Qc[ f ](k)∫
T6

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[ f1 f2 − f f1 − f f2]dk1dk2
vanishes.

We define the set of all wave vectors k such that k is not connected to any other wave
vectors to be the no-collision region I. It is clear that F f

0 (y) = Fc
0(y) = −ω0 < 0 and

Fb
0(y) =

3∑
j=1

2[2 cos(2π y j ) − 1] − 6 − ω0 =
3∑
j=1

2[2 cos(2π y j ) − 2] − ω0 ≤ −ω0 < 0,

for allwavevectors y.As a consequence, the origin belongs toI. SinceF f
0 (y),Fb

0(y),F
c
0(y) ≤

−ω0 < 0, there exists a ball B(0, R) := {x ∈ R
3 | |x | < R}, (R > 0), such that

F
f
x (y),Fb

x (y),F
c
x (y) < 0, for all y ∈ T

3 and for all x ∈ B(0, R). The ball B(0, R) is
therefore a subset of the no-collision region I.

The condition 2 < ω0 < 3 implies that the set T
3\I is then not empty. For a vector

x ∈ T
3\I, we define S1(x) to be the one-collision connection set of x , containing all wave

vectors y ∈ T
3 such that y is connected to x by a collision. By a recursive manner, we also
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define Sn(x) = S1(Sn−1(x)), the n-collision connection set of x , for n ≥ 2, n ∈ N. This
set consists of all wave vectors connecting to x by at most n collisions. The union

S(x) =
⋃

1≤n<∞
Sn(x) (36)

contains all wave vectors y connecting to x by a finite number of collisions. We then call
S(x) a finite collision connection set of x or a collision invariant region.

Note that if k ∈ S(x) and k is connected to k + k′ ∈ S(x) by a forward collision, then
k + k′ is also connected with k′ by a backward collision, and hence k′ ∈ S(x).

Proposition 7 (The effect of the collision operator on the no-collision region) Any smooth
solution f (t, k) of (2), is time invariant on the no-collision regionI. In other words, f (t, k) =
f0(k) for all k ∈ I.

Proof Since k ∈ I, the wave vector k is not connected to any other wave vectors in any
collisions, the collision operator Qc[ f ](k) vanishes, which implies ∂t f (t, k) = 0 for all
k ∈ I. Therefore, f (t, k) = f0(k) for all k ∈ I. ��
Proposition 8 (Decomposition into collisional invariant regions) Let x, y be two wave vec-
tors in T

3\I, then either S(x) = S(y) or S(x) ∩ S(y) = ∅. In other words, either x and
y are connected by a finite number of collisions (∃m > 0 such that x ∈ Sm(y)) or they are
totally disconnected (�m > 0 such that x ∈ Sm(y)).

As a consequence, there exists a subsetVofT3\I such that the torusT
3 canbedecomposed

into disjoint collisional invariant regions, as follows

T
3\I =

⋃
x∈V

S(x), (37)

and S(x) ∩ S(y) = ∅ for x, y ∈ V.

Proof Let x, y be two wave vectors in T
3\I and suppose that S(x) ∩ S(y) �= ∅, we can

therefore choose a wave vector z belonging to both sets S(x) and S(y), that means z is
connected to both wave vectors x and y by finite numbers of collisions. It follows that
z ∈ Sn(x) and z ∈ Sm(y), for some positive integers n and m. Since z ∈ Sn(x), it is
clear that S(z) ⊂ Sn+1(x), and in general S p(z) ⊂ Sn+p(x) for all p ∈ N. As a result,
S(z) ⊂ S(x). By a similar argument, it also follows that S(z) ⊂ S(y). Now, let ϑ be an wave
vector of S(y)\S(z). Being a wave vector of S(y), ϑ is connected to y by a finite number
p ∈ N of collisions. Since z is connected to y by m collisions, ϑ is connected to z by at
most p + m collisions. In other words, ϑ ∈ S p+m(z); and hence, ϑ ∈ S(z), contradicting
the fact that ϑ ∈ S(y)\S(z). This contradiction leads to S(y) ⊂ S(z); however, as shown
above S(z) ⊂ S(y), it then follows S(y) = S(z). The same argument can also be used to
prove S(x) = S(z). We finally get S(y) = S(x).

The existence ofV and the decomposition (37) then follows straightforwardly. ��
Remark 9 The decomposition of the domain T

3 in to several collisional invariant and no-
collision regions is a very special and interesting feature of the specific form of the dispersion
relation (21).

In the previous works, several other dispersion relations have been considered in many
other contexts ω(k) = |k| for very low temperature bosons (see [1, 15]), ω(k) = |k|γ ,
(1 < γ ≤ 2) for capillary waves (see [41]), ω(k) = √

c1|k|2 + c2|k|4, (0 < c1, 0 ≤ c2) for
bosons (see [47, 49]) and the space of the frequency k is R

d . In all of these cases, the division
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of the domain of wavenumbers into disjoint regions has never been observed due to the fact
that the frequency space is R

d instead of T
d . On the other hand, important results on 4-wave

kinetic equations set the torus T
d have been recently obtained in [18, 22, 35].

Notice that in [20], the dispersion relation ω(k) = √
c1 + c2|k|2, (0 < c1, c2) for strati-

fied flows in the ocean, has been considered. However, the resonance is broadened and the
extended resonance manifold is then studied

k = k1 + k2, |ω(k) − ω(k1) − ω(k2)| ≤ θ, k, k1, k2 ∈ R
2,

for θ > 0, in stead of the exact resonance one

k = k1 + k2, ω(k) = ω(k1) + ω(k2), k, k1, k2 ∈ R
3,

due to the fact that the exact resonance configuration is no longer correct (see [48]). Of
course, in all resonance broadening cases, the decomposition of the full domain into local
no-collision and collisional invariant regions does not exist.

Proposition 10 The set Sn(x) is a closed subset of T
3 for all n ∈ N\{0}.

Proof We first observe that the set S1(x) contains all wave vectors y such that x is connected
to y by either a forward, a backward or a central collision. By definition, the set of all y such
that x is connected to y by a forward collision is

S1
f (x) =

[
F

f
x

]−1
({0}) . (38)

Similarly, the sets of all y such that x is connected to y by backward and central collisions
are

S1
b (x) =

[
Fb
x

]−1
({0}) , (39)

and

S1
c (x) = [

Fc
x

]−1
({0}) . (40)

By the continuity of F f
x ,Fb

x and Fc
x , the sets S1

f (x), S1
b (x) and S1

c (x) are all closed. Since

S1(x) = S1
f (x) ∪ S1

b (x) ∪ S1
c (x), it is also a closed set.

We now follow an induction argument in n. When n = 1, it is clear from the above
argument that S1(x) is closed. Suppose that Sk(x) is closed, we will show that Sk+1(x) is
also closed for all k ≥ 1. To this end, let us suppose that {xm}∞m=1 is a sequence in Sk+1(x)
and limm→∞ xm = x∗. By the definition of the set Sk+1(x), there exists a sequence {ym}∞m=1

such that ym ∈ Sk(x) and either F f
ym (xm) = 0, Fb

ym (xm) = 0 or Fc
ym (xm) = 0. Without

loss of generality, we can assume that there exist subsequences {xmq }∞q=1 and {ymq }∞q=1 of

{xm}∞m=1 and {ym}∞m=1 such that F
f
ymq

(xmq ) = 0. Since the sequence {ymq }∞q=1 is a subset of

Sk(x), which is closed and hence compact, there exists a subset of {ymq }∞q=1, still denoted

by {ymq }∞q=1, such that this sequence has a limit y∗ ∈ Sk(x) as q tends to infinity. By

the continuity of F f
y (x) in both x and y, limq→∞ F f ymq (xmq ) = F

f
y∗(x∗). That implies

F
f
y∗(x∗) = 0 and hence x∗ ∈ Sk+1(x). We finally conclude that the set Sk+1(x) is closed.

By induction Sn(x) is closed for all n ∈ N\{0}. ��
Corollary 11 The set S(x) is Lebesgue measurable.
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Proof The proof of this corollary follows directly from Proposition 10 and the definition of
S(x). ��
Remark 12 The two sets S1

f (x) and S1
b (x) defined in (38) and (39) are indeed disjoint. This

can be seen by a proof of contradiction. Suppose that y is a common wave vector of both
S1
f (x) and S1

b (x). This means

3∑
i=1

2[cos(2π(yi − xi )) + cos(2πxi ) − cos(2π yi )] = 6 + ω0,

and
3∑

i=1

2[cos(2π(xi − yi )) + cos(2π yi ) − cos(2πxi )] = 6 + ω0.

Taking the sum of the above two identities yields

3∑
i=1

2 cos(2π(yi − xi )) = 6 + ω0.

The left hand side is smaller than or equal to 6, while the right hand side is strictly greater
than 6 due to the fact that ω0 > 0. This leads to a contradiction; and thus, S1

f (x) and S1
b (x)

are disjoint. However, S1
c (x) can have common wave vectors with both S1

f (x) and S1
b (x).

4.1.2 Continuity of set index functionals

In the study of the wave kinetic equation, we frequently encounter integrals of the types∫
T3

δ(ω(x) − ω(x − y) − ω(y)) f (y)dy, (41)
∫
T3

δ(ω(y) − ω(y − x) − ω(x)) f (y)dy, (42)

and ∫
T3

δ(ω(x + y) − ω(x) − ω(y)) f (y)dy. (43)

Special cases of (41)–(42)–(43) involve f (y) = χA(y), the characteristic function of a
Lebesgue measurable set A.

Definition 1 (Index functionals of sets) Let A be a Lebesgue measurable set, we define the
following three functionals.

(I) The “forward collision” index of the set A:

μ1[A](x) :=
∫
R

∫
T3

eit(ω(x)−ω(x−y)−ω(y))χA(y)dydt, (44)

where χA is the characteristic function of the set A.
(II) The “backward collision” index of the set A:

μ2[A](x) :=
∫
R

∫
T3

eit(ω(y)−ω(y−x)−ω(x))χA(y)dydt, (45)

where χA is the characteristic function of the set A.

123



On the wave turbulence theory: ergodicity... Page 13 of 41    19 

(III) The “central collision” index of the set A:

μ3[A](x) :=
∫
R

∫
T3

eit(ω(x+y)−ω(x)−ω(y))χA(y)dydt, (46)

where χA is the characteristic function of the set A.

For the sake of simplicity, in this section, we denote μ1(T
3), μ2(T

3) and μ3(T
3) by F(x),

G(x) and H(x).

Proposition 13 The functions F(x), G(x) and H(x) are continuous on the set

S =
{
x = (x1, x2, x3) ∈ T

3 in which xi �= ±1

2
, 0, for all i = 1, 2, 3

}
.

Proof Notice that

ω(x) − ω(x − y) − ω(y) = −ω0 − 6 +
3∑

i=1

2
[
cos(2πxi − 2π yi ) + cos(2π yi )

− cos(2πxi )
]
, (47)

where x = (x1, x2, x3), y = (y1, y2, y3).
We will need to bound

J =
∫
T3

eit(
∑3

i=1 2[cos(2πxi−2π yi )+cos(2π yi )])dy

=
∫
T

eit2[cos(2πx1−2π y1)+cos(2π y1)]dy1
∫
T

eit2[cos(2πx2−2π y2)+cos(2π y2)]dy2×

×
∫
T

eit2[cos(2πx3−2π y3)+cos(2π y3)]dy3

= J1 × J2 × J3

(48)

which is a product of three oscillation integrals with phases t�i (y), where �i (y) =
2[cos(2πxi − 2π yi ) + cos(2π yi )], i = 1, 2, 3.

To estimate (48), we will use the method of stationary phase. Let us point out that in
[21], the authors use different kinds of techniques, to estimate integrals of similar types
but for different classes of dispersion relations. Notice that ∂yi �i (yi ) = −4π sin(2π yi −
2πxi ) − 4π sin(2π yi ) = 0 when yi = xi

2 , y
i = 1

2 + xi
2 , or x

i = ± 1
2 . Observe that when

yi = xi
2 , y

i = 1
2 + xi

2 , we have |∂yi yi �i (yi )| = 8π2| cos(2π yi − 2πxi ) + cos(2π yi )| =
16π2| cos(πxi )| = 8π2|1 + ei2πxi |.

We observe that all xi , i = 1, 2, 3, need to be different from ± 1
2 . This fact could be seen

by a proof of contradiction, in which we suppose that x1 is equal to 1
2 or − 1

2 as follows. By
Proposition 10, S(x) is non-empty, then either

0 = ω(x) − ω(x − y) − ω(y)

= −ω0 − 6 +
3∑

i=1

2[cos(2πxi − 2π yi ) + cos(2π yi ) − cos(2πxi )],

0 = ω(x + y) − ω(x) − ω(y)

= −ω0 − 6 +
3∑

i=1

2[cos(2πxi ) + cos(2π yi ) − cos(2πxi + 2π yi )],

123



   19 Page 14 of 41 B. Rumpf et al.

or

0 = ω(y) − ω(x) − ω(y − x)

= −ω0 − 6 +
3∑

i=1

2[cos(2πxi ) + cos(2π yi − 2πxi ) − cos(2π yi )],

has to have a solution. Let us consider the first equation. Plugging the values ± 1
2 of x1 into

the equation yields

ω0 + 4 =
3∑

i=2

2[cos(2πxi − 2π yi ) + cos(2π yi ) − cos(2πxi )],

which has no solutions sinceω0+4 > 6 and [cos(2πα−2πβ)+cos(2πβ)−cos(2πα)] ≤ 3
2

for all α, β ∈ T. Now, we consider the second equation, and plug the values ± 1
2 of x1 into

the equation to get

ω0 + 8 − 4 cos(2π y1) =
3∑

i=2

2[cos(2πxi ) + cos(2π yi ) − cos(2πxi + 2π yi )],

which also has no solution since ω0 + 8 − 4 cos(2π y1) > 6 and [cos(2πα) + cos(2πβ) −
cos(2πα + 2πβ)] ≤ 3

2 for all α, β ∈ T. Finally, in the last case, the same argument gives

ω0 + 8 + 4 cos(2π y1) =
3∑

i=2

2[cos(2πxi ) + cos(2π yi − 2πxi ) − cos(2π yi )],

which again has no solution.
Since xi is different from ± 1

2 , it is clear that ∂yi �i (yi ) = −4π sin(2π yi − 2πxi ) −
4π sin(2π yi ) = 0 when yi = xi

2 and yi = 1
2 + xi

2 . By the method of stationary phase

Ji � 1

〈t〉 1
2

√
|1 + ei2πxi |

, (49)

when xi is different from ± 1
2 .

Multiplying all inequalities (49) for i = 1, 2, 3 yields

J � 1

〈t〉 3
2

√
|1 + ei2πx1 ||1 + ei2πx2 ||1 + ei2πx3 |

. (50)

Let x be a point in S and a sequence {xn}∞n=1 ⊂ S such that limn→∞ xn = x . Since the
set T

3\S is closed, without loss of generality, we suppose that there exists a ball B(x, r)
with radius r and centered at x such that B(x, r)∩ (T3\S) = ∅ and then {xn}∞n=1 ⊂ B(x, r).
From the assumption B(x, r) ∩ (T3\S) = ∅, it follows

∣∣∣∣
∫
T3

eit(ω(x)−ω(x−y)−ω(y))dy

∣∣∣∣ � 1

〈t〉 3
2

√
|1 + e2πx1 ||1 + e2πx2 ||1 + e2πx3 |

� 1. (51)

By the Lebesgue dominated convergence theorem, limn→∞ F(xn) = F(x) and the function
F is then continuous on S. By the same argument, G, H are also continuous. ��
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Corollary 14 The edges, i.e. the set T3\S of all wave vectors y = (y1, y2, y3) in which there
is an index i ∈ {1, 2, 3} such that yi = ± 1

2 or 0, is a subset of the no-collision region I.

Proof The corollary follows directly from the proof of Proposition 13. ��

4.1.3 Restrictions onS(x)

Proposition 15 Given any function f ∈ L
1(T3) and a collisional invariant region S(x).

Define restriction of f on S(x) as follows

f|S(x) (y) = f (y) if y ∈ S(x) and f|S(x) (y) = 0 if y ∈ T
3\S(x). (52)

Then, in the distributional sense, we have∫
T3

δ(ω(x) − ω(x − y) − ω(y)) f (y)dy =
∫
T3

δ(ω(x) − ω(x − y) − ω(y)) f|S(x) (y)dy,

(53)∫
T3

δ(ω(y) − ω(y − x) − ω(x)) f (y)dy =
∫
T3

δ(ω(y) − ω(y − x) − ω(x)) f|S(x) (y)dy,

(54)

and∫
T3

δ(ω(x + y) − ω(x) − ω(y)) f (y)dy =
∫
T3

δ(ω(x + y) − ω(x) − ω(y)) f|S(x) (y)dy.

(55)

Proof We only prove (53), as the proofs of (54)–(55) follow by the same argument. For a
fixed value of x , we denote by Aθ with θ > 0 the set of all z in A such that

|ω(x) − ω(z) − ω(x − z)| > θ > 0 (56)

for all z in A.
Let us introduce the following approximation∫

R

∫
T3

eit(ω(x)−ω(x−y)−ω(y))−ε2t2χAθ (y) f (t)dydt . (57)

Integrating in t , we obtain from (57)

C

ε

∫
T3

e
− π(ω(x)−ω(x−y)−ω(y)2

ε2 χAθ (y) f (y)dy, (58)

for some universal positive constant C .
Combining (56) with the approximation (57), we find
∫
R

∫
T3

eit(ω(x)−ω(x−z)−ω(z))−ε2t2χAθ (z) f (z)dydt = C

ε

∫
T3

e
− π(ω(x)−ω(x−z)−ω(z))2

ε2 χAθ (z) f (z)dz

� 1

ε

∫
T3

e
− πθ2

ε2 χAθ (z) f (z)dz.

Using the fact that χAθ is a subset of T
3, we deduce

∫
R

∫
T3

eit(ω(x)−ω(x−z)−ω(z))−ε2t2χAθ (z) f (z)dzdt �e
− πθ2

ε2

ε
→ 0 as ε → 0. (59)
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Let ϕ(x) be a test function in C∞(Td). Again, the same stationary phase argument used in
Proposition 13 can be applied to show that

∣∣∣
∫
R

∫
T3

eit(ω(x)−ω(x−z)−ω(z))−ε2t2ϕ(x)dzdt
∣∣∣ �1, (60)

uniformly in ε. By the Lebesgue dominated convergence theorem, we find∫
R

∫
T6

eit(ω(x)−ω(x−z)−ω(z))χA(z)ϕ(x)dzdxdt

= lim
θ→0

lim
ε→0

∫
R

∫
T6

eit(ω(x)−ω(x−z)−ω(z))−ε2t2χAθ (z) f (z)ϕ(x)dzdxdt = 0.
(61)

��

4.1.4 Weak formulation, local conservation of energy on collisional invariant regions

Lemma 16 For any smooth function f (k), there holds∫
T3

Qc[ f ](k)ϕ(k)dk =
∫∫∫

T9
[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2) ×

×[ f1 f2 − f f1 − f f2]
(
ϕ(k) − ϕ(k1) − ϕ(k2)

)
dkdk1dk2

for any smooth test function ϕ.
If ϕ is supported in a collisional invariant region S(x), then, we also have∫
T3

Qc[ f ](k)ϕ(k)dk =
∫∫∫

S(x)×S(x)×S(x)
[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

×[ f1 f2 − f f1 − f f2]
(
ϕ(k) − ϕ(k1) − ϕ(k2)

)
dkdk1dk2.

Proof We have∫
T3

Q[ f ](k)ϕ(k)dk

=
∫
T9

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[ f1 f2 − f f1 − f f2]ϕ(k)dkdk1dk2

−
∫
T9

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f2 f − f f1 − f1 f2]ϕ(k)dkdk1dk2

−
∫
T9

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f2 f − f f1 − f1 f2]ϕ(k)dkdk1dk2,

by switching the variables k ↔ k1 and k ↔ k2 in the second and third integrals, respectively,
the first identity follows. The second identity follows straightforwardly from Corollary 15
and the first identity. ��

As a consequence, we obtain the following corollary.

Corollary 17 (Conservation of energy on collisional invariant regions) Smooth solutions
f (t, k) of (2), with initial data f (0, k) = f0(k), satisfy∫

S(x)
f (t, k)ω(k)dk =

∫
S(x)

f0(k)ω(k)dk. (62)

for all t ≥ 0 and for all x ∈ V, defined in Proposition 8.

Proof This follows from Lemma 16 by taking ϕ(k) = ω(k) with k = (k1, k2, k3). ��
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4.1.5 Local equilibria on collisional invariant regions

In this section, we establish the form of local equilibria on collisional invariant regions. The
key different between these local equilibria and the equilibria of classical kinetic equations
is that these equilibria are only defined locally on collisional invariant regions. This is a very
special feature of the 3-wave kinetic equation.

Lemma 18 (C2-collisional invariants) Let ψ ∈ C2(S(x)) be a collisional invariant on the
collisional invariant region S(x), in the following sense. For any wave vectors k, k1, k2 ∈
S(x),

k = k1 + k2 + z, for some z ∈ Z
d , ω(k) = ω(k1) + ω(k2),

we have

ψ(k) = ψ(k1) + ψ(k2).

Then there exist a constant ax ∈ R, such that

ψ(k) = axω(k).

Proof Let us first prove that for k ∈ S(x), the partial derivatives ∂k j ψ(k), with k =
(k1, k2, k3), are well-defined.Without loss of generality, we only prove that the partial deriva-
tive with respect to the first component ∂k1ψ(k) is well-defined. Since k ∈ S(x), there are two
wave vectors k1, k2 such that either k = k1 + k2 and ω(k) = ω(k1) + ω(k2); or k + k1 = k2
and ω(k) + ω(k1) = ω(k2).

Case 1: k = k1 + k2 and ω(k) = ω(k1) + ω(k2). Since ψ ∈ C2(T3), in order to show
that ∂k1ψ(k) is well-defined at k1 ∈ T, we only have to prove that there exists ε > 0 such
that for each k̄1 ∈ (k1 − ε, k1 + ε) there are k̄2, k̄3 ∈ T

3, k̄ = (k̄1, k̄2, k̄3) ∈ S(x). For any
x, y ∈ T, define

F(x, y) = cos(2π(x + y)) − cos(2πx) − cos(2π y).

Since k = (k1, k2, k3) = k1 + k2 = (k11, k
2
1, k

3
1) + (k12, k

2
2, k

3
2), we then have

F(k11, k
1
2) + F(k21, k

2
2) + F(k31, k

3
2) = −ω0/2 − 3.

Now, we develop

F(x, y) + 1 = − cos(2πx) − cos(2π y) + 1 + cos(2π(x + y))

=2 cos (π(x + y)) [− cos (π(x − y)) + cos (π(x + y))]

= − 4 cos (π(x + y)) sin (πx) sin (π y) ≤ 4.

.

Hence maxx,y∈T F(x, y) = 3 when (x, y) = ( 1
2 ,− 1

2

) = (− 1
2 ,

1
2

)
. We observe that the sum

F(k21, k
2
2)+ F(k31, k

3
2) must be strictly smaller than 6; otherwise, F(k11, k

1
2) = −ω0/2−9 <

−9, which is a contradiction.
Since F(k21, k

2
2) + F(k31, k

3
2) < 6, then for any δ small, either positive or negative, there

exist δ1, δ2, either positive or negative, such that

F(k11 + δ, k12) + F(k21 + δ1, k
2
2) + F(k31 + δ2, k

3
2) = −ω0/2 − 3,

due to the continuity of F . If k̄1 = k1 + δ, then we choose k̄2 = k1 + δ1 and k̄3 = k3 + δ2.
Case 2: k + k1 = k2 and ω(k) + ω(k1) = ω(k2). Similar as Case 1, we only need to

show that, for each k1 ∈ T, there exists ε > 0 such that for each k̄1 ∈ (k1 − ε, k1 + ε)

123



   19 Page 18 of 41 B. Rumpf et al.

there are k̄2, k̄3 ∈ T
3, k̄ = (k̄1, k̄2, k̄3) ∈ S(x). Since k2 = (k12, k

2
2, k

3
2) = k1 + k =

(k11, k
2
1, k

3
1) + (k1, k2, k3), we then have

F(k11, k
1) + F(k21, k

2) + F(k31, k
3) = −ω0/2 − 3.

Since F(k21, k
2) + F(k31, k

3) < 6, then for any δ small, either positive or negative, there
exist δ1, δ2, either positive or negative, such that

F(k11, k
1 + δ) + F(k21, k

2 + δ1) + F(k31, k
3 + δ2) = −ω0/2 − 3,

due to the continuity of F . If k̄1 = k1 + δ, then we choose k̄2 = k1 + δ1 and k̄3 = k3 + δ2.
Since on S(x), ψ(k) is a function of ω(k) and k, there exists a twice differentiable con-

tinuous function φ ∈ C2(R+ × T
3) such that ψ(k) = ϕ(ω(k), k).

For k ∈ S(x), there exist two wave vectors k1, k2 ∈ T
3, such that either k = k1 + k2

and ω(k) = ω(k1) + ω(k2), or k + k1 = k2 and ω(k) + ω(k1) = ω(k2). We assume that
k = k1 + k2 and ω(k) = ω(k1) + ω(k2), k1, k2 ∈ T

3, the other case can be consider with
exactly the same argument. As we observe before, k1, k2 also belong to S(x) due to the fact
that k is connected to both k1, k2 by one-collisions. We have

ψ(k1) + ψ(k2) = ψ(k) = ϕ(ω(k), k) = ϕ(ω(k1) + ω(k2), k1 + k2).

We now follow the strategy of [10] and [51]. Differentiating the above identity with respect
to k j

1 and k j
2 yields

∂
k j
1
ψ(k1) =∂rϕ(ω(k), k)∂

k j
1
ω(k1) + ∂

k j
1
ϕ(ω(k), k),

∂
k j
2
ψ(k2) =∂rϕ(ω(k), k)∂

k j
2
ω(k2) + ∂

k j
2
ϕ(ω(k), k).

Letting i ∈ {1, 2, 3} be a different index, we manipulate the above identity as

(∂
k j
1
ψ(k1) − ∂

k j
2
ψ(k2))(∂ki1

ω(k1) − ∂ki2
ω(k2))

= (∂ki1
ψ(k1) − ∂ki2

ψ(k2))(∂k j
1
ω(k1) − ∂

k j
2
ω(k2)).

We differentiate the above identity in k1, with l being an index in {1, 2, 3}
∂
k j
1
∂kl1

ψ(k1)(∂ki1
ω(k1) − ∂ki2

ω(k2)) + (∂
k j
1
ψ(k1) − ∂

k j
2
ψ(k2))∂ki1

∂kl1
ω(k1)

= ∂ki1
∂kl1

ψ(k1)(∂k j
1
ω(k1) − ∂

k j
2
ω(k2)) + (∂ki1

ψ(k1) − ∂ki2
ψ(k2))∂k j

1
∂kl1

ω(k1),

and now in k2, with h being an index in {1, 2, 3}
∂
k j
1
∂kl1

ψ(k1)∂ki2
∂kh2

ω(k2) + ∂
k j
2
∂kh2

ψ(k2)∂ki1
∂kl1

ω(k1)

= ∂ki1
∂kl1

ψ(k1)∂k j
2
∂kh2

ω(k2) + ∂ki2
∂kh2

ψ(k2)∂k j
1
∂kl1

ω(k1).

A particular case of the above identity is the following

∂2
ki1

ψ(k1)∂
2
k j
2
ω(k2) = ∂2

k j
1
ψ(k1)∂

2
ki2

ω(k2),

which implies

∂2
ki1

ψ(k1) cos(k
j
2 ) = ∂2

ki2
ψ(k1) cos(k

j
1 ),

for any k1, k3 ∈ S(x), and k1, k2 are connected to k1 + k2 by one collision.
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Hence ψ(k) = axω(k) + bx · k + cx , with ax , cx ∈ R, bx ∈ R
3 for any k ∈ S(x). By

the fact ψ(k) = ψ(k1) + ψ(k2) whenever k is connected to k1, k2 by one-collisions, it is
straightforward that cx = bx = 0. ��
Proposition 19 (L1-collisional invariants) Let ψ ∈ L1(S(x)) be a collisional invariant on
the collisional invariant region S(x), in the following sense. For any k ∈ S(x), such that

k = k1 + k2, for some z ∈ Z
d , ω(k) = ω(k1) + ω(k2),

we have

ψ(k) = ψ(k1) + ψ(k2).

Then there exist a constant ax ∈ R, such that

ψ(k) = axω(k).

Proof For any function φ ∈ C∞(T3), we define the standard mollifier φδ(k) = δ−3φ
( k

δ

)
and

the standard approximation ψδ = ψ ∗ φδ with δ > 0. It is then classical that limδ→0 ‖ψδ −
ψ‖L1(S(x)) = 0.

Since ψ(k) = ψ(k1) + ψ(k2), we also have ψδ(k) = ψδ(k1) + ψδ(k2). Lemma 18 can
be applied to ψδ , yielding ψδ(k) = aδ

xω(k) for some constant aδ
x ∈ R. The conclusion

of the Proposition then follows after passing δ to 0, while taking into account the limit
limδ→0 ‖ψδ − ψ‖L1(S(x)) = 0. ��
Proposition 20 (Equilibria in Collisional Invariant Regions) Given a collisional invariant
region S(x), a function Fc(k) ∈ C(S(x)) is said to be a local equilibrium of Qc on S(x) if
and only if Qc[Fc](k) = 0 and Fc(k) > 0 for all k ∈ S(x).

Let Ex ∈ R+ and assume
∫
S(x)

1

ax
dk =Ex , (63)

with ax ∈ R+; the local equilibrium on S(x) of Qc can be uniquely determined as

Fc(k) = 1

axω(k)
, (64)

subjected to the local energy constraint
∫
S(x)

Fc(k)ω(k)dk =Ex . (65)

Proof Since Qc[Fc](k) = 0 for all k ∈ S(x), using 1
Fc as a test function, we obtain

0 =
∫
S(x)

Qc[Fc](k) 1

Fc(k)
dk

=
∫
S(x)×S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)[Fc
1Fc

2 − Fc
1Fc − Fc

2Fc]

×
[

1

Fc
− 1

Fc
1

− 1

Fc
2

]
dkdk1dk2

=
∫
S(x)×S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)FcFc
1Fc

2

[
1

Fc
− 1

Fc
1

− 1

Fc
2

]2
dkdk1dk2,

(66)
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which implies 1
Fc − 1

Fc
1

− 1
Fc

2
= 0 for all k, k1, k2 ∈ S(x) satisfying k = k1 + k2 in the

periodic sense (i.e. there exists some z ∈ Z
d such that k = k1 + k2 + z) and ω = ω1 + ω2.

Therefore 1
Fc is a collisional invariant; and by Proposition 19, Fc takes the form (64), given

that the system (63) has a unique solution ax . ��

4.1.6 Entropy formulation on the collisional invariant regionS(x)

Let f be a positive solution of (2), we define the local entropy on the collisional invariant
region S(x) as follows

Sc,S(x)[ f ] =
∫
S(x)

sc[ f ]dk =
∫
S(x)

ln( f )dk. (67)

In the sequel, we only consider the local entropy on one collisional invariant region, then,
for the sake of simplicity, we denote Sc,S(x)[ f ] by Sc[ f ].

Now, we take the derivative in time of Sc[ f ]

∂t Sc[ f ] =
∫
S(x)

∂t f

f
dk. (68)

Replacing the quantity ∂t f in the above formulation by the right hand side of (2), we find

∂t Sc[ f ] =
∫∫∫

S(x)×S(x)×S(x)
[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [ f1 f2 − f f1 − f f2] 1
f
dkdk1dk2

− 2
∫∫∫

S(x)×S(x)×S(x)
[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)×

× [ f2 f − f f1 − f1 f2] 1
f
dkdk1dk2.

(69)

We now apply Lemma 16 to the above identity to get

∂t Sc[ f ] =
∫∫∫

S(x)×S(x)×S(x)
[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[ f1 f2 − f f1 − f f2]

×
[
1

f2
+ 1

f1
− 1

f

]
dkdk1dk2.

(70)

By noting that

f1 f2 − f f1 − f f2 = f f1 f2

[
1

f1
+ 1

f2
− 1

f

]
,

we obtain from (70) the following entropy identity

∂t Sc[ f ] =
∫
S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2) f f1 f2×

×
[
1

f1
+ 1

f2
− 1

f

]2
dkdk1dk2

=: Dc[ f ].

(71)
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It is clear that the quantity Dc[ f ] is positive. Borrowing the idea of [12, 54], we now define
the reciprocal, of f

g = 1

f
. (72)

As a consequence, the formula (71) can be expressed in the following form

∂t Sc[ f ] = Dc[ f ] = Dc[g] :=
∫∫∫

S(x)×S(x)×S(x)
[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

× [g1 + g2 − g]2

gg1g2
dkdk1dk2.

(73)

4.1.7 Cutting off and splitting the collision operator on the collisional invariant region
S(x)

In this subsection, we follow the idea of [12] to introduce a cut-off version for the collision
operator Qc[ f ]. The intuition behind this cut-off operator is explained below.We expect that
as t tends to infinity, the solution f of (2) converges to an equilibrium, which is a function
bounded from above and below by positive constants. Since the equilibrium is bounded from
above and below, it is not affected by the cut-off operator. As a result, the solution f is
expected to be unchanged, under the effect of the cut-off operator, as t goes to infinity.

Let�N (for 0 < N ≤ ∞) be a function inC1(R+) satisfying�N [z] = 1when 1
N ≤ z ≤ N ,

�N [z] = 0 when 0 ≤ z ≤ 1
2N and z ≥ 2N , and 0 ≤ �N [z] ≤ 1 when 1

2N ≤ z ≤ 1
N and

N ≤ z ≤ 2N . For f ∈ C1(S(x)) and 0 < N ≤ ∞, define the cut-off function

χN [ f ] = �N [ f ]�N [|∇ f |]. (74)

Note that χ∞[ f ] = 1 for all f ∈ C1(S(x)).
We set the cut-off collision operator on the collisional invariant region S(x) for f and for

g defined in (72)

QN
c [ f ](k) =

∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)

[ f1 f2 − f f1 − f f2]dk1dk2
− 2

∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k1 − k − k2)δ(ω1 − ω − ω2)

[ f2 f − f f1 − f1 f2]dk1dk2
=
∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N [gg1g2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

[g − g1 − g2]dk1dk2
− 2

∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N [gg1g2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)

[g1 − g2 − g]dk1dk2,

(75)

in which

χ∗
N = χN [ f ]χN [ f1]χN [ f2] = χN [1/g]χN [1/g1]χN [1/g2]. (76)
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When N = ∞, we have that

QN
c [ f ](k) = Q∞

c [ f ](k)
=
∫
S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[ f1 f2 − f f1 − f f2]dk1dk2

− 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f2 f − f f1 − f1 f2]dk1dk2

=
∫
S(x)×S(x)

[ωω1ω2]−1[gg1g2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[g − g1 − g2]dk1dk2

− 2
∫
S(x)×S(x)

[ωω1ω2]−1[gg1g2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[g1 − g2 − g]dk1dk2.

(77)

We also define the splitting collision operators on S(x), in which the kernel [gg1g2]−1 is
removed

Q
N ,−
c [g](k) =

∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[g1 + g2]dk1dk2

+ 2
∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g1dk1dk2

− 2
∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g2dk1dk2,

(78)

Q
N ,+
c [g](k) = gL

N
c (k)

= g
∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2g
∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2,

(79)

and

Q
N
c [g] = Q

N ,+
c [g] − Q

N ,−
0 [g]. (80)

Due to the symmetry of k1 and k2, Q
N ,−
c [g](k) can be rewritten as

Q
N ,−
c [g](k) = Q

N ,−,1
c [g](k) + Q

N ,−,2
c [g](k) + Q

N ,−,3
c [g](k) :=

= 2
∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)g1dk1dk2

+ 2
∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g1dk1dk2

− 2
∫
S(x)×S(x)

χ∗
N [ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g2dk1dk2.

(81)

Note that in all of the above definitions, the cut-off parameter N takes values in the interval
(0,∞]. We then have the following lemma.

Lemma 21 Given a collisional invariant region S(x), a function Fc(k) ∈ C(S(x)) is said to
be a local equilibrium of QN

c on S(x) if and only if QN
c [Fc](k) = 0 and Fc(k) > 0 for all

k ∈ S(x).
Under the local energy constraint∫

S(x)
Fc(k)ω(k)dk =Ex (82)
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where Ex is a given positive constant. Suppose that Ex ∈ R+ and

∫
S(x)

1

ax
dk =Ex , (83)

with ax ∈ R+; the local equilibrium on S(x) can be uniquely determined, when N is
sufficiently large, as

Fc(k) = 1

axω(k)
. (84)

Similarly, a function Ec(k) is said to be a local equilibrium of Q
N
c on S(x) if and only if

Q
N
c [Fc](k) = 0 and

Ec(k) = axω(k).

Proof The proof follows from the same lines of arguments used in the proof of Proposition 20.
��

4.2 The long time dynamics of solutions to the 3-wave kinetic equation on
non-collision and collisional invariant regions

4.2.1 An estimate on the distance between f andF c

This section is devoted to the estimate of the difference between a function f and a local
equilibrium Fc, defined on the same collisional invariant region. The two functions f and
Fc are supposed to have the same energy.

Proposition 22 Let S(x) be a collisonal invariant region and f be a positive function such
that f ∈ L1(S(x)). Let

Fc(k) = 1

axω(k)
=: 1

Ec(k)
, (85)

where ax ∈ R satisfying Fc(k) > 0 for all k ∈ S(x).
In addition, we assume

∫
S(x)

f (k)ω(k)dk =
∫
S(x)

F(k)ω(k)dk. (86)

We also define g using (72).
Then, the following inequalities always hold true for 0 ≤ N ≤ ∞
∫
S(x)

√
f
∣∣∣QN ,+

c [g] − Q
N ,−
c [g]

∣∣∣dk �
[∫

S(x)
f dk

] 1
2 ×

×
[∫

S(x)×S(x)×S(x)
[ωω1ω2]−1χ∗

N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2
] 1
4

,

(87)
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and
∥∥∥∥
√

L
N
c Ec| f − Fc|

∥∥∥∥
L1(S(x))

�
[∫

S(x)
f dk

] 1
2
{
‖g − Ec‖

1
2
L1(S(x))

+
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1 χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2

] 1
4

}

(88)

in which the constants on the right hand sides do not depend on f .

Proof Considering the difference between f and Fc on S(x), we find

| f − Fc| =
∣∣∣∣ 1g − 1

Ec

∣∣∣∣ = |g − Ec|
gEc

,

which then implies

Ec| f − Fc| = f |g − Ec|.
Multiplying both sides with L

N
c and taking the square yields

√
LN
c Ec| f − Fc| =

√
LN
c f |g − Ec|,

which, by the fact that L
N
c g = Q

N ,+
c [g] and L

N
c Ec = Q

N ,+
c [Ec], implies

√
LN
c Ec| f − Fc| =

√
f
∣∣∣QN ,+

c [g] − Q
N ,+
c [Ec]

∣∣∣.
Applying the triangle inequality to the right hand side gives

√
LN
c Ec| f − Fc| �

√
f
∣∣∣QN ,+

c [g] − Q
N ,−
c [g]

∣∣∣+
√

f
∣∣∣QN ,−

c [g] − Q
N ,−
c [Ec]

∣∣∣

+
√

f
∣∣∣QN ,+

c [Ec] − Q
N ,−
c [Ec]

∣∣∣.
By Lemma 21, the last term on the right hand side of the above inequality vanishes, yielding

√
LN
c Ec| f − Fc| �

√
f
∣∣∣QN ,+

c [g] − Q
N ,−
c [g]

∣∣∣+
√

f
∣∣∣QN ,−

c [g] − Q
N ,−
c [Ec]

∣∣∣. (89)

Integrating the first term on the right hand side and using Hölder’s inequality leads to
(∫

S(x)

√
f
∣∣∣QN ,+

c [g] − Q
N ,−
c [g]

∣∣∣dk
)2

≤
(∫

S(x)
f dk

)(∫
S(x)

∣∣∣QN ,+
c [g] − Q

N ,−
c [g]

∣∣∣ dk
)

.

(90)

Observe that∣∣∣QN ,+
c [g] − Q

N ,−
c [g]

∣∣∣
≤
∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − g2 − g|dk1dk2,
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which, after integrating in k and taking into account the symmetry of k, k1, k2, yields

∫
S(x)

∣∣∣QN ,+
c [g] − Q

N ,−
c [g]

∣∣∣ dk

≤ 3
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|dkdk1dk2.

Applying Hölder’s inequality again to the right hand side implies

∫
S(x)

∣∣∣QN ,+
c [g] − Q

N ,−
c [g]

∣∣∣ dk ≤

≤ 3

[∫
S(x)×S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)dkdk1dk2

] 1
2

×
[∫

S(x)×S(x)×S(x)
[ωω1ω2]−1χ∗

N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2
] 1
2

.

(91)

Using the fact that χ∗
N ≤ 1, Corollary 14 and Proposition 15 to bound the integral containing

only [ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2), we derive from the above inequality the

following estimate

∫
S(x)

∣∣∣QN ,+
c [g] − Q

N ,−
c [g]

∣∣∣ dk

≤ 3

[∫
S(x)×S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)dkdk1dk2

] 1
2 ×

×
[∫

S(x)×S(x)×S(x)
[ωω1ω2]−1χ∗

N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2
] 1
2

�
[∫

S(x)×S(x)×S(x)
[ωω1ω2]−1χ∗

N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2
] 1
2

.

(92)

Putting (90) and (92) together, we obtain

∫
S(x)

√
f
∣∣∣QN ,+

c [g] − Q
N ,−
c [g]

∣∣∣dk �
[∫

S(x)
f dk

] 1
2

×
[∫

S(x)×S(x)×S(x)
[ωω1ω2]−1χ∗

N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2
] 1
4

.

(93)

Integrating the second term on the right hand side of (89) and using Hölder’s inequality

(∫
S(x)

√
f
∣∣∣QN ,−

c [g] − Q
N ,−
c [Ec]

∣∣∣dk
)2

≤
(∫

S(x)
f dk

)(∫
S(x)

∣∣∣QN ,−
c [g] − Q

N ,−
c [Ec]

∣∣∣ dk
)

.

(94)
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It is straightforward that∣∣∣QN ,−
c [g] − Q

N ,−
c [Ec]

∣∣∣
≤
∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)[|g1 − Ec1 | + |g2 − Ec2 |]dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − Ec1 |dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k1 − k − k2)δ(ω1 − ω − ω2)|g2 − Ec2 |dk1dk2.

Integrating in k, we immediately find
∫
S(x)

∣∣∣QN ,−
c [g] − Q

N ,−
c [Ec]

∣∣∣ dk

≤
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k − k1 − k2)δ(ω − ω1 − ω2)[|g1 − Ec1 | + |g2 − Ec2 |]dkdk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − Ec1 |dkdk1dk2

+ 2
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1χ∗
N δ(k1 − k − k2)δ(ω1 − ω − ω2)|g2 − Ec2 |dkdk1dk2,

which, by the symmetry between k1 and k2 and the fact that χ∗
N ≤ 1, implies

∫
S(x)

∣∣∣QN ,−
c [g] − Q

N ,−
c [Ec]

∣∣∣ dk

≤ 2
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − Ec
1 |dkdk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − Ec
1 |dkdk1dk2

+ 2
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g2 − Ec
2 |dkdk1dk2.

Now, we can also combine the last and the first terms on the right hand side using the change
of variables between k, k1, k2 to get∫

S(x)

∣∣∣QN ,−
c [g] − Q

N ,−
c [Ec]

∣∣∣ dk

≤ 4
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − Ec
1 |dkdk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − Ec
1 |dkdk1dk2.

(95)

Let us estimate each term on the right hand side of (95).
Taking the integration in k2 of the first term yields

4
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − Ec
1 |dkdk1dk2

= 4
∫
S(x)×S(x)

[ω(k)ω(k1)ω(k − k1)]−1δ(ω(k) − ω(k1) − ω(k − k1))|g1 − Ec
1 |dkdk1.
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Observing that ω(k) ≥ ω0 > 0 for all k ∈ T
3, we find

4
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − Ec
1 |dkdk1dk2

�
∫
S(x)×S(x)

δ(ω(k) − ω(k1) − ω(k − k1))|g1 − Ec
1 |dkdk1,

which, after integrating with respect to k1, leads to

4
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − Ec
1 |dkdk1dk2

�
∫
S(x)

[∫
S(x)

δ(ω(k) − ω(k1) − ω(k − k1))dk

]
|g1 − Ec

1 |dk1.

Note that the integration with respect to k is uniformly bounded in k1 ∈ T
3 by Corollary 14

and Proposition 15, we then get

4
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − Ec
1 |dkdk1dk2

�
∫
S(x)

|g1 − Ec
1 |dk1 = ‖g − Ec‖L1(S(x)).

(96)

The second term on the right hand side of (95) can also be estimated in the same way.
Taking the integration in k2 of the second term yields

2
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − Ec
1 |dkdk1dk2

= 2
∫
S(x)×S(x)

[ω(k)ω(k1)ω(k − k1)]−1δ(ω(k1) − ω(k) − ω(k1 − k))|g1 − Ec
1 |dkdk1,

which, similarly as above, can be bounded as

2
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − Ec
1 |dkdk1dk2

�
∫
S(x)

[∫
S(x)

δ(ω(k1) − ω(k) − ω(k1 − k))dk

]
|g1 − Ec

1 |dk1.

Again, the integration with respect to k is bounded, we therefore have

4
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − Ec
1 |dkdk1dk2

�
∫
S(x)

|g1 − Ec
1 |dk1 = ‖g − Ec‖L1(S(x)).

(97)

Now, combining (94), (95), (96), (97) leads to

∫
S(x)

√
f
∣∣∣QN ,−

c [g] − Q
N ,−
c [Ec]

∣∣∣dk �

�
[∫

S(x)
f dk

] 1
2
[∫

S(x)
|g1 − Ec

1 |dk1
] 1

2 =
[∫

S(x)
f dk

] 1
2 ‖g − Ec‖

1
2
L1(S(x))

.

(98)

123



   19 Page 28 of 41 B. Rumpf et al.

Putting together the three estimates (89), (93) and (98) yields

∥∥∥∥
√

L
N
c Ec| f − Fc|

∥∥∥∥
L1(S(x))

�
[∫

S(x)
f dk

] 1
2 ‖g − Ec‖

1
2
L1(S(x))

+
[∫

S(x)
f dk

] 1
2 ×

×
[∫

S(x)×S(x)×S(x)
[ωω1ω2]−1χ∗

N δ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2
] 1
4

(99)

��

4.2.2 A lower bound on the solution of the equation with the cut-off collision operator
on the collisional invariant regionS(x)

The following Proposition provides a uniform lower bound to classical solutions of the wave
kinetic equation on S(x), under the effect of the cut-off operator χN .

Proposition 23 Suppose that the initial condition f0 of (2) is bounded from below by a strictly
positive constant f ∗

0 , and f0 ∈ C(S(x)). Let f be a classical solution inC0([0,∞),C(S(x)))
∩ C1((0,∞),C(S(x))) to (2). There exists a strictly positive function f ∗(t) > 0, which is
non-increasing in t, such that f (t, k) > f ∗(t) > 0 for all k ∈ S(x) and for all t ≥ 0. To be
more precise, there exists a universal constant f∗ > 0 such that

f (t, k) > f ∗(t) = f∗
sups∈[0,t] ‖ f (s, ·)‖C(S(x))

.

Proof Rearranging the equation, one finds

∂t f =
∫
S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2) f1 f2dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f1 f2 + f f1]dk1dk2

− f

[∫
S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)( f1 + f2)dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2) f2dk1dk2

]
.

Using the symmetry of f1 and f2 in the term containing f1 + f2, we can turn this term into
a new term, in which f1 + f2 is replaced by 2 f1

∂t f =
∫
S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2) f1 f2dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f1 f2 + f f1]dk1dk2

− 2 f

[∫
S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2) f1dk1dk2

+
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2) f2dk1dk2

]
.

(100)
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Now, let us consider the term with the minus sign

2 f

[∫
S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2) f1dk1dk2

+
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2) f2dk1dk2

]
.

(101)

We define the function B : R+ → R+
B(t) = sup

s∈[0,t]
‖ f (s, ·)‖C(S(x)), (102)

which is an increasing function in t . Using the fact that ω ≥ ω0 > 0 and the function B(t),
we can bound (101) from above by

2B(t)

ω3
0

f

[∫
S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+
∫
S(x)×S(x)

δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2

]
.

Integrating in k2 and using the definite of the two delta functions δ(k − k1 − k2) and
δ(k1 − k − k2)

2B(t)

ω3
0

f (k)

[∫
S(x)

δ(ω(k) − ω(k1) − ω(k − k1))dk1

+
∫
S(x)

δ(ω(k) − ω(k1) − ω(k − k1))dk1

]
≤ 2B(t)

ω3
0

C1 f (k) =: C(t) f (k).

We therefore obtain the following bound for ∂t f

∂t f ≥
∫
S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2) f1 f2dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f1 f2 + f f1]dk1dk2
− C(t) f .

(103)

Define the positive terms on the right hand side by K [ f ], we then have the simplified equation

∂t f ≥K [ f ] − C(t) f , (104)

which, by Duhamel’s formula and the mononicity in t of C(t), gives

f (t, k) ≥ f0(k)e
−C(T )t +

∫ t

0
K [ f ](t − s, k)e−C(T )(t−s)ds, (105)

Using the fact that f0(k) ≥ f ∗
0 > 0, we deduce from (105) the following estimate

f (t, k) ≥ f ∗
0 e

−C(T )t +
∫ t

0
K [ f ](t − s, k)e−C(T )(t−s)ds. (106)

We observe that the second term on the right hand side is always positive, since it contains
only positive components. This implies

f (t, k) ≥ f ∗
0 e

−C(T )t , (107)
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for all t ∈ [0, T ].
Now, let us examine the operator K [ f ] in details. Using the fact ω ≤ ω0 + 12, we can

bound K [ f ] as

K [ f ] ≥ [ω0 + 12]−3
[∫

S(x)×S(x)
δ(k − k1 − k2)δ(ω − ω1 − ω2) f1 f2dk1dk2

+ 2
∫
S(x)×S(x)

[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[ f1 f2 + f f1]dk1dk2
]

.

From which, we can use (107), to bound f , f1, f2 from below

K [ f ] ≥ [ω0 + 12]−3
[∫

S(x)×S(x)
δ(k − k1 − k2)δ(ω − ω1 − ω2) f

∗
0
2e−2C(T )tdk1dk2

+ 4
∫
S(x)×S(x)

δ(k1 − k − k2)δ(ω1 − ω − ω2) f
∗
0
2e−2C(T )tdk1dk2

]
,

for all t ∈ [0, T ].
The above inequality leads to

K [ f ] ≥ f ∗
0
2e−2C(T )t

[ω0 + 12]3
[∫

S(x)×S(x)
δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 4
∫
S(x)×S(x)

δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2

]

≥ f ∗
0
2e−2C(T )t

[ω0 + 12]3 C2 ≥ C1e−2C(T )t ,

(108)

for all t ∈ [0, T ]. Note that C1 is a universal strictly positive constant.
We follow the strategy of [42] by plugging (108) into (106)

f (t, k) ≥ f ∗
0 e

−C(T )t + C1
∫ t

0
e−3C(T )(t−s)ds

≥ f ∗
0 e

−C(T )t + C1
3C(T )

[1 − e−3C(T )t ],
(109)

for all t ∈ [0, T ].
We define the time-dependent function

F(t) = f ∗
0 e

−C(T )t + C1
3C(T )

[1 − e−3C(T )t ],

which is continuous and non-negative.
Pick a finite time t0 = c

C(T )
> 0, in which c is a fixed constant to be determined later.

For t ∈ [0, t0], it is clear that F(t) ≥ f ∗
0 e

−C(T )t = f ∗
0 e

−c > 0. When t > t0, then
F(t) ≥ C1

3C(T )
+ f ∗

0 e
−3C(T )t [e2C(T )t − C1

3C(T ) f ∗
0
] > C1

3C(T )
+ f ∗

0 e
−3C(T )t [e2c − C1

3C(T ) f ∗
0
]. For

a suitable choice of c, e2c = C1
3C(T ) f ∗

0
. It then follows that F(t) > C1

3C(T )
, for all t ∈ [0, T ].

As a consequence, f (t, k) is bounded from below by a strictly positive function C1
3C(t)

for k ∈ S(x). Since B(t) is an non-decreasing function of time, it follows that C1
3C(t) is a

non-increasing function of time. ��
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4.2.3 Convergence to equilibrium of the solution of the equation with the cut-off
collision operator on the collisional invariant regionS(x)

The below proposition shows the convergence to equilibrium of the equation with cut-off
operators. This contains the main ingredients of the proof of the convergence in the non
cut-off case.

Proposition 24 Let f be a positive, classical solution in C([0,∞),C1(S(x))) ∩C1((0,∞),

C1(S(x))) of (2) on S(x), with the initial condition f0 ∈ C(S(x)), f0 ≥ 0. Let Ex ∈ R+ be
a constant and ∫

S(x)

1

ax
dk =Ex =

∫
S(x)

ω(k) f0(k)dk, (110)

has a unique solution ax ∈ R+; the local equilibrium on S(x) can be uniquely determined
as

Fc(k) = 1

axω(k)
. (111)

Then, the following limits always hold true,

lim
t→∞

∥∥ f (t, ·) − Fc
∥∥
L1(S(x)) = 0. (112)

and

lim
t→∞

∣∣∣∣
∫
S(x)

ln[ f ]dk −
∫
S(x)

ln
[Fc] dk

∣∣∣∣ = 0. (113)

If, in addition, there is a positive constant M∗ > 0 such that f (t, k) < M∗ for all t ∈ [0,∞)

and for all k ∈ S(x), then

lim
t→∞

∥∥ f (t, ·) − Fc
∥∥
L p(S(x)) = 0, ∀p ∈ [1,∞). (114)

If we suppose further that f0(k) > 0 for all k ∈ S(x), there exists a constant M∗ such that
f (t, k) > M∗ for all t ∈ [0,∞) and for all k ∈ S(x).

We need the following Lemma, whose proof could be found in the Appendix.

Lemma 25 Let S(x) be a collisonal invariant region and f be a positive function such that
f ω ∈ L1(S(x)). Let

Fc(k) = 1

axω(k)
=: 1

Ec(k)
, (115)

where the constant ax ∈ R+ such that Fc(k) > 0 for all k ∈ S(x).
Suppose, in addition, that∫

S(x)
f (k)ω(k)dk =

∫
S(x)

Fc(k)ω(k)dk. (116)

Then, the following inequalities always hold true

0 ≤ Sc[Fc] − Sc[ f ], (117)

and

‖ f − Fc‖L1(S(x)) �
[
Sc[Fc] − Sc[ f ]

] 1
2 , (118)

in which the constant on the right hand side does not depend on f ; Sc[ f ] is defined in (67).
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Proof We divide the proof in to several steps.
Step 1: Entropy estimates. Let us first recall (73), which is written as follows

∂t

∫
S(x)

ln( f )dk =
∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [g1 + g2 − g]2

gg1g2
dkdk1dk2.

The above identity shows that
∫
S(x) ln( f )dk is an increasing function of time. In particular∫

S(x) ln( f )dk − ∫
S(x) ln( f0)dk ≥ 0. Picking n ∈ N and considering the difference of the

entropy at two times n and n + 1 yields
(∫

S(x)
ln( f (2n+1, k))dk −

∫
S(x)

ln( f0(k))dk

)
−
(∫

S(x)
ln( f (2n, k))dk −

∫
S(x)

ln( f0(k))dk

)

=
∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [g1 + g2 − g]2

gg1g2
dkdk1dk2dt .

Since the quantity
∫
S(x) ln( f (2

n, k))dk − ∫
S(x) ln( f0(k))dk is always positive, we deduce

from the above that∫
S(x)

ln( f (2n+1, k))dk −
∫
S(x)

ln( f0(k))dk

≥
∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)
[g1 + g2 − g]2

gg1g2
dkdk1dk2dt .

By Lemma 25, applied to the left hand side of the above inequality, we find∫
S(x)

ln(Fc(k))dk −
∫
S(x)

ln( f0(k))dk ≥

≥
∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

[g1 + g2 − g]2

gg1g2
dkdk1dk2dt,

(119)

which, after dividing both sides by 2n , implies

1

2n

[∫
S(x)

ln(Fc(k))dk −
∫
S(x)

ln( f0(k))dk

]
≥

≥ 1

2n

∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

[g1 + g2 − g]2

gg1g2
dkdk1dk2dt .

(120)

As a consequence, there exists a sequence of times tn ∈ [2n, 2n+1] such that

lim
n→∞

[ ∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

× [g1(tn) + g2(tn) − g(tn)]2

g(tn)g1(tn)g2(tn)
dkdk1dk2

]
= 0.

(121)
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For the sake of simplicity, we denote g(tn) and f (tn) by gn and f n .
Step 2: The convergence.
Taking advantage of the fact gn ≤ 2N in the cut-off region of the operator χ∗

N , the
following limit can be deduced from (121)

lim
n→∞

[ ∫
S(x)×S(x)×S(x)

[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)χ
∗
N×

× [
gn1 + gn2 − gn

]2dkdk1dk2
]

= 0,

(122)

in which the product gngn1g
n
2 has been eliminated. Since gngn1g

n
2 is removed, the inequality

(87) can be applied, leading to another limit

lim
n→∞

∫
S(x)

√
f n
∣∣∣QN ,+

c [gn] − Q
N ,−
c [gn]

∣∣∣dk = 0. (123)

The above expression contains f n , which can be, again, eliminated using the lower bound
f n ≥ 1

2N in the cut-off region, yielding

lim
n→∞

∫
S(x)

√∣∣∣QN ,+
c [gn] − Q

N ,−
c [gn]

∣∣∣dk = 0. (124)

Replacing Q
N ,+
c [gn] = gnLN

c [gn] in the above formula leads to

lim
n→∞

∫
S(x)

√∣∣∣gnLN
c − Q

N ,−
c [gn]

∣∣∣dk = 0. (125)

Notice that gnLN
c = gnχN [gn]L̃N

c , in which L̃
N
c takes the following form

L̃
N
c := GN

1 [gn] + GN
2 [gn]

:=
∫
S(x)×S(x)

χN [gn(k1)]χN [gn(k2)]δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2
∫
S(x)×S(x)

χN [gn(k1)]χN [gn(k2)]δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2.

(126)

Let us consider the first sequence {GN
1 [gn]}.Wewill show that this sequence is equicontinuous

in all L p(S(x)) with 1 ≤ p < ∞. This, by the Kolmogorov-Riesz theorem [23] implies the
strong convergence of {GN

1 [gn]} towards a function G1 in L p(S(x)) with 1 ≤ p < ∞. To
see this, let us consider any vector k′ belonging to a ball B(O, δ) centered at the origin and
with radius δ, and estimate the difference GN

1 [gn](· + k′) − GN
1 [gn](·) in the L p-norm

∫
S(x)

|GN
1 [gn](k + k′) − GN

1 [gn](k)|pdk

=
∫
S(x)

∣∣∣
∫
S(x)

[
χN [gn(k′ + k − k1)]δ(ω(k′) − ω(k1) − ω(k′ + k − k1))−

− χN [gn(k − k1)]δ(ω(k) − ω(k1) − ω(k − k1))
]
χN [gn(k1)]dk1

∣∣∣pdk.

(127)
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To estimate the above quantity, we will use the triangle inequality, as follows

∫
S(x)

|GN
1 [gn](k + k′) − GN

1 [gn](k)|pdk

�
∫
S(x)

∣∣∣
∫
S(x)

|χN [gn(k′ + k − k1)] − χN [gn(k − k1)]|×
× δ(ω(k′ + k) − ω(k1) − ω(k′ + k − k1))χN [gn(k1)]dk1
+
∫
S(x)

χN [gn(k − k1)]|δ(ω(k′ + k) − ω(k1) − ω(k′ + k − k1))

− δ(ω(k) − ω(k1) − ω(k − k1))|χN [gn(k1)]dk1
∣∣∣pdk.

(128)

In the right hand side of this equality, we have the sum of two integrals inside the power
of order p. To facilitate the computations, we use Young’s inequality to split this into two
separate integrals as

∫
S(x)

|GN
1 [gn](k + k′) − GN

1 [gn](k)|pdk

�
∫
S(x)

∣∣∣
∫
S(x)

|χN [gn(k′ + k − k1)] − χN [gn(k − k1)]|×

× δ(ω(k′ + k) − ω(k1) − ω(k′ + k − k1))χN [gn(k1)]dk1
∣∣∣pdk

+
∫
S(x)

∣∣∣
∫
S(x)

χN [gn(k − k1)]|δ(ω(k′ + k) − ω(k1) − ω(k′ + k − k1))

− δ(ω(k) − ω(k1) − ω(k − k1))|χN [gn(k1)]dk1
∣∣∣pdk.

(129)

We can choose δ small such that χN [gn(k′ + k − k1)] − χN [gn(k − k1)] is small, uniformly
in k and k1, thanks to the cut-off property 1

N ≤ | f n(k)|, |∇ f n(k)| ≤ N in the cut-off
region. Combining this observation, with Proposition 15, Corollary 14 and the boundedness
of χN [gn(k1)], we can choose δ small enough, depending on a small ε > 0, such that the
first term on the right hand side is smaller than ε p/2. The second term on the right hand
side can also be bounded by ε p/2 using Proposition 13 and the fact that χN [gn(k − k1)] and
χN [gn(k1)] are both bounded by 1. As a result, for any small constant ε > 0, we can choose
δ such that for any k′ ∈ B(O, δ),

∫
S(x)

|GN
1 [gn](k + k′) − GN

1 [gn](k)|pdk � ε p, (130)

which shows that the sequence GN
1 [gn] is indeed equicontinuous in L p(S(x)) and the exis-

tence of σ1 ∈ L p(S(x)) satisfying limn→∞ GN
1 [gn] = σ1 in L p(S(x)) for all p ∈ [1,∞) is

guaranteed by the Kolmogorov-Riesz theorem [23].
The same argument can be applied to GN

2 [gn], leading to the existence of σ2 ∈ L p(S(x))
satisfying limn→∞ GN

2 [gn] = σ2 in L p(S(x)) for all p ∈ [1,∞) by the Kolmogorov-Riesz
theorem [23]. As a result limn→∞ L̃

N
c = σ = σ1 + σ2 in L p(S(x)) for all p ∈ [1,∞).
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Similarly, if we define

Q̃
N ,−
c [g](k) = Q̃

N ,−,1
c [g](k) + Q̃

N ,−,2
c [g](k) + Q̃

N ,−,3
c [g](k) :=

= 2
∫
S(x)×S(x)

χN [1/g](k1)χN [1/g](k2)[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)g1dk1dk2

+ 2
∫
S(x)×S(x)

χN [1/g](k1)χN [1/g](k2)[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g1dk1dk2

− 2
∫
S(x)×S(x)

χN [1/g](k1)χN [1/g](k2)[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g2dk1dk2,

(131)

the Kolmogorov-Riesz theorem [23] can be used in the same manner to deduce the existence
of a functionς such thatwe also have limn→∞ Q̃

N ,−
c [gn] = ς in L p(S(x)) for all p ∈ [1,∞).

Now, the fact that limn→∞ Q̃
N ,−
c [gn] = ς and limn→∞ L̃

N
c = σ can be used to replace

the quantity Q
N ,−
c [gn] by ς and the quantity L̃

N
c by σ in (123) and (125) to have

lim
n→∞

∫
S(x)

√|σχN [ f n] − f nχN [ f n]ς |dk = 0, (132)

and

lim
n→∞

∫
S(x)

√|gnχN [gn]σ − ςχN [ f n]|dk = 0. (133)

Due to its boundedness, the sequences {gnχN [ f n]}, { f nχN [ f n]} and {χN [ f n]} converge
weakly to g∞

N , f ∞
N and ξ∞

N in L1(S(x)), it follows immediately that g∞
N σ = ξ∞

N ς and
ξ∞
N σ = f ∞

N ς .
By a similar argument as above, {χN [ f n]} is also equicontinuous in L p(S(x)) and then

limn→∞ χN [ f n] = ξ∞
N in L p(S(x)) for all p ∈ [1,∞) by the Kolmogorov-Riesz theorem

[23]. As a consequence,

ς(k) =2
∫
S(x)×S(x)

ξ∞
N (k1)ξ

∞
N (k2)[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

g∞
N (k1)dk1dk2

+ 2
∫
S(x)×S(x)

ξ∞
N (k1)ξ

∞
N (k2)[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)

g∞
N (k1)dk1dk2

− 2
∫
S(x)×S(x)

ξ∞
N (k1)ξ

∞
N (k2)[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)

g∞
N (k2)dk1dk2,

and

σ(k) =
∫
S(x)×S(x)

ξ∞
N (k1)ξ

∞
N (k2)δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2
∫
S(x)×S(x)

ξ∞
N (k1)ξ

∞
N (k2)δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2,
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which can be combined with (133) and the fact that {gnχN [ f n]}, { f nχN [ f n]} converge
weakly to g∞

N , f ∞
N to give

∫
S(x)×S(x)

g∞
N (k)ξ∞

N (k)ξ∞
N (k1)ξ

∞
N (k2)δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2
∫
S(x)×S(x)

g∞
N (k)ξ∞

N (k)ξ∞
N (k1)ξ

∞
N (k2)δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2

= 2
∫
S(x)×S(x)

ξ∞
N (k)ξ∞

N (k1)ξ
∞
N (k2)[ωω1ω2]−1δ(k − k1 − k2)δ(ω − ω1 − ω2)g

∞
N (k1)dk1dk2

+ 2
∫
S(x)×S(x)

ξ∞
N (k)ξ∞

N (k1)ξ
∞
N (k2)[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g

∞
N (k1)dk1dk2

− 2
∫
S(x)×S(x)

ξ∞
N (k)ξ∞

N (k1)ξ
∞
N (k2)[ωω1ω2]−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g

∞
N (k2)dk1dk2,

(134)

for a.e. k in S(x).
From (134), we deduce that

g∞
N (k)ξ∞

N (k) = g∞
N (k1)ξ

∞
N (k1) + g∞

N (k2)ξ
∞
N (k2),

when k = k1+k2 andω(k) = ω(k1)+ω(k2), for a.e. k in S(x). The proofs of Proposition 19
and Lemma 21 can then be redone, yielding g∞

N (k)ξ∞
N (k) = ANω(k) =: Ec(k) > 0 for some

constant AN ∈ R. These constants are subjected to the conservation of energy
∫
S(x)

ω(k)

ANω(k)
dk = lim

n→∞

∫
S(x)

ω(k) f nχN [ f n]dk=: EN
x . (135)

In addition, we have f ∞
N = 1

ANω(k) . Since limN→∞ EN
x = Ex , when N is large enough

1
N < g∞

N (k), f ∞
N (k) < N for all k ∈ S(x). As a consequence, gn and f n converge almost

everywhere to g∞
N (k), and f ∞

N (k).
The fact that f n converges to f ∞

N (k) almost everywhere, when N is sufficiently large,
ensures the existence of N0 > 0 such that f ∞

N (k) = f ∞
M (k) for all N , M > N0. Passing to

the limits N → ∞ in (136), we find AN = A for all N > N0, with∫
S(x)

ω(k)

Aω(k)
dk =Ex . (136)

As a result,

lim
n→∞ f n(k) = 1

Aω(k)
=: Fc

almost everywhere on S(x), which then implies

lim inf
n→∞

∫
S(x)

ln[ f ]dk ≥
∫
S(x)

ln[Fc]dk,

by Fatou’s Lemma. Therefore, due to Lemma 25

lim
n→∞[Sc[Fc] − Sc[ f n]] = 0,

leading to

lim
t→∞[Sc[Fc] − Sc[ f (t)]] = 0.
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By (118), we finally obtain

lim
t→∞ ‖ f − Fc‖L1(S(x)) = 0.

Step 3: Additional assumption f (t, k) < M∗ for all t ∈ [0,∞) and for all k ∈ S(x).
Suppose, in addition, that f (t, k) < M∗ for all t ∈ [0,∞). By Egorov’s theorem, for all
δ > 0, there exists a set Vδ , whose measure m(Vδ) is smaller than δ and f n converges
uniformly to f ∞(k) on S(x)\Vδ . Since 1

N < f ∞
N (k) < N , there exists an integer nδ such

that for all n > nδ , the inequality 1
N < f n(k) < N holds true for all k ∈ S(x)\Vδ . As a

consequence, for each ε > 0

‖ f − Fc‖L p(S(x)) ≤ C‖ f − Fc‖L∞(S(x)\Vδ) + Cm(Vδ)
1
p ≤ C‖ f − Fc‖L∞(S(x)\Vδ) + Cδ

1
p ,

where C is a universal constant, for all 1 < p < ∞.

For any ε > 0, we can choose δ > 0 and a time tδ such that for t > tδ , Cδ
1
p < ε/2

and C‖ f −Fc‖L∞(S(x)\Vδ) < ε/2. That implies the strong convergence of f towards Fc in
L p(S(x) for all 1 < p < ∞.

Now, if f0(k) > 0 for all k ∈ S(x) and f (t, k) < M∗ for all t ∈ [0,∞) and for all
k ∈ S(x), by Proposition 23, there exists a constant M∗ such that f (t, k) > M∗ for all
t ∈ [0,∞) and for all k ∈ S(x). ��

4.3 Proof of Theorem 3

The proof of Theorem 3 follows from Proposition 24 and Proposition 7.

5 Appendix

5.1 Appendix A: Proof of Lemma 25

Define the functional

�t ( f ,Fc) = [Fc + t( f − Fc)]2.
It follows from the mean value theorem that

0 ≤
∫ 1

0

(1 − t)( f − Fc)2

�t ( f ,Fc)
dt = sc[Fc] − sc[ f ] + s′

c[Fc]( f − Fc).

Since s′(y) = 1/y, we find s′[Fc(k)] = axω(k). That leads to

0 ≤
∫ 1

0

(1 − t)( f − Fc)2

�t ( f ,Fc)
dt = sc[Fc] − sc[ f ] + (axω(k))( f − Fc).

Integrating both sides of the above inequality on S(x) yields

0 ≤
∫
S(x)

∫ 1

0

(1 − t)( f − Fc)2

�t ( f ,Fc)
dtdk

=
∫
S(x)

sc[Fc]dk −
∫
S(x)

sc[ f ]dk +
∫
S(x)

(axω(k))( f − Fc)dk,
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which, by the fact that ∫
S(x)

(axω(k))( f − Fc)dk = 0,

implies

0 ≤
∫
S(x)

∫ 1

0

(1 − t)( f − Fc)2

�t ( f ,Fc)
dtdk ≤ Sc[Fc] − Sc[ f ]. (137)

Observing that

(Fc − f )+ =2
∫ 1

0

√
1 − t(Fc − f )+√

�t ( f ,Fc)

√
(1 − t)�t ( f ,Fc)dt,

and applying Hölder’s inequality to the right hand side, we obtain the following inequality

(Fc − f )+ ≤2

[∫ 1

0

(1 − t)(Fc − f )2

�t ( f ,Fc)
dt

] 1
2
[∫ 1

0
(1 − t)�t ( f ,Fc)dt

] 1
2

.

Now, observe that for k ∈ S(x) satisfying Fc(k) > f (k), then

0 < �t ( f ,Fc)(k) ≤ [Fc(k)]2
for all t ∈ [0, 1]. This fact can reduce the above inequality to

(Fc − f )+ ≤2

[∫ 1

0

(1 − t)(Fc − f )2

�t ( f ,Fc)
dt

] 1
2
[∫ 1

0
(1 − t)[Fc(k)]2dt

] 1
2

,

which, by integrating in k

∫
S(x)

(Fc − f )+dk ≤2
∫
S(x)

[∫ 1

0

(1 − t)(Fc − f )2

�t ( f ,Fc)
dt

] 1
2
[∫ 1

0
(1 − t)[Fc(k)]2dt

] 1
2

dk,

and applying Hölder’s inequality to the right hand side, gives

∫
S(x)

(Fc − f )+dk ≤2

[∫
S(x)

∫ 1

0

(1 − t)(Fc − f )2

�t ( f ,Fc)
dtdk

] 1
2
[∫

S(x)

∫ 1

0
(1 − t)[Fc(k)]2dtdk

] 1
2

.

Indeed, the second term with the bracket on the right hand side can be computed explicitly,
that implies

∫
S(x)

(Fc − f )+dk �
[∫

S(x)

∫ 1

0

(1 − t)(Fc − f )2

�t ( f ,Fc)
dtdk

] 1
2

.

The above inequality can be combined with (137) to become∫
S(x)

(Fc − f )+dk �
[
Sc[Fc] − Sc[ f ]

] 1
2 .

Using the boundedness of the dispersion relation ω(k), we find∫
S(x)

(Fc − f )+ω(k)dk �
∫
S(x)

(Fc − f )+dk �
[
Sc[Fc] − Sc[ f ]

] 1
2 .

Now, from the identity

| f − Fc| = f − Fc + 2(F − f )+,
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the above gives∫
S(x)

| f − Fc|ω(k)dk =
∫
T3

( f − Fc)ω(k)dk +
∫
S(x)

2(Fc − f )+ω(k)dk

�
∫
S(x)

( f − Fc)ω(k)dk + 2
[
Sc[Fc] − Sc[ f ]

] 1
2 .

From the hypothesis ∫
S(x)

( f − Fc)ω(k)dk = 0,

we then infer from the above inequality that∫
S(x)

| f − Fc|ω(k)dk �
[
Sc[Fc] − Sc[ f ]

] 1
2 .

Using the fact that ω(k) ≥ ω0, we obtain∫
S(x)

| f − Fc|dk �
[
Sc[Fc] − Sc[ f ]

] 1
2 .
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