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Abstract

We consider the control problem of controlling the rates of an infinite chain of coupled harmonic oscil-
lators with a Langevin thermostat at the origin. We study the effect of two types of open-loop boundary
controls, impulsive control and linear memory-feedback control, in the high frequency limit. We investigate
their action on the reflection-transmission coefficients for the wave energy for the scattering of the thermo-
stat. Our study shows that the impulsive boundary controls have no impact on the rates and are thus not
appropriate to act on the system, despite their physical meaning and relevance. In contrast, the second kind
of control that we propose, which is less standard and uses the past of the state solution of the system, is
adequate and relevant. We prove that any triple of rates satisfying appropriate assumptions is asymptotically
reachable thanks to the linear memory-feedback controls that we design explicitly.
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1. Introduction

Heat reservoirs at temperature 7 are commonly modeled by the Langevin stochastic dynam-
ics. When the bulk evolution is governed by a discrete wave equation, a small parameter & > 0
is introduced to dictate the ratio between microscopic and macroscopic space-time units. In gen-
eral, the noise is chosen so that by the stochastic mechanism, there is only a finite amount of
momentum exchanged in a finite interval of time. As thus, each particle undergoes only a finite
number of collisions in any finite interval of time. It is common to let ¢ tend to 0, which is often
referred to as taking the kinetic limit for the system (for instance, see [9], [10], [12]). When a
chain has no microscopic boundary, the energy density evolution is often described by a linear
kinetic equation.

A useful tool to localize in space the energy per frequency mode is the Wigner distribu-
tion, introduced in [14]. In the absence of the thermostat, by adding a small conservative noise
exchanging velocities, the authors of [1] prove that, in the kinetic limit ¢ — 0, the Wigner distri-
bution converges to the solution of the kinetic transport equation

AW, x, k) +vg(k)a W(t, x, k) =2y0/R(k,k/) (W, x, Ky =W, x, k)dk', (1)
T
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for all (¢, x, k) € [0, +00) x T x R. The explicit scattering kernel R (k, k') > 0 is given by
R (k) :=/ Rk, kdk' ~ |k|2 for |k| <« 1.
T

Here and in the sequel T is the unit torus, identified with the interval [—1/2, 1/2] with periodic
endpoints. The parameter yp > O is the scattering rate for the microscopic chain. The group
velocity is defined by vg (k) := w(k)/27, w(k) is the dispersion relation of the chain.

When a heat bath at temperature 7 is applied to one particle, which is labeled «, with a
coupling strength y; > 0, the action of the heat bath is not affected by the scale of the small
parameter €. As a consequence, when a thermostat is included in the system, its presence can
be regarded as a singular perturbation of the dynamics of the system. Mathematically speaking,
when ¢ — 0, in [5,8], it has been proved that the thermostat enforces that phonons of wave num-
ber k are generated with rate r,(k)T, incoming k-phonons can be transmitted with probability
r¢ (k) and reflected with probability 7, (k), which means that one needs to introduce the boundary
conditions at x =0 on (1):

W, 0T, k) =r, ()W, 0", —=k) +r, (k)W (t,07, k) +ro ()T, for0<k<1/2,

2

W(t, 07, k) =r(k)W(t,0, —k) +r, (k)W (t,07, k) + ro(k)T, for —1/2 <k <O. @

Those quantities are properly normalized according to r,(k) + ry(k) + r.(k) = 1, so that
W(t,x,k) =T is a thermal equilibrium.

In the recent years, there have been significant progresses on the control theory for kinetic
models [3,11]. The goal of our work is to initiate the study of the Wigner distributions for
stochastic discrete wave equations under the point of view of control theory. To be more precise,
in the setting of the stochastic discrete wave equations considered in [5,8], the three important
parameters r, (k), r; (k), r- (k) are respectively the probabilities for absorption, transmission and
reflection of a phonon of mode k. Within the control theory viewpoint, we investigate the follow-
ing question:

Question A - Controllability at the kinetic limit: if we add a control function, having a relevant
physical meaning, to the wave system/equation, can we control the above three important rates
rqa(k), ry(k), r-(k): absorption, transmission, and reflection of a phonon of mode k in (2)?

To address Question A, we consider two possible types of open-loop boundary controls.

The first boundary control is impulsive (see Section 4 or further reading at [2,6]) and consists
of adding the term F (¢)d0,, to the system. At the kinetic limit such a control has an impact only
at the boundary, causing a shoot-up explained by the friction v at the boundary. Physically, this
type of control corresponds to adding a force F(¢) at the boundary. Similar physical phenomena
(subjecting a chain of oscillators to a point force) have been considered recently in [6]. The
difference with our work lies in the nature of the force: L' in time in our case vs. periodic in
time in theirs. Another difference is the scaling regime that we consider for the control of the
kinetic limit, in contrast to their setup that corresponds to the diffusive scaling. Our control is
impulsive in the sense that it creates a new term in the kinetic limit equation (see (13) further),
namely, a Dirac delta measure along the characteristic § (x — vg (k)t). This means that the control
is too strong and the whole dynamics of the chain follows the control and not its own dynamics.
Even when we take a smooth function F, an extra Dirac delta measure along the characteristic
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8(x — vg(k)t) pops up in the final equation, as proved in (13). It follows that the probabilities
for absorption, transmission and reflection of a phonon of mode k are not controllable using this
control (see Remark 3).

The second type of open-loop boundary control is a linear memory-feedback control (see
Section 5) on the stochastic process of the wave consisting of adding the convolution term
(F 4+ vé(t)) x apdo,n- In control theory, the time-convolution integral for a continuous-time sys-
tem calculates the output of a system to a given input using the response of the system. Therefore
it is natural to utilize time-convolution as a tool to control the system at any time ¢ given that
the anterior states of the system are known. In this respect, the control uses feedback from pre-
vious times to control outputs at the current time and is often called memory-feedback. Since
the control in this case follows closely the dynamics of the system, the “impulsive” behavior in
which a delta function pops up in the final result can be avoided. Noticing that the three quantities
ra, ¥t, Iy depend on the friction v, a time-convolution control can be imposed on this parameter v,
which sticks to the stochastic process «g. Thanks to this feedback-type boundary control, even-
tually the effect of the control on the kinetic limit is much better: the three rates (r, 4, r,) can
be changed at the kinetic limit. We will prove that for a given class of function rates (r4, r¢, ),
enjoying appropriate conditions, it is possible to find a control F asymptotically steering the rates
to desired target functions (see Corollary 7).

Another type of control, which seems to be technically harder is the so-called “internal con-
trol”, for which, the control acts on several points of the chain, will be studied in future work.
Let us mention that instead of a Langevin thermostat, one may also consider a Poisson scattering
mechanism at the boundary. Such mechanisms are studied in [7]. Controlling the rate of such
problems seems doable via our methods.

Acknowledgments: The authors would like to express their gratitude to Tomasz Komorowski,
Stefano Olla, Herbert Spohn and Enrique Zuazua for several useful remarks, guidance, and in-
structions on the topic.

2. Setting and notations

We consider the evolution of an infinite particle system governed by the Hamiltonian
1 , 1 1 2
H@.B)i=5) on+s D onwbibu=75) lal?+(B.oxp),
neZ n,n' ez neZ

where n € Z, (an, B,) is the position and momentum of the particle n, and (¢, 8) =
{(an, Bn), n € Z}. The assumptions on o will be specified in Section 2.2.
The convolution of two functions on Z is

(f*xQhn = Z Jn—n8n'. 3)

n'eZ

We denote by 8¢, and §(x) the Dirac delta functions on Z and R respectively. The Hamiltonian
dynamics with stochastic source without control reads

Bu(t) = aa (1),
do, (t) = —(o *x ), (t)dt + ( —vag(t)dt + VZVTdR(t))éo,,,, nez,
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where {R(¢), t > 0} is a Wiener process on a probability space with proper filtration (€2, §;, P)
and an initial probability measure 11, on £2(Z). In this setting, we couple the particle whose label
is 0 to a Langevin thermostat at temperature 7 and we assume that the friction is v > 0.

We denote by E the expectation with respect to P and the expectation with respect to 1,
is denoted by {(-),,. The expectation for the two processes, the Wiener process and the initial
measure [, is denoted by [E..

The Fourier transform of f;, € £2(Z) and the inverse Fourier transform of f € L*(T) are

f) =" faexp{=2mink}, fu :=ff(k)exp{2mnk}dk, neZ, keT.
)CEZ T

The wave function is given by

Yn (1) == (@ * B)n(t) +icn (1) “

in which {®,,n € Z} is the inverse Fourier transform of the dispersion relation defined by
w (k) := /o (k). The Fourier transform of the wave function is

Ut k) :=wk)B(t, k) +id@t, k) VkeT.

We also have

| BN A A
at k)= E[w(z‘, k) —y*(@t, k)], ao(t) =/Im1ﬂ(t, k)dk.
T

_ For a function O(x, k) in the Schwartz space .(R x T), we denote by O:RxT — C,
O :R x Z — C the Fourier transforms of O in the x and k variables, respectively,

O, k) ::/e—ZﬂfSXO(x,k)dx,
R
O(x,n) :=/e—2”"""0(x,k)dk.
T
The Laplace transform for the time variable is

[e¢]

L2 = / 7 F (i

0

Also, for now, if we don’t say anything further, we assume the domain for convergence of the
Laplace transform is C = {z € C : Re(z) > 0}. We keep the notations Re(z), Im(z), z* for the
real part, imaginary part and complex conjugate of z.

The Laplace transform of the Wiener process is denoted by

R:=L(R).

257



A. Hannani, M.-N. Phung, M.-B. Tran et al. Journal of Differential Equations 426 (2025) 253-316

One can observe that R is a Gaussian process, determined by its covariance which is given by:

E(R(Z))R(Z,)) = ReZ;,ReZy > 0.

Zi+ 2y

Recall the convolution notation in (3). We also use the notation * for convolutions with respect
to the time variable 7, as

t
frg@) = / f(@t—s)g(s)ds.
0

We use this for convenience. To avoid confusion, we have a convention that we only use this
notation when dealing with functions F, ®, ¥, C,,. We define those functions in Section 4 and
Section 5.

The ¢ time scaling of a function f is defined by

FEw) = ft/e). (5)

For the estimates, we use the following symbols: for f, g: D — R, we write

f < gifthere exists C > 0: f(x) < Cg(x),x € D.
We write f ~ gif f Sgand g < f.

Our estimation usually involves ¢ — 0T, hence when we use those symbols we mean that D is a
small positive neighborhood of O for the variable ¢ and C does not depend on .
We now state a few basic assumptions.

2.1. Assumptions on the initial wave

We define the space ./ as the completion of .””(R x T) for the norm

1Oy = f sup |0 (&, k)|dg
R keT

and we consider it dual space 4", where the dual is defined in (6).
The Wigner distribution is defined by

n+n

5 n—n'), (6)

(0. We)y =3 Y. Ee [0 07" 0] 6%

n,n'eZ
for every test function O € (R x T).
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The Wigner distribution is also defined by its Fourier transform, as
Wetr, 6.0 1= SEe [0k = o6/2)0 O,k +68/2)]. )
(QWNMM=/,M&&@&@JMMK
T xR

For the Wigner distribution’s Laplace transform, we use the notation
We(Z,E.k) = LIWe (-, £.5))(2).

For most parts, we will find the limit of the Laplace transform % instead of directly find the limit
of W.. When we mention about the initial condition, we omit the time variable and we write

YR =90,k and W k) =We(0,5,k).
The assumptions for the initial state are the following

A1) (k). I (W), =0. Vk.heT. A
(12) SUPge(0,1] Znez 5(|1/fn|2>u5 = SUPg¢(0,1] 8(||1ﬂ||iz(T))ug < 0o0.

(I3) There exist constants Cy, k > 0 such that |W8 &,k)| < (E)C;“’ for (§,k) € Tyye x T, e €
R

(0, 1] (T2 is the periodic torus [—e~ 1, &717). Here, the Japanese bracket is defined by

(xX)R =V 1+x2.

Note that, for any « > 0, fR (x)I[_gl_"dx < 00.
(I14) Wg (&, k) converges weakly in .4 to Wo e L'R x T).
The energy of the wave grows at most linearly in time (Lemma 10 or Lemma 13), hence

sup [[We(D)ly < 00,
1e[0,7]

for every t > 0. Therefore, the family of all W, is sequentially weak-star compact in
(L'([0, T]; .#'))*. We obtain this assumption by taking a subsequence of ¢ if it is neces-
sary.
2.2. Assumptions on the dispersion relation
The coupling between two points n, n’ € Z is denoted by

Oy_p € C.

The dispersion relation is defined using this coupling
w (k) :=+/6 (k).
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The function k — w (k) is smooth, even, and is positive on T (following (o 1) - (03)). Further-
more, we have o'(k) > 0 for k € (0, 1/2) (following (w1)). The minimum and maximum values
of the dispersion relation are

Wmin =w(0) and wmax = w(—1/2) = w(1/2).
Since w is continuous and strictly increases on [0, 1/2], given any @ € [®min, ®Wmax] there exists

a unique k € [0, 1/2] such that w (k) = @. We define two inverse functions ¢ : [®min, ®max] =
[0, 1/2] and ¢— : [Wmin, ®max] = [—1/2, 0], the value of ¢(w) is set as k. We mean that

pr(w®) :=1k| and ¢_(w(k)):=—[k|.
The following assumptions are imposed.
(o1) There exist Cp, C3z > 0 such that
o < C2e™M, VneZ.

(02) & is even.
(03) 6(k) >0forkeT.

(wl) w is decreasing on the negative branch, or equivalently, increasing on the positive branch.
(w2) There are smooth positive functions ¢ and ¢; such that

¢l (@) = £(@ — Omin) 01 (@), @ — Omin K 1, (8)
(pél: () = £(wmax — a)7]/2(;02(5)v Wmax — © K 1. 9

Remark 1. We consider one example for the dispersion relation (see [1]):

wk) = \/wg +y(1 — cos(2k)),

where wq, y > 0. For @ € [wy, ,/a)é + 2y1], we have

1
¢+ (w) = £— arcsin
4 2y

and

, @
oL @) ==+ .
n\/2y + )} —52\/52 — ?

When w — wg < 1, we define

_ @
¢1(@) = ,
72y + 0f — @B+ wp
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and when ‘/a)(z) +2y —w <K 1, we define
_ w
»(w) = .
[ of + 2y +5\/52 —w}

Finally, we introduce some notations related to the dispersion relation

D.(k,&):= ! [w(k +E/2) —w(k —e&/2)] forkeT,& € Ty,
D (k, &) =7 [w(k + &) — w(k)] forkeT,& €Ty, (10
D7 (k&) :=¢e ' [w(k) —w(k —&)]  forkeT,&eT,.

When ¢ — 0, D (k, &), D} (k, ), D] (k, &) all converge to o’ (k)&.
2.3. Assumptions on target rates
Given target rates (ry, 1, 7r), We want to reach them using our controls.

Definition 1. For a triple of functions (ry,r;,r,) on T, it is called “asymptotically reachable”
if there exist a control function F and a sequence {Fy)%_, such that Fy is equal to F in finite

. Fy _Fy _F
time and ry™ ,r, N, 1. N converge almost everywhere 10 rq, i, rr on T as N — o00.

We state some assumptions on the target rates to make a sufficient condition for “asymptoti-
cally reachable”

(H1) The three functions (r,, ¢, ) are even on T

H2) rotk) +ri(k)+r.(k)=1forallkeT,;

(H3) r¢(k), r-(k) > 0 and there exists ¢; > 0 such that r, (k) > c; for k € (0, 1/2);
(H4) The three functions (v, r¢, 1) are continuous on (0, 1/2);

(H5) /ri(k) + /ry (k) > 1forall ke T;
(H6) [o° Re(F (u))cos(ut)du = [y~ Im(F (u)) sin(ut)du for all > 0.

In (H6), F is defined by

o RE(k):=|vg(k)|(rs (k) — rr(k) — 1) for k € (0, 1/2);

IM (k) := \/4|Ug(k)|2rr(k) — RE (k)2 for k € (0, 1/2);
FT(k):=RE(k)+iIM() for k € (0,1/2);

TH(k):=1+ FT(k)limz_.0L(Cy)(Z —iw(k)) for k € (0,1/2);
F(u) = FT(p+w))/TH (g4 () for u € (0Omin, ®max)-

We have the definition of the group velocity

o' (k)
27

vg (k) :=
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3. Main results

In this section, we will first show in Theorem 2 the transport equation with impulsive control
to see that the rates cannot be controlled in this way. In contrast, we show in Theorem 5 the
equation with the rates having control using linear memory-feedback control. Finally, we state
the result on a sufficient condition to get asymptotically reachable rates.

We define the rates without control

V16 ()2
a(k) == s
)= ol
v vrgq (k)
k):=1—Re(@(k s
re(k) O [+ o
vrq (k)
(k) = s
"0 = el

where 6 is defined further in (31). Recall that the terms r,, r; and r, represent the absorption rate,
transmission rate and reflection rate.

3.1. Impulsive control

The impulsive control term is associated with a real-valued function F'(¢#). We consider the
system of equations

Bn(t) = (1), (11)
doy (1) = — (o * B(t))ndt + (—vapdt + F(¢)dt +~/2vTdR(t))60.n- (12)

In this system, we assume some additional assumptions.

(Cl) &4 |P(e, k — e£/2)| is bounded for each fixed k, &, where P(g, k) = (lﬁ(k))ua andd < 1/6.

(C2) There exists F € C(T) such that ¢'/2L(F)(¢Z + iw(k — €€ /2)) — F(k) for any fixed &
as e — 0.

(C3) There exists C4 > 0 such that sup, g 1, f3/* € F2(s)ds < Cat, V1 > 0.

Theorem 2. Consider the wave system governed by (11) and (12) along with all the assumptions
(I1) - (I4), (61) - (03), (wl) - (w2) and (C1) - (C3). For any t > 0 and O € Ll([O, T]; A) we
have

T

lin})/(O(t),Wg(t))Jydtzf / 0*(t, x, W (1, x, k)dxdkdt, (13)
0 0 RxT

where

W, x, k) = Wolx — vg(k)1, k) 1100, (k)r1¢ (x) + ra(K)T 110, v, (k)1 (x)
+re(k)Wo(x — vg (k)2, k) 1j0,v, (k)1 (x) + 1 (k) Wo(—x + vg (K)2, —k) 10,0, (k)e] (X)
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N [vg (k) |7 (k)| F (k) | 5

) (x —vg(k)r). (14)

Remark 3. In a related context, the authors of [6] enforced impulsive forces on two ends of a
finite harmonic chain to study a stationary state relating to the chain. Therefore, the question of
impulsive control is quite natural and has already considered in [6] for a different model.

Remark 4. In view of Question A, posed in our introduction, we observe that the three rates
rq, 1,y are not modified under the influence of the impulsive control F(¢)8g ,. The control
appears in the term M(S(x — @' (k)t) in (14)(F is given by (C2): this is where the
control F(t)8p » appears in (14)). With respect to the main result of [8], the latter term is the new
additional one.

Therefore, despite its physical meaning and relevance, such an impulsive control is not appro-
priate to act on the thermostat system. In Section 5, we will propose another type of control called
memory-feedback because it uses the information provided by the past of the state solution. This
alternative kind of control enables us to act on the triple rates.

3.2. Linear memory-feedback control

The linear memory-feedback control is the convolution control term (F 4+ v8()) x oo (t)S0 -
Hence, we will consider the system of equations:

Bn(t) =an(t), (15)
da,(t) = —(o *x B(t))ndt + (F xap(t)dt + ~2vTdR(t))d0 n- (16)

In the system, we use the assumption
(L1) F e C®((0, 4+00)) N L™ ((0, 400)), m € [1, 00) and Re (F (%)) <OforkeT.

Because F € L' we have the equality (20) and the Fourier transform F is a bounded and contin-
uous function.
We define the three new rates and use them for our main theorem

2

FF () 1= — Re(F (o (k) /27y 2EOL (17)
|vg (k)|

Re(F*(w(k)/2m)0r (k)  |F(w(k)/2m)*10F (k)|
Fky:=1 , 18
=1 g () Hog (O (1%
I 2 2
) — |F (k) /270)[210F ()| (19)

4lvg (k)|?
We define the function 0 later in (90).

Theorem 5. Consider the system of equations (15) and (16) with all the assumptions (11) - (14),
(o1)-(c3), (wl)-(w2)and (L1). Then, for any Tt > 0 and G € Ll([O, t]; &7) we have
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T T
/(G(t), Ws(t))dtzf / G*(t,x, )Wz, x, k)dxdkdt,
0 0 RxT
where
vTrk (k)
W, x, k) = Wolx —vg (k)1, k) 110,v, (k)r1c (¥) — ——————1[0,v, ()11 (X)

Re(F(w(k)/27))
+rE () Wo(x — ve(k)t, k) 1o, ve (k)] (X) + rF (k) Wo(—x + vg (k)t, —k) 110, v, (k)11 ().

On the well-posedness of (15)-(16), we recall (25) in which the solution 1/} is uniquely deter-
mined by (92).

Remark 6. In view of addressing Question A, posed in the introduction, we observe that the
three rates (rF , r,F rF ) can now be controlled under the influence of the linear memory-feedback
control. An “inverse problem question is: given a triple of functions (r,, 7;, ) as target rates,
can we determine if (4, 77, ) can be asymptotically reached following (17)-(18)-(19) in sense
of Definition 1?

Corollary 7. If a triple (ry, 1y, 1)) satisfies (HI) - (H6), then it is asymptotically reachable.

Remark 8. We emphasize on the convergence type used in asymptotically reachable is only in
the a.e. sense, which is weak. We desire to improve on this convergence type. Another highly
important issue is the rate at which the control is achieved. For both issues, we hope that a better
construction of F would allow one to obtain a better convergence type with a good convergence
rate. To be more precise, in the design of F of (H6), the function Fy is constructed by multiplying
the inverse Fourier of F with a smooth cut-off function, whose values are 1 on [0, N],arein [0, 1]
on (N, N + 1), and are 0 on [N + 1, +00). This simple construction of Fy gives the desired
achievable control in a.e. sense. However, this construction is not sufficient to obtain a better
convergence type nor the rate at which the control is achieved. A better construction of Fy may
give a better result. However, such computations would be rather very long and we will devote
this issue for an upcoming work.

Remark 9. As discussed above, the work [6] establishes the first impulsive control, in which
the force is periodic. Time periodic control is therefore a very interesting direction to explore.
For instance, it would be important to see whether or not our linear-feedback control (or even
different types of control) can be done in a periodic in time manner. We will investigate this
question in a follow-up paper.

4. Impulsive control - proof of Theorem 2
4.1. Preliminary computations

In this section, we work with the impulsive control introduced in (11) and (12). We use the
notation F for the Fourier transform of F in the time variable. We recall a basic relation between

Laplace and Fourier transforms. For F € L' ([0, +00)) we have
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+00 +00
lim £(F)(Z +iw) = lim / e TN E (N dt = / e "F()dt = F(w/27).  (20)
Z—0 Z—0
0 0
We clarify the reasons for the assumptions in this control. In (C1), we have d < 1/6 so that P
is small enough, when the control acts on the wave, the new term involving P will disappear
when taking the limit. Assumption (C2) is a generalization of (20). The bound in (C3) ensures

the growth of the energy is at most linear. We prove the following lemma using an Itd analysis
shown in the Section A.4.1.

Lemma 10. Consider the wave system governed by (11) and (12) with all the assumptions (11) -
(I4), (c1)-(03), (wl)-(w2)and (CIl) - (C3). There is a constant Cs such that

Bl © O] 2p, < Bl @ O]z, + Cst.

In the proof of Theorem 2, to analyze the kinetic limit, the Wigner distribution is splitted into
13 terms that we categorize into 4 types.

(1) Terms not involving the control: one of the thermal terms (38), the ballistic term (52), the
first and the second scattering terms (58), (59).

(2) Terms with a single Wiener process: (36) and (37). Since the expectation of the Wiener
process is zero, thus these terms are zero.

(3) Terms involving one occurrence of F in the product: those terms are (54), the third, the
fourth, the fifth and the sixth scattering terms, (60), (61), (62), (63).

(4) Terms involving two occurrences of F in the product: (35) and (64).

We will see that only the first and the fourth types have non-zero kinetic limits. All other terms

vanish at the limit.
We write di using the system of equations (see [4,13] for a related nonlinear problem)

dy (1, k) = d(w(k)B (1, k) +ida(r, k)
= w(k)a(t, k)dt + i (—w? (k) Bdt — vao(t)dt + F(t)dt + v2vTdR (1))
= —iwk)V (t, k)dt — ivag(t)dt + i F(t)dt +2vTidR(). 1)

Solving the linear ODE (21) gives

t t
Ut k) =e O (k) —iv / e i @®U=) g0 (s)ds + i f e 1= F(5)ds
0 0

t
+iv2T / e 1 OU=9gR(s5). (22)
0

Noting that by definition of inverse Fourier transform,
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ap(t) = / Im(y (1, k))dk, (23)
T

and that the real part of e~ @0(=5) is cos(w(r — s5)), we infer from (22) and (23)

t '
() =V¥(@) —v / / cos (w(k)(t — s)) ao(s)dsdk + / / cos (w(k)(t —s)) F(s)dsdk
T 0 T 0

t
+v2vT//cos(a)(k)(t—s))dR(s)dk
T 0

= W(t) — vC, % ap(t) 4+ Cy # F (1) + 20T Cy % dR(1), (24)
where
W(r) = / Im (I/Q(k)e—"w“”) dk, (25)
T
and
Cyp(t) = / cos(w (k)t)dk. (26)
T

We can compute the Laplace transform

z
Zrah ™ @7

L(C)(Z) = f
T
Recall that Re(Z) > 0 so Re(L(C,)(Z)) > 0. For L(C,), we also get the following lemma. We
put the detailed proof for this lemma in Section A.1.

Lemma 11. For k € (0, 1/2), we have

1/2

b4 ) dh w (k) —wmin ~ Co,0(w(k))
@] /w(k)+w(h>+1°gwmax—w(k)+ w® |

Zlif)lOE(Cw)(Z —iwk)) =

where C, 0 is a continuous, bounded and real-valued function.

Using the Laplace transform on (24) and the notation

1

O =)@

=Y (—vL(CL)(2)),
j=0
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we get

@0(Z) = L(0)(Z) = O(Z)L(W)(Z) + O(Z)L(CL,)(Z)L(F)(Z)
+ V20T O(Z)L(CLH(Z)R(Z)

=O(Z2)LWY)(Z) + %(1 — OZ))L(F)(Z) +V2vTO(Z)L(CL)(Z)R(Z).
(28)

We will write © as the inverse Laplace transform of ® and it can be understood using the infinite
sum of convolution terms

O@):=L"(©) =3 +L O -1 =81+ (-)"("Cu),

n=1

where (¥"*C,,) is the n-time convolution of C,, with itself.
Applying the Laplace transform to (22), and using (28) we obtain

U (k) — ivag(Z) +iL(F)(Z) +iv2vT R(Z)
Z +iwk)
(k) —ivL(W)(Z) 4+ i®Z2)L(F)(Z) +ivV20TO(Z)R(Z)
Z +iw(k) '

LG )NZ) =

Therefore, by inverse Laplace transform,

t t
@(z,k)ze—fw<k>'¢}(k)—iu/e)w(t—s,k)\v(s)ds+if®w(t—s,k)F(s)ds
0 0

t
+ix/2vT/®w(t—s,k)dR(s), (29)
0
where
t
Ot k) = / et BE=9) gg (s).
0

Denoting by

t
O (1, k) :=/efw("”d@(s)=eiw<">’®w(r,k), (30)
0

we have the important identity
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OEZ —iw(k))

LUOO (k) (Z) = ~

Because Re(1 + VL(Cy)(Z)) > 1 we get O(eZ — iw(k)) is bounded by 1. Hence, using Fatou’s
Theorem, ®(¢Z — iw(k)) converges (a.e. and in any L”) when Z — 0. We also write

0(k) = Tim, O(Z —iwk)). 31)

0 is used to define the rates, it has an important property that allows us to compute the sum of
the rates. Lemma 12 is an immediate consequence of Lemma 11.

Lemma 12. We have

Re(e(k))=<1+ i >|9(k)|2.
|’ (k)|

As a consequence, rq(k) +1:(k) +r-(k) =1 forae keT.

We consider the truncation
' (0. k) = P (k) xo (k). 32)

Ayl e, k)= —iwt)y @, k) — %/[W(r,k’) — @, kK)1dk + F(t) } dt +iv2vTdR(1).
l
T

V20, k) = P (k) (1 — xp(k)),

22 _) . Al IR T PN FOSR Ay
dyr=(t, k) = iw(k)y (t, k) 2 /[1// (t, k") — =", k))dk" ¢ dt.
T

Here, x, (k) is a smooth function with values in [0, 1] such that it is equal to 0 on [T ](¢) and to
Lon T\ [T](20), where

[T1(e) :={k : dist(k, [T](0)) < o},

(33)
[T1(0) :={k : & (k) = 0} = {0, £1/2}.

In the computations of scattering terms (Section 4.3), we will consider 1//l in (32) as y. For
a sufficiently small o, we will show that ! in (32) and v in (21) give the same kinetic limit
(Section 4.4). Thus, we only consider the situation where the initial state satisfies

There exists ¢ > 0 such that the support of 1/A/(0, - isin T \ [T](o). 34)
We now split the wave into several terms to compute the kinetic limit.

268



A. Hannani, M.-N. Phung, M.-B. Tran et al. Journal of Differential Equations 426 (2025) 253-316

4.2. Thermal terms

The thermal part of the wave is considered independently from the initial state of the wave
system. Therefore, for the thermal part, we put ¥ (k) = 0. With that assumption, (29) becomes

t t
&(x,k):i/@w(t—s,k)F(s)ds+i¢2uT/®w(z—s,k)dR(s).
0

0

The Wigner distribution’s definition (7) gives

t/e t/e
We(t, €, k) = %Ee / Oup(t/e —s,k+eE/2)F(s)ds / O (t/e — s,k —e&/2)F(s)ds
0
(35)
1/e 1/¢
+\/m/ Ou(t/e — s, k+€&/2)F(s)ds f OF(t/e — s,k —e&/2)dR(s)
0 0
(36)
t/e t/e
—i-m/ O (t/e — s,k —e&/2)F(s)ds / Ou(t/e —s,k+e&/2)dR(s)
0 0
(37
1/e 1/e
+ 2vT / Ou(t/e — s,k +€&/2)dR(s) / OF(t/e — s,k —e&/2)dR(s)
0 0
(38)
4.2.1. First thermal term (35)
Since the term is independent from any random process, its Laplace transform is
%E (@0 x FYO .k +86/2(0 % F)O) (- k = £§/2)) (39)

We rewrite the convolution ®,, » F using (30) as

t t
@w*F(z,k)=/®w(t—s,k)F(s)ds=f@w(z—s,k)e"w(kxs—f)F(s)ds

0 0
t

=f@w(t—s,k)e—fw“‘)fF,j(s)ds
0
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=e MOV % FE (1), (40)
where
Fi(t) := F(t)e ' @®1, (41)
We also rewrite the conjugation,
OF x F(t, k) = " *®'(@°)* x Fi(1). (42)

Using (10), (40) and (42), the product of the two convolutions is
(Op *x F(t,k+€§/2))(OF x F(t, k — & /2))
= ¢ 1D kE (@ Fiyoe ) (0 k+ 86/ () % Fiee )tk —€£/2).  (43)
Now, we use (43), (39), and the formula of the Laplace transform of a product to get
c+il

= lim / LUO° % Fyye ) OLAO) % Fie) @) (Z + i De (k. £) — )t

4im L—oo

c—iL
c+il
€ . w\ (& *
=g fim [ L@k /DL ) )
c—iL
LUOYYO*NZ +iDe(k, &) — ¢, k — e6/2) L(Fi—e2)(e(Z + i De(k, &) — £))d¢
c+il .
=t m [ BEEZIOCHEID) o er ik + ££/2))
4im L—o0 ¢
c—iL

O(Z +iDe(k, &) — &) +iw(k — e&/2))
Z+iDe(k, &) —¢

— ) +iwlk —e§/2))d,

L(F)(Ee(Z+iDg(k, &)

where we follow the notation of (5). From (31) and (C2), taking the limit ¢ — 0, we obtain

c+iL 2 2
.1 fim |'9(k).| |F (k)| dz. (44)
4im L—o0 ((Z+iw'(k)E—-1)
c—iL

We have

1 1 1 1
L(Z+io (e —0)  Z+io (kE <E T i Wt - ¢> '
We also have the identity
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c+ilL L L

. 1 L c ) X
Jim f 46 =1 im f m”’x"/ e
c—iL L —L

Hence, (44) equals

00 PIFERP g (R)lra (k)| F k)|
2Z+iw (k)E)  20(Z+iw (k)E)

4.2.2. Second and third thermal terms (36), (37)
Each term has one d R(s), and because they follow a Gaussian distribution, those terms vanish.

4.2.3. Last thermal term (38)
Because of the correlation of Wiener process, (38) is equal to

t/e

vTe / Ou(t/e — 5.k +6£/2)O% (1 /e — 5,k — £ /2)ds
0

t
:vT/@g)(s,k+8é/2)(®j))(8)(s,k—85/2)ds.
0

Similarly to the computation of (35), by using the identity (30) and the formula of the Laplace
transform of a product, the last thermal term gives

e¢]

T .
Wo(Z, & k) = ”7 / e~ (ZHiD:(kE)s g (5_1s, k + 85/2) CR% (8_1s, k— es/z) ds
0

c+i

_vT /‘L(:)(e§—ia)(k—I—8$/2))(:)*(8(Z+iD8(k,§)—{)—ia)(k—eé/Z))d{
((Z+iDe(k,§)—¢) '

Z 2mi L—>oo
c—iL

The limit of % is

vT16(k)| T'lvg (k) ra(k)

Z(Z+io'(k)E)  Z(Z+io(k)E)

4.3. Scattering terms

From (7), we have
0 We(r, 6.0 = SE. [ (00 1 k +08/2)) Y% 1.k — e8/2)

+ (00O k= e6/2) POk +e5/2)|. (46)
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Then, we compute each term of (46) by replacing T =01in (21):

(009t k+8/2)) §O" 1k = o5/2)

= é[—i(u(k +8&/2)y Otk + e£/2) — ,-va(()s) () +i F® (,)]1/;@)*07 k — ££/2),

(0@ k= 8/2)) Otk +0/2)

= él:iw(k - 8&/2)12/(8)*(1‘, k—e&/2)+ iUOl(()e)(t) _ iF(S)(t)]Jf(s)(t’ k+££/2).

We infer from (47) and (48) that

O We(t, &, k) = —i Do (k, £)We (1, £, k)

— SE [iog) OF O 0k = e8/2) = ia T Ot k+e5/2) |
SE: [FOWTO 1k —e6/2) = FO 0 e, k+28/2)].
Using the Laplace transform on (49), (50) and (51), we obtain

(Z +iDe(k, ENHe(Z, &, k) = We(&, k)

- % [Se(Z, k — 8£/2) + SH(Z, k +££/2)]

| F (&) . .
—r (’ O i O ekt e/~ Bl @1,k es/z)D) @),

where

S.(Z,k) =il (Esa((f) PO, k)) ,

SHZ, k) 1= —iL (Egags’*(z)x/?@)(z, k)) :

(47)

(48)

(49)

(50)

619

(52)

(53)

(54)

(35)

To handle the term (53) we split (55) into seven terms. First, rewrite (29) and (28) in convolution

form with 7 =0

Ut k) =e PO (k) — ivO, * U(1) + 1O,  F (1),

ao(t) = O % W(t) + lF(z) lo. F(t).
vV v

(56)

(57)

Then S, is the sum of the Laplace transforms of .2, 119, 1119, 1v® v vIi®© vii®.

272



A. Hannani, M.-N. Phung, M.-B. Tran et al. Journal of Differential Equations 426 (2025) 253-316

(1) I is obtained as the product of the first term of (57) and the first term of (56):

t

(1, ) =i [ g2 W01 ()] = el / (Wt — $)§* (k) dOs).  (58)
0

(2) I1I; is obtained as the product of the first term of (57) and the second term of (56):

TL(t, k) :=iE, [® x W(t) (ivO, * W(1))]

t ot
=—v / / OF (1 — s, k) (W(s)W(t —5')) . dsdO(s"). (59)
00

(3) 111, is obtained as the product of the first term of (57) and the third term of (56):

I11(t, k) =iE; [(®x W(1)) (—iO% « F(1))]
t t

:/@Z(s,k)F(t—s)ds </ W(t—s’)d@(s’)> . (60)

0 0 He

(4) 1V, is obtained as the product of the second term of (57) and 1&*:

1 A ] A
IV (t, k) :=iE; |:<;F(t)> (e, k):| = l;F(t)(l//*(t, k) e - (61)

(5) Vg is obtained as the product of the third term of (57) and the first term of (56):

t
Vo(t, k) :=iE, [(-%@ . F(t)) (giw(k”&*(k)ﬂ = _Tl / F(t — )dO(s)e! D (7 (k)) ..
0

(62)
(6) VI, is obtained as the product of the third term of (57) and the second term of (56):
1
VI(t, k) :=iE; |:<——® * F(t)) (iv@j; * \Il(t))}
v
t t
:/F(t —s)d@(s)</ O (s', k)W(t —s’)ds/> . (63)

0 0 e

(7) VI is obtained as the product of the third term of (57) and the third term of (56):

VIIL(t, k) :=iE, [(—%@ * F(t)) (—iO) F(t))]
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t t

= 1/F(t—s)d®(s)</ @;;(s’,k)F(t—s/)ds’> . (64)

)
0 0 e

We next show how to treat the scattering terms.
The ballistic term is the term generated from W (7, k) in (52). The limit is

R W, (&, k) . Wo(&, k)
RxT RxT

where O is the test function used in (6).

4.3.1. The first scattering term (58)
The first scattering term is obtained in (53) using /.. The technique and result for the kinetic
limit of this term is similar to that of Section 5.3.2. In this case, the limit is

Wo(g', k) O* (&, k) ,
Y / Re(e(k))Z+iw’(k)$’/Z+ia)’(k)$d$d$ k.

RxT R

under the same limit with (65).

4.3.2. The second scattering term (59)
The second scattering term is obtained in (53) using //,. Similar to the treatment of first
scattering term, the computations in Section 5.3.3 can be used to get the limit

v / ra)Wo€' k) [ 0*(.k)

, _ dedE'dk
4 Z+iod(0E | Z+io(k)E
R

RxT

dede'dk,

v / ral)Wo', —k) [ 0%, k)
4 7 —iw (k)& 7 +iw (k)&
RxT R

under the same limit with (65).
The sum of the first and second scattering terms is

Wot', k) 0*E Rlv®)|
/(r’(k)_l) Zrid 08 Z+iaE
RxT R

W', —k) O*E Bl )l
- / k) Z—io' (k)& Z+io (k)& dg dgdk,
RxT R

under the same limit with (65).
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4.3.3. The fourth scattering terms (61)
The fourth scattering terms are obtained in (53) using / V.. We see that —%(ﬁ(l Vg(e)(-, k —

e£/2)) + LU VE* (-, k+ & /2)) is the same as the term (54) but with a different sign. Therefore,
the fourth scattering term and term (54) cancel each other. The limit is 0.

4.3.4. The fifth scattering terms (62)
The fifth scattering terms are obtained in (53) using V.. We have

E(Vg(g))(Z, k—e&/2)=eL(Vy)(eZ, k —€&/2)

= %ﬁ(@ *F)(eZ —iw(k — e€/2))P(e, k — e&/2)

= _Ti’s@(sz —iwk — eE/2)L(F)(eZ —iw(k — £/2)) P (e, k — & /2).
By (C1), (C2) and (31), the limit is 0.

4.3.5. The third and the sixth scattering terms (60), (63)
We compute /711 and VI, in (53)

_y ©c 1 _ . 0*(£.k)

: f E(IIIE (- k—et/2) + 111 (,k+s€/2)>(Z)—Z_i_iDg(k’é)dgdk
RxT

Y © (k- (o). 0*(5.k)

. / L(wg ( k—e&/2) + VI (,k+eé/2))(Z)Z_i_iDe(k’é)dédk
RxT

_ v ©,. O* (5. k+¢£/2)
_ 2[&45(1118 (’k)>(z)—z+iD;f(k,§) dedk

é*(é,k —¢€/2)
(&)*, =7
+R/T L(Ille (,k)) (Z2) iD= (k.E) dédk:|

;L/ £(vi©en) () LELEEID ey

Z+iD (k, &)
xT

O* (5, k —c&/2)
(©)%. 4
+R/T L(VIS (,k)) (Z2) 74 iD-(h.E) dédk:|

é*(s,k—esmd

—— Edk
Z+iDg (k,§)

z_g / Sglll(zik)é*(é,k+8$/2)

dédk + / stz k
Z +iDf (k, &) § e (20
RxT RxT
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_% /SQ’I(Z,k)wd(gdk_,_ / SXI*(Z,k)Mdek

Z +iDg (k, &) Z+iD; Sk, &)
RxT RxT

Here, we use the notations

ce L 1.(t, k)dt, (66)

SHIX(Z, k)= | ee ' TI11} (¢, k)dt, (67)
o
SY1(Z, k) ::/ee_Z'S’Vls(t,k)dt, (68)
0
o
SY*(z, k) :=fee—Z€'V1;‘(t,k)dt. (69)
0

Let us compute (66) + (68). The sum (67) + (69) is similar.
To this end, we have

[e¢]

S!”(Z,k)=s/e*2”1118(z,k)dz

0
o0 t

=8/e—Zstfeiw(k)O—s)@*F(S)<®*\Ij(t))ugdsdt.
0 0

Hence
(o8] t
Res!!1(Z, k) :S/efzet/cos(a)(k)s)(a*F(s) cos(w (k)1)(® x V(1)) dsdt
0 0

o0 t
—i—s/e*Z“/sin(a)(k)s)@*F(s)sin(a)(k)t)(@*\lf(t))mdsdl.
0 0

Proceeding similarly with VI, we get

[e¢] t

ReSY!(Z, k) =g/e*2” cos(w(k)t)®*F(t)</ cos(w(k)s)@*\ll(s)ds> dt

0 0 e
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t

—I—s/eiZ“ sin(w (k)1)® x F(t) </ sin(w(k)s)@*kll(s)ds> dt.

0 0 e

Therefore, using integrations by parts, we have

ReS!"(Z, k) +ReSY! (2, k)

t

o0 t
=827 / e %t / cos(w (k)s)O  F(s)ds < / cos(w(k)s)@*\IJ(s)ds> dr  (70)

0 0 0 e

t t

+&2Z / e 2ot / sin(w (k)s)O  F(s)ds < / sin(w(k)s)@*\ll(s)ds> dt.
0

0 0 He

Using the identity

1 . ~ . N
V= / e o®1G 0, k) — f OG0,k |,
1
T T

we expand the term (70) as

2 o0 t t
‘92—_2 / et f f cos(w (k)s) cos(w (k)s”)
l
0 0

0

s 8
x / f F(s—u)< / el g h)dh> dOu)dO ' )dsds'dt
T

0 0

2 S t ot
[ e eoony
0

X //F(s—u)</ i (h"=u") f* (), h)dh> dOu)dOu')dsds'dt.
0

He

He

(71)

(72)

Let us estimate (71), the term (72) can be estimated similarly. After that, we subtract (71) and

(72) to get (70). Using the identity

1 -
o(t —t/) = 2—/€m(t _’)da,
T
R

and changing e ' into e~ *¢(+1)/2 (71) becomes
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) t t

2
82—‘2[e_zg(""’/)/z//Cos(a)(k)s)cos(a)(k)s’)
i
00

0

/ f F(s—u)< / ei“’(h)<x/“/)1ﬁ(0,h)dh> dOw)dO W )dsds's(t — t")dtdt’
T

00 He

1

= Z //ei”(t/ft)efzg(t“/)/z//cos(a)(k)s)cos(w(k)s’)
m
00 00

/ / F( s—u)< / "“’(h)(s/‘“/)&(o,h)dh> dOu)dO ' )dsds'dtdt'da.
0

He

By rewriting the domain of integration,
(u,s5,1) €[0,5] x [0,7] x [0,00] = (7,5, u) € [s,00] x [u, o0] x [0, 00],
this term is equal to

ez

n//sP(s,h)A(h,k, Z)AFp(k, Z)dhda,

where

ALK, Z) e 1 O(Ze/2 —ia —iw(k)) O(Ze/2 —ia+iw(k))
T 2(Ze 2 —ia) \ Ze)2 —ia—i(wk) —w(h)  Ze/2 —ia+i(wk) +wh)) ]’

and

Arpk, Z) :://cos(a)(k)s)F(s —u)/e_(zs/eri“)tdtdsd@(u)
0 u s
ZE/T/./COS(CD(I()S)F(S — u)g_(zs/2+’a)Ydsd®(u)

- - —(Ze/2+ia—iw(k))u L
=23zt ia / (e L(F)(Ze/2+ia — iw(k))dO)
0
_,’_e—(Zs/2+ia+iw(k))u£(F)(28/2 +ia+ la)(k)))

1 e / 7 . .
= m (@(Ze/2+za —iwk)L(F)(Ze/2 +ia —iw(k))
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+0(Ze/2 +ia+iw(k)L(F)(Ze/2 + ia + iw(k))) .

Making the change variable a — ¢a, (71) is equal to

VA /P( ) 1
16im / & (A/2)% +a?
R T

x {é(s(Z/z +ia) —iw(k)L(F)(e(Z)2+ia) —iw(k))
+ O@(Z)2+ia) +iw®)L(F)(e(Z/2 +ia) + iw(k))}

O(e(Z/2 —ia) —iw(k))
Z/2—ia—ie Y (wk)—wh))

+ 2 //P( h—
167 T )
R T

x |@(e(2/2 tia) — i) L(F)(e(Z)2 +ia) —iw k)

dhda (73)

+ B(Z/2+ia) +iw () LF)E(Z/2+ia) + oK)

5 eO(Z/2 —ia) +iw(k))
e(Z)2 —ia) +i(wk) + w(h))

dhda. (714)

We expect that most of the contribution at the limit comes from (73). We will prove that the
limit of (74) is zero. From (C1), (C2), (31), using the bound of test function O*, and the bound
|Z +iDF (k,n)| > Re(Z), it suffices to estimate

1-d

_ . <Sel™d, (75)
e(Z/2—ia)+iwk)+iw(h)

For ¢ sufficient small, |e(Z/2 —ia) + iw(k) +iw(h)| 2 2wpnin > 0, and (75) follows.

Next, we handle the term (73). If |o (k) — w(h)| 2 ¢!/3, then we do the same as (75) to show
that the integral on this domain is small. We consider the domain |w (k) — w(h)| < o1€'/3 for
some 1 to be specified later.

Recall that we consider the (34) where Q to be chosen later. In the domain, k € [ > % + %] U

[-5.¢]U[5 — 4. 3], we choose 01 < %. Then, & € [T](o) according to (8) and (9). As a re-

sult, P(e, h) =0 on this domain.

We will focus on: k € [—1 + ¢, —4]U[4, 3 — %] and & such that (k) — w(h)| < 01!/
for some small p;. Because |w(k) —wh)| =o' k)||k — h| Z |k — h|, we consider h — k €
[—Q181/3, Q16‘1/3] for some small ;.

We perform the change of variables h — k — &’ where &’ € [—p167%/3, 016 7%/3]. (73) be-
comes

01 £=2/3

—Z¢ Pl k — 1
161’71/ f . )(Z/2)2+ 2

R —g1e72/3
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x {(:)(8(2/2 +ia) —iw®)L(F)(e(Z)2+ia) —iw(k))
+ O(Z/2+ia) +iok)L(F)(e(Z)2 +ia) + ia)(k))}

O(Z)2 —ia) —iw(k))

Z/2—ia—iswk) —wk —e&) > 2 (76)

We approximate (76) using the derivative of w, that is

016723
—Ze

, 1
16in/ / 11)(8’](_85)(2/2)“%2

R —g1e72/

x {(:)(8(2/2 +ia) —iw®)L(F)(e(Z)2+ia) —iwk))

- . . O(e(Z/2 —ia) —iw(k)) .,
+ OE(Z/2+ia)+iwk)L(F)((Z/2+ia) + za)(k))} Z/7 —ia i OF d&'da.
(77)

We have

& &
'2/2 —ia—ie Nwk) —wk—et)) Z/2—ia— o (k)&

_' wk) —w(k — &) + o' (k)e&’
(22— ia—ie(0k) — ok —eENNZ/2 —ia—iw (W)E)

’

and | (k) — w(k — e&') + o' (k)e&'| ~ |0" (k') (e&)?| < 03?3, Besides, by Cauchy-Schwarz’s
inequality, we have

1
(Z)2—ia—ie N (wk) —wk—e&N)NZ/2—ia—io (k)E)
1 1
N +
YZ2—ia—ie N wk) — ok — )2 T 1Z/2—ia—iw (k)&
1 1

Tltlate ok — ok — ) i la + o' (k)&'1>
Next, by the estimate

da 1

/ (14+a%(1+ (@a+b)? S 142 (78)
R

the difference (76) — (77) is estimated by
2,.1/6—d

01¢ / dx < o2el/o—d
infecio/—o1.1/2-0/2ten [/ ()] J 14+x2 5
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In the latter estimate, we recall that d € [0, 1/6) so e1/6=4 tends to 0 as € — 0.
We now estimate (77) for some small ¢1. Using (C1), (C2) and (31), we only need to estimate

/e )
l/2-d d§
|Z/2 —ia —io (k)E']
_91/81/3
Q18—2/3
—gl/2—d dg¢’
| VRe(Z/2)2 + (o' (k)E' +a — Im(Z/2))?
—01€™
1/2— (ko182 +a—Im(Z /2
8/2d ' (k)oi€ +a—Im(Z/2) 2d 2/3
< ——— arcsinh(x) ~ el jog(e72/3). (79)
o' (k) — ' (Ko1e~23+a—Im(Z/2)

The limit of term (79) is 0. This implies that the term (73) also has limit O.

4.3.6. The seventh scattering terms (64)

The seventh scattering terms are obtained in (53) using VI 1,. We have a transformation for
VII(t, k) using (30) and (41)

t

t
VIIL(t, k)= _Tl / F(t — s’)d@(s’)/@i(t — s, k)F(s)ds
0 0
t

_! / (00 (00— p(; _ d@(s') / O (t — s, k)e W F(s)ds
V
0

—1 iw(k)- * W\ *
=T((€ O) x Fi (1)) (%) * Fi(1)).

Next, we compute L(VI Ig(g))(Z ,k — €&/2) using the formula for the Laplace transform of a
product

LWVIIEONZ, k —e&/2)
c+ilL
= — lim / L€ 0) x F*) (0, k — e£/2)LUO)* x FONZ — ¢,k — e&/2)d¢

T 20im L—oo
c—iL

c+il
=—— lim / O(e¢ —iw(k — £ /2)L(F) (et —iw(k — £ /2))
2ViT L—oo
c—iL
LUOY))(E(Z =¢), k —e&/2)L(F)(e(Z — ¢) +iw(k — e£/2))d¢
c+il
lim / O(e —iw(k — £ /2)L(F)(e¢ — i (k — € /2))

21)17'[ L—o0
c—iL

2
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LUOY)O*NZ — ¢,k —e£/2)L(F)(e(Z —¢) +iwk — e€/2))d¢
c+il
lim / Oec —iw(k — € /2)L(F) (L — iw(k — €£/2))

—&

2vm L—00
c—iL

O@E(Z - ) +iwk —e£)2))
Z—¢

LF)(e(Z =) +iwlk —e§/2))dS. (80)

At the limit ¢ — 0, the term (80) gives

. P IF®
lim / OWIEFOF ;.

2ViT L—oo Z—-¢

c—iL
Now, the integral is estimated using (45). We get

—|9(k)|2|f<k>|2.

2v S

Expanding (81) in (53), the result is

16.(K)*|F (k)]
2Z+i0 (k)E)
4.4. Proof of Theorem 2
To prove the theorem, we first show that the kinetic limit of ! in (32) and the kinetic limit
of ¥ in (21) give the same result. The growth of energy of 1//1 is at most linear, which is similar

to 1// Meanwhile, the energy of 1//2 is decreasing. We use the bound on the initial condition (12)
and get the following estimate

limsup sup /l%(z,g,k)—%l(z,é,k)ldk

e—071 EeTz/sT
00
=limsup sup EIE‘S / /e (1//(8)0 k+ E)Iﬂ(s)*(t k— E)
e—=>0t &£eTy), 2 2
T 10
dk]
00

<limsup sup EIES /eR"’Zt/‘(@(8)(t,k+§)@(s)*(nk—ﬁ)
e—0t £eTyy, 2 o i 2 2
dk]

23

O k4 L )w“f)*(tk j))dt

23

@G k4L )w“@*(tk s))d:
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o0
<limsup sup -E, /e—Rﬂf/ ‘1/72(5)(t,k+ §)$2(8>*(z,k— ﬁ)dr dk
e—0t EGTZ/S 0 T 2 2
x
. —rezt [ |72 &8 re, &8
+ limsup sup ¢E, e Yt k+ =) (t,k Ydt|dk
e—0t SETZ/E T 2 2
o0
< | e ReZty E. |2 HAzt HA1 t dt
NO/e fifﬁpg e |[¥7(t/e) 20T v(t/e) e T vo(1/e) 2T

t

NYJ) p(@)+/e‘R"'z’tdt < 1.
0

In this estimate, p(p)? is a bound for sup, eE|| 1/}2 ||i2. We see that the limit p(p) is 0 as o tends
to 0 by Dominated Convergence Theorem. If we denote #! to be the limit of 7/51, then for
O* e (R x T) we have

lim sup / O (&, yw'\(Z, &, kydgdk — / O* (&, k) We(Z, &, k)dEdk
e—07F
xT RxT

< f 0%, W)z, & kydgdk — / O* (&, kW' (Z, & k)dedk

xT RxT

+ / O*(&, k)W (Z, &, kydgdk — f O* (&, k)We(Z, &, k)dEdk
xT RxT

S o).

With 34, we combine all results in Section 4.2.1,4.2.2,4.2.3,4.3.1,4.3.2,4.3.3,4.3.4,4.3.5
and 4.3.6 to get

Wo (€, k)
Z(Z+iw (k)E  Z+iw (k)&

(a) ®

~ |vg ()| Wo (&', k)dE’
+ () I)R/(Z+ia)/(k)§)(Z+ia)/(k)§’)

WNZ, & k) = Tlog(k)|rq (k)

(©)
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1
v(Z +iw (k)E) "
—_——— — ™
()

+r,(k)/ Ivg(k)lWo(%", —/.C)dé’
J (Z +io'(k)E)(Z —ia' (k)E')

+vg (k) ra (k) | F (k)|

@
(82)

Hence, # (Z,&,k) =% (Z, &, k) since #'' does not depend on o.

To get W in the main theorem, we take the inverse Laplace and Fourier transform of each
term. Let us make precise the technical computations as follows.

We first compute the inverse Laplace of term (a) of (82) with test function O

5t k)L 1 1 — ef2mus b 27X 0% (1 1Vdxd
[ 0 (i) 048 = | [ Sy <0 s
R R R

=f 0" (x, k) (110,00) (x) — l[vg(k)t,oo)(x))dx2/0*(x)1[0,vg(k)t](x)dx~ (83)
R R

Term (b) of (82) can be computed as

A% o Wk _ —i2mug (k)€ i2mxE o
/ O*E, KL <7Z+ia)’(k)§> (H)d& —//e e O*(x,k)Wy (&, k)dxd&
R R R

=/0*(x,k)W0(x — vy (k)t, k)dx. (84)
R

Term (c) of (82) is now computed

1 Wo(é/,k)OA*(E,k)wg(k” /
]IZ.R/,C <(Z+iw/(k)§/)(z+iw/(k)§))(f)dé' dg

=ffei2”x§0*(x,k)|vg(k)|[ (e—izﬂvg(k)fv*(e—iZHUg(k)f/WO(s/’k))(t)> dé'/dfdx
R R R

t

[vg (K)|OF (x, k) Wo(—vge (k)(t — 5), k)S(x — vg(k)s)dsdx

I
S

R
:/O*(x,k)Wo(x — Vg ()1, k) 110,v, (k)1 (X)dx. (85)
R

Now, we calculate term (d)

f/[’fl Wo(é.,,—k)O/*(é,k).Ivf(k)l ()dE'dE
sa (Z =i (k)EN(Z + i (k)E)
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://‘eﬂnxso*(x’k)'vg(k)'/(efi2nvg(k)$~*(ei2nvg(k)é/wo(§/’ —k))(t)) dE'dEdx
R R R

t
= // lvg (k)| O (x, k) Wo(vg (k) (t — 5), —k)8(x — v (k)1)dsdx
R O

= / O* (x, k)Wo(vg (k)t — x, —k)110,v, (k)11 (x)d x. (86)
R

Finally, we develop term (e) of (82)

A * -1 1 _ 2w (x—vg (k))E A%
fo E KL (7z+iw/(k)s)(t)d$_//e <D O* (x k)dEdx
R R R

zf 0*(x, k)8 (x — vg(k)t)dx.
R

We have proved that

lim (0, We (1)) 4 = / O* (x, kYW (1, x, k)dkdx
e
RxT

for any 7 and any O € . (R x T). The conclusion of the theorem follows.
5. Linear memory-feedback control - proof of Theorem 5 & Corollary 7
5.1. Preliminary computations

In this Section, we focus on the system defined by (15) and (16). Assumption (L.1) allows us
to keep the control over the energy of the wave. We have the lemma.

Lemma 13. Consider the wave system governed by (15) and (16) with all the assumptions (11) -
(I4), (o1)-(03), (wl) - (w2) and (L1). There is a constant Cg such that

BV N1 20p) < Bl O17 2, + Cot-
Similar to Lemma 10, we use an Itd analysis for the proof of Lemma 13, the details will be

given in Section A.4.2.
Recalling (4), we write (15), (16) as:

Ay (t, k) = —iw (k)Y (t, k)dt + i F xag(t)dt + iv2vTdR (). (87)
Solving (87), we obtain
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t
Ut k) =e POk +ie 0w Fxag(t) +iv20T / e P9 gR().  (88)

Hence,

ap(t) =V({#t) + Cyx Fxap(t) + vV2vTC, xdR(1), (89)
where we have used the notation of (26). To solve (89), we define, formally,

~ 1
OF(Z):= L DLCH D) for Z € C4..

We are going to see that @ is well defined and is bounded, similarly to ®. First, we infer
from (20) that

O (k) := lim Op(Z —iw(k)) = - ! . (90)
7=0 1= F*(w(k)/2m) limz_0 L(Cu)(Z — iw(k))

Note that, limz—.0 L(C)(Z — i) = & (gl —1) if 6®K) # 0. By (LI), the limit

limz_q (:)F(Z — iw(k)) exists. When 6 (k) = 0, we have |L(Cy)(Z — iw(k))| — oo, and we
also get O (k) = 0. Since: 0 (k) is defined almost everywhere, so is 0 (k).
The boundedness of ®r(Z — iw(k)) comes from (L1) and it is satisfied almost everywhere.

This can be proved as follows. By (L1), we get ‘1 — Flo®/@m) (Wlk) — 1)’ >C >0, for a

v

constant C. Indeed, the function Re(I:") is bounded continuouAs and Re(ﬁ (w(k)/(2m))) <0 so
there exist C’, C” > 0 such that C’ > |F(w (k)/(27))| > |Re(F(w(k)/(27)))| = C”. Thus

1—

F(w(k)/(2n)) ( 1 1)
6 (k)

|F(a)(k)/(2ﬂ))| ‘ (L _ 1)‘
F(a)(k)/(27T)) 0 (k)

v

> —N Re(#) —Re(L - 1)‘
v F(w(k)/(2m)) 6 (k)
C" v(=Re(F)) (c”>2
>—— = > 0.
v |F|2 c’

Similar to Lemma 12, we have another lemma for linear memory-feedback controls.

Lemma 14.

Re(ﬁ*w(k)/zn)eF(k)):(Re(F(w(k)/zn»—|F(w(k>/2 )2 | ,(k)|)|9F<k)|2.
AS a consequence,
rF oy +rf oy +rF () =1 1)
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for k € T almost everywhere.
The lemma is an immediate consequence of Lemma 11, we show the proof here.

Proof. Using (90), we get

F*(w(k)/270)0F (k)

3 F*(w(k)/2m)
1= Frok)/27) limeo o L(Cw) (e — iw(k))
1
F(ok)/27) — |F (oK) /27) 2 im0 L(Cu) (e — iw (k)

= |F(w(k)/2m)

From Lemma 11, we have Re(limg .o L(C,)(e —iw(k))) = WHT)I Thus, using Rez = |z|2 Re %,
the conclusion of the lemma follows. O

We introduce more notations. We write (88) in the form
bt k) =e PNk +i0F « Fx w(t) +ivV20TOF « R(1), 92)

where

t
NS :=/e_iw(k)(t_s)®p(ds).
0

We will also consider

t
“(t, k) == / 0@ p(ds) =ML (1, k),

0
Or(eZ —iw(k))

LUODONZ, k) = ~

Using [T ](o) defined by (33), we define a truncation similar to (32):
U0, k) = Y (k) xo (k). (93)
t
Ay, ky={ —iwt) Py @ k) + %//F(s)[lz‘ (t — s, k') =YVt — s, k) Idsdk’ § di
l
T O

+iv20TdR(1),
V20, k) = (k) (1 — xo(k)),
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| t
Ayt k) ={ —iw() P, k) + > / / F()[Y2(t — s, k') — ¥ (t — s, k')1dsdk’ } di.
1
T 0

Similar to (32), for sufficiently small o, Y1 in (93) and ¥ in (87) give the same kinetic limit.
Therefore, in the scattering terms (Section 5.3), we only consider the situation where the initial
state satisfies (34).
5.2. Thermal term

Due to the independence between the initial wave and the thermostat, we simplify the com-

putation of the thermal term by setting the initial wave to be 0. The thermal term in linear
memory-feedback control is

t
vT /(@5)<€>(s, k+e&/2)(OF)© (5, k — e&/2)ds.
0

In that case, we compute

We(Z, 8, K) = %/e—@”l)s(kf”se)g (75 k +8/2) ©p)" (75 k —e/2) ds
0
T 7L@F<s; — ik +56/2)O (2 + 1Dk, ) — ) — ik —c8/2)
T Z 2miLeoo {(Z+iDg(k, &) — ) ¢
c—ilL

Taking the limit & — 0 and using (45), we obtain

vT0r(R)F vT g (k) |rs (k)
Z(Z+io (k)E)  Re(F(ok)/Qm)Z(Z +ie (K)E)

5.3. Scattering terms
For scattering terms, we consider 7 = 0. The derivative of the Wigner transform is given by

Welt, &, k) = —i De(k, ) We (1, €, k)

+E, [i(F F WO OGOk — e8/2) — i(F % W) ()9 @ (1, k + eg/z)] .

Using the Laplace transform we obtain

(Z +iDe(k, ENHe(Z,E, k) = We (&, ) 94)
+S1(Z, k—e,6/2, F) + SI*(Z, k +¢,£/2, F) (95)
+SM(Z, k—e,8/2, F) + SI*(Z, k+¢,£/2, F), (96)
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where S! and S!7 will be defined in (97) and (98).

5.3.1. The ballistic term (94)
The ballistic term is unchanged with respect to (65). The term only involves the initial condi-
tion of the wave, neither the control nor the thermostat affects this term.

5.3.2. The first scattering term (95)
The first scattering term is given by

t

I(t,k, F) :=ie'@®! f(F *W(t —$)P* (k) 1, dOF (s)

0
t—s
%//fF(S)<w (k)lﬁ(h)) l(w(k) w(h))t+tw(h)(s+s)ds/dhd®(s)
0T O
and
SHZ,k, F):= LU)Z, k, F). 97)
‘We have
o0 t t—s
SNZ,k, F)= % / et / f / F(s" Y () (h)) i, e @O0 WSH) g 4hq @ (5)d1
0 0T O
o0 oo o0
% / * (k)Y (h)) / F(s) / / et 2 gl —otios+s) 140 (s)ds'dh
0 0 s+s’

[\.)

f/ (W (k) (h)) F(s/)/e—sZ(s+s’)eiw(k)(s+s’)d®(s)ds/dh
re+i(w(h) —w(k)) / /

™

L(F)(eZ —iwk)Op(Z —iowk))dh.

e / I (0P () 0,
"2/ e tiwh) —wk)

Changing the variables from k to k' — ¢&’/2 and h to k' + ¢&’/2, we call the new domain
T, C Tyye x T. We get

/ O* (&, k+¢£/2)SNZ. k, F)dgdk

Z +iD(k, &)
RxT

_ / / Wel®' K)L(F)EZ — io(K —e8/2)Or (¢Z — iw(K —8'/2)0%E K +68/2= 66/ yor e gt
€Z+i(@®K +e8'/2) — (K — &' /D)(Z +iDF (K — £8'/2,8))

R T
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e Wo(g', k) F*(w(K')/(2))0F (k) O* (£, k')
(Z +ia (KNENZ + i (K)E')

d&'dedk.
R2xT

Similarly, we have

/ O* (&, k — e£/2)SI*(Z  k, F)dgdk

Z+iD; (k, &)
RxT

=0 / W K E (k) 2r)ok(k) 0% (&, k)
(Z + i (K)E)Z — i (K)E')

de'dedk.
R2xT

Taking the sum and using the fact that Wg‘(n, k)= Wo(—n, k), we get the limit of the first scat-
tering term

Wo(&', k) O* (£, k)
(Z + i (ENZ + i (k)E)

/ Re (ﬁ*(w(k) /(2n))ep(k)> de'dedk.

R2ZxT
5.3.3. The second scattering term (96)
The second scattering term is given by

t ot
11.(t, k, F) :://@g(t—s,k)(F*\IJ(s)F*\I!(t—s’))ugdsdG)(s’),
0 0

and

SI(Z,k, F):== LUI)Z, k, F). (98)

We compute

Re S/ (Z,k, F)=Re LUIP)(Z. k, F)

t t
=&’z / et < (/ cos(w(k)s)(OF x F * \IJ)(s)ds)

0 0

t
X (/ cos(w(k)s)(OfF x F *‘-IJ)(s)ds)> dt 99)
%

0

£

! t
+ SZZ/E_SZ’ < (/ sin(w (k)s)(OfF x F x \IJ)(s)ds)

0 0
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0

t
x (/ sin(w (k)s)(OF » F W) (s)ds) > dr. (100)
"

€

Let us analyze (99). (100) can be treated similarly.
We write

822 [e¢] o t t / s s
Tfe f/cos(w(k)s) cos(w(k)s )//
0 00 0 0

x / i@ s—w) o) s'—u') (&(h)lﬁ*(h/)) A dhdOF » F(u')dOf » F(u)ds'dsdt
He
T

ez
—4—// ¥ (Y (h)
R T2

x / f e~ ioMG—1) o)1) g@ oy F(u\dO p x F(u)ds'dsdt' dtdh dhda
00

[ee] t t
/ elat=1") p=eZ1+1)/2 / / cos(w(k)s) cos(w (k)s")
0

= % / / ¢ (&(k)&*(h’)) ACh, k&, FYA* (W', k. %, F)dh'dhda, (101)
R T2 Mg
in which
Ah,k,Z, F) = / cos(w(k)s) / et (s—u) / e TELIHD 14O p % F(u)ds
0 0 s
B 1 LF)(Z/2—ia—iwk)Or(Z/2 —ia —iw(k)) a02)
© 2(eZ/2—ia) eZ)2 —ia —i(wk) —w(h))
N 1 LF)(eZ/2—ia+iwk)Or(EZ/2 —ia+iwk))
2(¢Z/2 —ia) eZ/2—ia+i(wk) + wh)) ’
(103)
and A* is defined in a similar manner, that is
AU K2, F) e 1 LF)Z/2+ia+iwk)Or(eZ/2+ia+iwk)) a0
T 2(eZ )2+ ia) eZ/24+ia+i(wk) —wh’))
N 1 LF)(eZ/2+ia—iwk)Op(Z/2+ia—iwk))
2(eZ/2+ia) eZ/2+ia—i(wk) +wh))
(105)
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We will see that among the four terms in the expansion of (101), these are the products be-
tween (102) or (103) and (104) or (105), only the term generated by (102) and (104) contributes
to the high frequency limit. To derive the limit, we need some lemmas.

Lemma 15. The following limit holds true

1
{}%8/7(2/2)2 f! Jairan)

E(F)(SZ/Z —iea — zw(k))®p(8Z/2 —iea—iw(k)) ‘

Z/2—ia—ie N w(k) —w(h))

LOF)(Z/2 +isa —io()®r(Z/2 +isa— iw k)
x Z/2+ia—ie— (k) + o)

dh'dhdkda =0

The proof of the lemma will be provided later in Section A.2. To use Lemma 15, we change
a into ga in (101). Therefore,

z 1 e
16n8/(Z/2)2+a2 /8<‘/”( W )>M€
R T2

E(F)(SZ/Z —ica — 1a)(k))®p(8Z/2 —ica —iwk))
Z/2—ia—ie Ywk) —wh))
E(F)(eZ/Z +ica+ la)(k))@p(eZ/Z +ica+iw(k))
Z2+ia+ie Y wk) —w))

dh'dhda

is the only term contributing in the limit. By changing the variables from % into &’ + ¢£¢’/2 and
K’ into k' — €&’ /2, we need to evaluate

Z 1 We (&', k)
167 / (Z/2)% + a? / Z/2—ia—ie Y wk) — ok +c&'/2))
RXTz/E TXT2

)ﬁ(F)(eZ/z—zsa—zw(k))@F(eZ/z—zaa—zw(k))( O* (&, k + €£/2)
(Z)2+ia+ie (k) — ok —e&' /2)(Z +iDF (K, £))

dk'd&'dkdeda.

In the integral, we have the set T = {(E’,k’) 1] < 2100 K < = Slé | } C Ty x T, where p

is in (34). By Assumption (13), if |&'| > 216;05’ then |W8| < &3/2; it makes the whole term tends
to 0.

We define

I.(Z,¢e F)
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_z 1 We (8, £k +€"/2)
T 27 f (2/2)2+a2/Z/z—ia—is—l(w(k)—w(kis(s/+s//)/2))
RXTZ/S Ts:?j:

‘E(F)(sZ/Z —ica—iwk)Op(Z/2 —ica —iwk)) ’ O* (&, k + €& /2)

Z/2 1 +. 2 . d%”d.‘;‘/dkdéda
( / la L& l(w(k)—w(k:FE(S/ ":‘N)/ )))(Z+ZD€+(/<,§))
In this integl al,

2 —{(k E/ s//)'ke |$/|<_ |k:|:8§///2|< | /|

S,i ’ ) . . 8’ 1 8% i

signk = sign(k £ (&' + £”) /2)},

where we have used the change of variables k' — +k + ¢£”/2.
We also define the following integrals

1 We (&', 2k + 2" /2)
(Z/2)2 4 a? / Z/2—iaxio (k)E +E")/2

Ta.i

1) VA
I:t (Z,S, F) = E
Rx Ty,

~ 2 .
. ‘L(F)(sZ/Z—iea—iw(k))@)F(Zs/Z—isa—ia)(k))‘ O &K +€6/2) yenyel ardt da:
Z2+ia+ie HoWk) — otk Fe@E —&")/2)NZ +iDF (k,£))

1 We (&', 2k + e&"/2)
(Z/2)2? + a2 / Z/2—iaxio (k)(E +E")/2
3

T+

Z

2

I(i)(Z,S, F) ::E /
RxTye

8 ‘E(F)(sZ/Z —isa—iw()Or(eZ/2 —isa — iw(k))‘z O* (&, k +££/2) g
(Z)2+ia+io (k)(E —E")/2)(Z +iD; (k. £))

"dg'dkdEda;

1 / We (&', £k + £ /2)

3) _Z
I:E (Z,S,F)-:— / 2 2 _ LN / "
327 (Z/2)2 +a Z/2—iatio (k)(E +E")/2
Rx Ty, T3,

A 2 4
|F@0/@rer®)| 0% k+e8/2)

. . - - dé”ds/dkdéda’
(Z/2+ia+io (k)(E —E)/2)(Z +iDF (k. £))
19z, F) :=3§/ L / Wt
7w J (Z/2)*+a Z/2—iaxia (k)(E +E7)/2
R? T xR2

A 2 .
|/ @oerm)| 0%k
CZnriatid OE —€)/DZ+i0 0D

d&"dg'dkdeda.
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Lemma 16. We have the following approximations

gli_r)r%)‘Ii(Z, e, F)—I0(Z, e, F)‘ - (106)
lim ‘I;”(z, F)—TP(Z, e, F)‘ - (107)
11m‘ 19z, e, F) 192, e, F)‘ - (108)
hm‘ 19z, e, F) -T2, F)(— (109)

As a consequence,
: (4)
IimZy(Z,e, F) = (Z,F).
e—>0

Lemma 17.

lim / ImSg”(Z,k,F)(0*(S’k+8§/2)—0*($’k_8§/2)>d$dk:0.

Z+iDf (k&)  Z+iD; (k,£)
RxT

The proofs of Lemma 16 and Lemma 17 will be given in Section A.3.
We apply to If ) the following identity

/ _ 2mi
Z—z1)@Z—2-) 74 —12-
R

when Im(z4+) > 0> Im(z-).

The variable z is a F o’ (k)£” in our case, d&” is integrated out first. Then, we also integrate with
respect to a:

(4) (,

N 2 217, / A
poZ / I / |F@®)/ Qo) P10r R)EWo &', £ OE.K) sy

16 ; (Z/2)* +a? o' ()(Z Liwk)ENZ + i (k)E)

T xR

/ | (w(k)/2m)) [210F (k) > Wo (€', £k) O (&, k)

: : dE'dkde.
160, ()| (Z % iw (k) ) (Z + i (k)&)

T xR?2

By repeating these steps, the term (100) will produce the same result as (99). That concludes the

computation for SI I(Z,k, F). We also have the same result for % so the result gets

doubled. The second scattering term limit is

de'dgdk

/ | (w(k)/Q2m)) 10F (k) P Wo (&', k) O (€, k)

g (D(Z +iw(k)ENZ + i/ (k)§)
T xR2
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N / | (w(k)/Q2m))[210F (k) P Wo (&', —k) O (&, k)

dg'dgdk.
4Hog(D(Z —iw(k)EN(Z +iw'(k)§) s

T xRR2

5.4. Proof of Theorem 5

The technical detail for this part is similar to that of the impulsive control. We see that (83),
(84), (85), and (86) do not depend on the rates. Thus, we do not repeat the same arguments to
obtain the conclusion of Theorem 5 even though the rates are different.

5.5. Proof of Corollary 7

In this section, we show how to design controls that asymptotically steer the system to some
desired rates (rq, 1+, r) in the kinetic limit. First, we state some basic properties that the rates
must satisfy and the implications in finding a control.

(1) By (17), (18), and (19), the target rates must be defined when «’(k) # 0. Hence the domain
of definition is (—1/2,0) U (0, 1/2). Since w(-) is an even function, the three rates are even
functions. We reduce the domain of definition to the positive branch (0, 1/2). This explains
Assumption (H1).

(2) By (91), the sum of the three rates is 1, that is why we have Assumption (H2) for the target
rates. Hence, we only need to know two among the three rates (rq, 1y, ). We focus on r;
and r,.

(3) All the rates are positive functions, i.e. rf,rf rF
stronger positivity, which is Assumption (H3).

(4) Recall the Lemma 11: for k € (0, 1/2), we have

> 0. For the target rates, we assume a

lim £L(Cy)(Z —iw(k))
Z—0

12

. dh 0 k) — omin Coo(@(k)
- 1 i

@] /w(k)+w<h)+°gwmax—w<k>+ o' ()]

’

where C, o is a continuous, bounded and real-valued function. Because of the continuity of
F, we deduce that the rates are continuous on (0, 1 /2). This means the target rates need to
be continuous on (0, 1/2), or target rates need to meet Assumption (H4).
(5) By the triangular inequality, we have
[Fon F* (@ (k)/(27))6r (k)
rf (k) 4/ rF (k) =

F*(@®)/@n)0r®) | _ 1
2lvg (k)

1+ >
2|vg (k)|

(110)
This corresponds to Assumption (H5) on the target rates.

To sum up, we consider two continuous functions r, r, on (0, 1/2) such that r,(k) + r. (k) <
1 — ¢y and /1 (k) + /1 (k) > 1. These are Assumptions (H1) - (HS).
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We define
RE (k) := |vg (k)| (ry (k) — 1y (k) — 1) Vk € (0,1/2).

It follows from (18) and (19) that RE (k) = Re(I:“(a)(k)/(Zn))QF(k)).
We also define

IM(k) = \/4|vg(k)|2rr(k) —RE(K)?  Vke(0,1/2),

which is well-defined because, using (110),

Hug () 1rr (k) — RE(k)? = |vg ()2 (v/re (k) + /rr (k) — D)(/re (k) — /1 (k) + 1)
x (—/re (k) + /1y (k) + D (/11 (k) + /1, (k) + 1) > 0.

Finally, we define a complex-valued function FT (k), which corresponds to F (w(k)/
(27))0F (k) by

FT(k):=RE(k) +ilIM(k) Vk € (0, 1/2).
By (90), the function corresponding to 6 (k) is defined by
TH(k):=14+FT (k) ZlimOﬁ(Cw)(Z —iw(k)).

We claim that |T H (k)| > c1/4 for any k € (0, 1/2). To prove this claim, we consider two cases:
either Im(lim)_,0 £(Cy,) (A —iw(k))) > 0 or Im(lim;,_.0 L(Cy,) (A —iw(k))) < 0. In the first case,

Re(TH(k)) =1+ RE(k) Re(ZliinOL(Cw)(Z —iw(k))) +IMk) Im(zliinoﬁ(Cw)(Z —iw(k)))

k) = (k) _ L+ ri(k) —rr(k)

>1
- 2 2

>ri(k) +c1/2.
In the second case, we have either

1M (k) Im(zligloﬁ(cw)(z —iwk)))| < M

4
— Re(TH(K)) > 1 +rt(ki— ry (k) . r,;k) %’
or
M) Im(lim £Co)(Z — i (k)] > O =),
Z—0 4
and then
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Im(T H (k) = RE(k) Im(lim £(Co,)(Z —iw(k))) + IMK) Re(lim L(Cy)(Z — i (k)))

NJer +2ri(k)/er + 2r, (k)

> V(47,00 = re () (L +r, (k) — 1 (k) V2 =
V2
The claim is proved. In particular, T H (k) # 0O for every k € (0, 1/2), so we can define Fu) =
FT(o4+(u)/TH (¢4 (u)), u € (Wmin, ®max), Which corresponds to ﬁ*(w (k)/2m).

The next step consists of computing the inverse Fourier of . We recall that the control func-
tion F is real-valued and is only defined on [0, +00). It is more convenient to use the half-line
Fourier transform defined by

Fés) = / F(t) cos(std,
0

Fis) = / F(0)sin(st)dt,
0

for all f € L'([0, 400)) N L%([0, +00)). We obtain f¢, f* € L*([0, 4+00)). It is also possible to
define the inverses in the case the transformed functions are also in L! by

2 o
f@ ==

T

—

f(t)cos(st)dt cos(sx)ds,
0 0

2 [e¢)
f@ ==

T

—

f(t) sin(st)dt sin(sx)ds.
0 0

By (20), if there is a control F € L', we have
%imOE(F)(Z +iw)=F(w) —iF’(w).

We see that Re(F) and Im(F) correspond to F¢ and F*, respectively. Thus, the existence of F
depends on whether we have

/ Re(F (u)) cos(ut)du = / Im(F (u)) sin(ut)du,
0 0

for all # > 0. This happens because if F exists, then both sides equal 7 F (). Therefore, on the
target rates, we expect them to satisfy Assumptions (H1) - (H6).

For a triple of rates that satisfy Assumptions (H1) - (H6), let us design an explicit control
function F by
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[e0]

F(t) = % / Re(F (u)) cos(ut)du.
0

It is easy to see that F is continuous. Therefore,

o0

ﬂF(r)—ng (F( ))ﬁ (ut)d
dt” = 7 c u dt” cos(u u
0

are continuous for all n. This means that F must belong to C*°(0, +00). We also note that
|F| < w and F is supported on [Wmin, Wmax], in particular Fe L2(O, +00), and thus
also F € L?(0, +00).

We define a family of function Fy € C°* C C*® N L™, m > 1. For each N € N, Fy is the
product of F with a smooth function with values in [0, 1] such that it is equal to 1 on [0, N]
and to 0 on [N + 1, +00). It is clear that Fy converges to F in L?. Thus, Fy,, Fy, converge to
F¢ =Re(F), F* =Im(F) in L?, respectively. Taking a subsequence if necessary, we obtain a
family Fy such that F ~(-/2m) converges almost everywhere to F. We have

FT() = —— . F(w(k)) |
1 — F(o(k)limz_0 L(Cy,)(Z —iw(k))
and
Fii(@(k) /270)0F (k) = Fi (k) /27)

1 — F (k) /2m) limz_o LICL)N(Z — iw (k)

Hence, Ia ;(, (w(k)/2m)0F (k) converges almost everywhere to F' T (k). We also have

RE(K)*+ IM(K)? |FT (k)

r k) = - ?
) Alvg (k)2 Afvg (k)2
RE(K) Re(FT(K))  |FT (k)
k=14 —= (k) =1 .
n® =14 o T = T T i r

By (18) and (19), we get that r,FN, rEv converge almost everywhere to ¢, - on (0, 1/2). By (H1)
and (H2), the result is extended to all three rates on the whole T, i.e. r,f N r,FN , r,F N converge

almost everywhere to g, 7,7 on T.
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Appendix A. Proofs of the lemmas
A.l. Proof of Lemma 11
Recalling (27), we have

Z —iw(k)
—iwk)? +wh)

tim oz =0 = hm, |
T

L. dh . dh
== hm/ - - + 11rn/ - -
2\z-0) Z—iwk)+iwh) z-0) Z—iwk)—iwh)
T T

i .. f dh /‘ dh
=—| lim - +
2\z-0) iZ+w(k)—w(h) w (k) +wh)
T T
Due to the symmetry of T in both integrals, we get

172 172

- / dh / dh
i| lim - +
z—0) iZ4+wk)—wlh) w (k) + wh)
0 0

It is therefore enough to compute the limit of the first integral. We change the variable w (h) — w,
the integral becomes

Wmax dw
o (g (W) Z + o (k) —w)’

Wmin

where ¢ is defined in (w2). For u € (wmin, ®max), we define

oo @ @) — ol T @l @) — ol (g @))du
w.0(m) := lim : - )
' Z—0 @ (4 (W) (EZ +u —w) @' (o (W) (u — w)

®Wmin ®Wmin

When both u, w are close to each other and close to wpin Or Wmax, then Assumption (w?2) ensures
that

o' (94 () — & (94 (W) = Wi = w| < u—w]/2/Omin)-

1
o) ¢ (w) ' -

In the case both u, w are not close to the wmin and wmax, then for Z : |Z| < |u — w|/2

‘ @' (94 W) — &' (94 (w))

< / / /! / <1
P r— S ol e (pr )] S 1,
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which is due to the fact that w’ lies between u, w which are far from ®min, @max. Since
f;::i" dw/o (g4 (w)) = fol/ 2dh = 1/2 we apply Dominated Convergence Theorem to see that
Cow.0 1s well-defined and bounded. Again, by Dominated Convergence Theorem, C,, o is a con-
tinuous function.

To conclude, we compute

Wmax

. / dw
lim —_———
Z—0 iZ+wk) —w
@min
(0 (k)+Im(Z)—wmax)/ Re(Z)
. (—w+i)dow
= lim —_—
Z—0 I+ w?

(@ (k)+Im(Z) —wmin)/ Re(Z)

L [T @O+m(Z) — o) /[Re(Z) (Omax—0(K)—Im(Z))/Re(Z)
= Jim, (log L W2 )t m(Z)— oy Re(z) — | &rctanw (wmm—w<k)—1m<2>>/Re<Z))

(k) — Wmin

=1lo —
g Wmax — @ (k)

A.2. Proof of Lemma 15

Changing the variables from / into k' 4+ ¢£'/2 and ' into k" — £&’/2, we estimate

i NE I IO FIE / 1 f We (€', K)
0 P (Z/2)?2 +a? Z)2—ia—ie wk) —wk +e&'/2))
R Tx12
1 / /
X ; ; d¢'dk'dkda.
|Z/2+ia —is N wk) +wk —e&'/2))]
Using the identity

1 1 1 1
(Z)2—iu)(Z)2 +iv) <Z/2—iu + Z/2+iv) Z—i(u—v)

we only have to estimate

i ||F||§o||®p||§o/ 1

1m

£—0 e (Z/2)? + a2
R

5 / W (&', k)
Z—ie 1Quk) — ok’ — e€'/2) + w(k' + €€'/2))

T2x Ty

1
Nz —ia—is (k) — ok +£/2)]

dg'dk' dkda (111)
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N ||F||§o||®F||§o/ 1 /
e (Z/2)? + a?
R

T2xToe
We (&' k)
Z—ie1Qwk) — wk' —e&'/2) + w(k' + €&'/2))
1

dn'dk'dkda. 112
x |Z/2+ia—ie N (wk) + ok —en'/2))]| 1 ¢ (1

Recalling that |§'| < 215%05 on ng. We choose g is sufficiently small, the limit (112) is O as
e 20(k) — oKk —e8'/2) + ok’ + &'/~ 267 w (k) + o' (K)E | 27,
and
e k) + o +8/2) 267"
We need to estimate (111). To this end, we bound

/ dk dk

- ; =< sup -
leZ/2 —ica+i(wk) —wk —e&'/2)) T perJ 1€Z/2 —i(w(k) — E)|
T T

Wmax

=2 sup / - du
EeR o leRe(Z2)/2 —i(u — E)||o’ (p+ )|

1
d
Sy —
EeR le —i(u — E)||o' (¢4 (wmaxtt))]

1
d

< sup / - u/ .

E€l0.1]) le —i(u — E)||0 (¢4 (Wmaxit))|

The first estimate is obtained by changing sa + w (k' — s&’/2) — e Im(Z) into E, the second is
because w (k) is even so we only need to consider the positive branch. Note that ¢ is defined in
Assumption (»2). Combining (8) and (9), for sufficiently small ¢, we have

1
du

sup / ,
E€l0.1]) le + (u — E)||0' (@94 (0Omaxit))]

e 1—¢ 1
du du du
A sup + +
E€(0.1]) (e+u—ENJu J (e+|u—ENe 1 (e+|lu—ENDV1—u
—&
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e 1—¢ 1

du du du
S| —+ — 4+ — <& loge™h.
Nfsﬁ G T~ gle )

0 & 1—e

Combining (111), with the above estimates, we find

||ﬁ||§o||®F||§O[ ' log(e™")|We (&', &) JE AN
g'dk'da
(Z)2)% +a? | Rot) — ok —68'/2) + oK' +¢'/2)]
TS
< e log(e~d& dk’ o
~ (g7)3+x

A.3. Proof of Lemmas 16 and 17

We next prove (106) - (109) for the case +. The domain 7, 2 . is divided into 4 smaller domains,
defined by

T34 oo = | 68 € T2, 1 @)1k > 0, () (k — 8'/2 4 2£7/2) > 0]

Due to the symmetry of the domains we will only provide the proofs for Tf, +.+.+- the integrals
Te +, IS(L)F, Ig(?i, I;SJ)F on this domain are denoted by Z, M 7@ 7G)

A.3.1. Proof of (106)
We change the variables w (k) — ug, w(k — e&'/2 +&"/2) = uj, w(k + &' /2 + €£"/2) —
uy and denote (T83) as the domain Tg +.+.+ under this change. Computing the difference gives

I(Z,e, F)—IW(Z, ¢, F)
Zi / 1 / We (e~ (g1 (u2) — 4 (1)), (1/2) (94 (u2) + ¢ (u1)))
(Z/2)2 + a>

= 8me2 Z/2—ia—ie Yug—uz)

RxT/e (T3)

AP (w2, u0, )| L(F)(eZ)2 — iga — iug)Op (6Z/2 — isa — iug)|?
X
Z2+ia+ie Yuo —uy)
2

O* (&, 4+ (o) + €£/2) I 1
X
Z+iD{ (91 (uo. ) @ (o1 (u)

dugduidurdéda, (113)

where

e ' Doy (u', u)

A © /’ ) = )
w4 = e e i — ) — ie Y (g (1)) Dy . 0)

with Doy (u', u) == @4 (u) — @y (') — @' () (u — u').

302



A. Hannani, M.-N. Phung, M.-B. Tran et al. Journal of Differential Equations 426 (2025) 253-316

Our aim is to estimate (113) by 0. Since £(F) and O r are bounded, we can ignore them in this
proof.

If there exists ¢, u, > 0 such that [u; — uz| > ¢y, u,, then Wg(s_l(<p+(u2) —p+u1),) =<
(e~1y737¥_ Hence, we only need to consider |u; — us| < 2, where g, is a small number we
can choose. Thanks to (34), we also only consider u1, u2 € [@Wmin + c(p), ®max — c(p)] for some
c(p) > 0; otherwise, the term vanishes. Let’s choose g> small enough so that u, € 1(202) with

1 < .
U(‘M(“_/))‘ Shi=1Lz2

1(0) = [@min -+ 0, @max — 0] This implies u1 € I(02). On this domain, (
Hence, we can also ignore these terms in our estimate.

Next, we further divide the domain of ug into I(p3) as defined above and I'(g3) =
[@min,» @max] \ 1(03), where g3 is a small number we choose later. When ug € I'(03), if we
choose o3 small enough, say o3 < 02/2, then |ug —u1| > 02/2, |uo — uz| > 02. On this domain,

we use a simple estimate for A )

e ™! (o4 (o) — @1 (u2) — @/, (o) (o — u2))
Z/2—ia—ie~ o (g4 (o)) (91 (uo) — @i (u2))

AP w2, w0, =

1
<g 11 7> 114
~¢ <+|w’(¢+(uo))| (114

From (113), in I’(¢3) domain, applying (I3), we use (78) to get

s (aan) [ 1]

1"(03) 1(02) 1(202) R

(Ce™Nuz —uyp)) =3
(I+]a+ e o —u))(1 + |a+ e (ug — uy)]) 1+ a2

1 1
< |+
P / ( +a)/(<ﬂ+(u0)))

—1 _ —3—« 1
/ / / (2 i u1)) 5 2daa'ulduzduo
(1+|a+8— (wo—uj)*1+a

1(02) I1(2¢2) R

1 ey —uyp)) 37«
P / ( w(¢+(uo))>/ / e 2Gug —u; 2 1duadio

I=11(03) 1(02) 1(202)

< 1 1+; dug / / (e Vs —u1)) > durdus
~ 03 / @' (¢ (up))

1'(03) 1(02) 1(202)

<3 | (st
~ o2 o (¢4 (o))

daduiduydug
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1
<— [duo+/dk < p(a3).
Q3

"(03) TIQ}

Here, T'1,, C T such that (k) € I'(03). This means that p(g3) is small when o3 is small and
the proof of the estimateon domain I’(p3) is complete.

We now work with 7 (g3). On this domain, we have inf,, e (o) @' (¢4 (10)) > 0. Instead of the
(114), a stronger estimate is used in this case. Before that, we make some changes of variables,
changing u; into e~ (w1 — uo), up into e~ (us — ug) and a into a — e~ (ur — ug). Under these
changes, we denote I,(02) as the image of /(02) x 1(202), and we change the way of writing
Af) into

e~ Dy (u',u)
Z/2—ia—e o/ (o1 (W) Doy (' u)’

u+eu’

]\Sf)(u/, u,a) .=

Doy (' u) =~ f (@, () — &, (W)dv = g4 (0) + ¢, Wer' — o (u+ eu').

u

With these new notations, our estimate for (113) in the domain 7 (g3) is

3k x (&)

_ A , U0,

/ / / (up —uy) |AY (u2 uoza)l daduidusduy. (115)
(I'+la+wuz —urD(1 + (a +u2)*)(1 +lal)

1(03) I: (02) R

The domain of u; is split into

(T2)(04) = {uz : lua| < 04/e},

and (T€3)C(Q4), its complement, where g4 is small number to be chosen later. On (T€3)(Q4), we

use two estimates

—3—k 1

/ fue) du < U =uUy— Uy, (116)
14 |a+u| 1+ |al

AL 2, u0, @) S le ™! D (ua, uo)| S eu3.
Applying them on (115) with domain (T83)(Q4), we estimate

o4/¢

8M2
/ / 2 dadurdu
1+ @+u)?>(+a?
1(03) —04/¢ R

04/¢

2

Eu

< / / 2 duadug S 04
1~|—u2

1(03) —04/¢
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For (T53)C (04), the domain is split again. We consider the following domains

{@ ) 1a+ual < uaP’*} and { (@)t a4 o] > a7} (117)

For the latter domain, we can again use (116) with the estimate

/ da < 1
(I +la+b)(A+a%) ~ 14 b|
R

We estimate (115) as

2 (e)
A 9 9
/ / AL (u2 ;to a)l —dadusdug
(I+(a+u)?)(d +a”)
1(03) {(a,uz):la+uz|>uz 374}

Cs/e X
le™ D@y (u2, uo)|
5./ / 3/2 —1,, . dusdug
1ot 1A+ 16710 (4 (0D Do (2, 0) )
Cs/e
1
S mduzduo.
1(03) 04/¢ 2

This ensures that we can use Dominated Convergence Theorem in this case. Furthermore, we
have

e~ Dy (wo, wo) = £~ (@4 (o) — @4 (o + u2)) + ¢, (uo)ua
= up (¢! (o) — @ly (ug)) ~ 0.(ug € (uo, uo + €u2))

Thus, in the second domain of (117), the integral (115) is approximated by 0.
Now, we consider the first domain of (117). We have the terms

@y (up + sus) — @ (ug)
e’y (uo)

be (2, 1) := &~ '@/ (1 (w0)) D 9y (u2, ug) = us —

’

@4 (o + u2) — @4 (ug)

D(uz, ug) :=uz —
)

We then estimate

A ©)
A 9 b
/ / A4 2 ZO @)l s-dadusdug
1+ (a+u2)*)(1+a)

1(03) {(u,u2)2|a+u2|§\u2\3/4}

3/4
Cs/s —ur+u3) )
Euz

, U+t u2)?)(1 +a?)(1 +la — ¢ )

< dadusrdug

1(03) 04/¢ _uz_u;/
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3/4
Cs /s —ur+u)  —¢e

2
3
S Y R
(1 +uz)(1 +|al)
I(03) 04/¢ —uz—u;/4—¢a

Cs/e 3/4
/ / 8u2 <u2+u2 + e —1 )duzduo
14 u3 — + ¢ —1
1(03) 0a/e 2w =+
3/4
/ f up + &) + @z, o) — ¢ dnadug 220
€2+M2 u2—81/4u3/4+©(u2,u0)—8

1(03) 04

Before ending our proof, we remark that the above estimate is valid if #, > 0 but the estimates
for uy < 0 can be done similarly. Therefore, the proof is finished.

A.3.2. Proof of (107)
This proof is similar to the proof of (106), in which the roles of u and u; switch.

A.3.3. Proof of (108)
We state another lemma, that we will later use for (122).

Lemma 18. If o’ (ko) = 0, we have

lim lim sup sup |[L(F)(e —ila +a)(ko)])(:)p(8 —ila4+wky)]| =
o'—=0 -0 ae(—0',0")

Proof of Lemma 18. We first prove that

lim liminf  inf ) |L(Cp) (e —ila + w(ko)])| = +o0, (118)
/’Q/

0'—0 ¢—0 ae(—o

or lim limsup sup |(:)(£—i[a+a)(k0)])|=0. (119)
0'—=0 <0 ae(—o',0")

Indeed, it is enough to show that for each M there are p’, ¢ such that

12

/ dh

> M
ie+a+wky —wh)
0

The absolute value of the imaginary part of integral is

1/2 ®max
/ edh _ f ¢l (w)dw

2+ (a+wko) —wh)? €2+ (a + w (ko) — w)?
0 @min

> / edw
~ (P2 (e +4(0)?)
B(w(ko),p")
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N1/2
&
> 2(p ) .
&+ (p')

We take p > ¢ > M 2. Thus, (118) follows.
We recall (20), which gives lim,_,0 L(F)(e —i[a + w(kg)]) = I:“*(H;’—n(k())). Because of As-

sumption (L1), ﬁ*(%) # 0, then inf,e(_p o) IL(F)(e — ila + w(ko)])| > 0 when &, " are
small enough. Therefore,

lim liminf inf |L(F)(e —ila 4+ w(ko)])L(Cy)(e —ila + w(kg)])| = +o0
0'—0 -0 ae(-0'.0")

or lim limsup sup 1Or(e —ila+wko)|=0. O
e'=0 50 ae(—0.0)

We first write down the difference

IP(Z,6,F) =T (Z,¢, F)

_Z I We (€' k+e6"/2)
T 327 / (Z/2)? 4 a2 / Z2—ia+io (k)& +E)/2

RxToe Tttt

5 DOr . (a, k) O* (&, k + €€ /2)
(Z2+ia+io' (k)E —E")/20(Z +iDF (k,§))

d&"dg'dkdeda,

where DOr.(a, k) = E(F)(@Z/Z—im—ia)(k))C:)(esZ/Z—im—icu(k))‘2 - |1:"(a)(k)/

Q@m)ork)|’.

By (34), if k 4+ ¢£” € [T](0), then both Z® and Z® are zero on this domain. We only need
to consider k + ¢&” € [T1°(0).

If k € [T]¢(05) for a small constant g5 > 0, then inf ' (k) > 0. We have the following estimate

—3—k
/ / / |D0F e(a, k)l dé”dé/dkda
(2/2)2+a (Z/2+lw (k)é' /2)? + (a + o' (k)E" /2)?

1¢(es) R?

—3-K1Do k
/ / / | FS(a )|ds//d§/dkda
1+ a2 1+ (a+ao (/’c)é”/Z)2
[T1¢(0s) R2

/ flw’(k)llJr(S”)2 £ lnfw (k) (120

[T1(es) R

Here, Ce¢ is a bound for DO . when ¢ is small enough. Therefore, we can use Dominated Con-
vergence Theorem to prove that the difference goes to 0.

We consider k € [T](p5), we can see that Z® on this domain is 0. Indeed, we can make the
same estimation like in [T]¢,
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4 / k a
/ <Z/2>2+oz2 / / (x/2+zw<k)s /2>2+<a+w<k)5”/2>2d‘§ et
[T1(es) R?

~ 2
(&) | Pt/ @mer o)

/ / / d&"dg'dkda

1+ a? 1+ (a + o' (k)E"/2)?
[T1(es) R?

[Pt/ @mor | i o
< | /MNHI rEy | Case (20
[Tl(es) R

A 2
The last estimate comes from Lemma 14, which leads to ‘F (wk)/2m)0p (k)| < | (k)].

For a small number o’ and a small ¢, by Lemma 18, there is small number p(o’) such that

1
/ (Z/2)? +a?
R

‘E(F)(SZ/Z ita— iw()OEZ/2 — ica—iw(k)|
X / / . d&"dkda
(Z)24 i/ (k)E'/2)* 4 (a + o' (k)E" /2)?

[T1(es) (e—05)/e<|E"|<2/e

o'/e . ,
< / / / ple) de"dkda (122)
1 + a2 1+ (a+ o' (k)E")2)2
—0'/e [T1(os) (e—05)/e<IE"1<2/e
+ / ! / / ! de"dkd (123)
a.
1+ a2 1+ (a+ o (E"/2)2
lal>o/e [Ti(os) (o—0s)/e<I€”|<2/e

If o5 is small enough, then we have |/ (k)||§"| < g < |a|. Hence, |a + o' (k)" /2| > |a/2|. We
obtain an estimate for (123)

05 da da 3
i < - <
e 1 +a4 ~ 05 f 34~ o5&

la|>% lal>o

For (122), we have

1 1
/ —
p(e) |/ (k)| 1+ (5/1)2
[T1(es) |’ (k)|(e—05)/e<|E"|<2]w' (k)| /&
/ _ / _
< (o) arctan(2|w’(k)|/e) — arctan(|w’ (k)| (0 Qs)/E)dk
~ P /()]

d&" dk

[T1(es)
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&

/ soni2\ —1
arctan ((29+Q§)|w Wl (1 4 Xo—o9) /B ) )
<) Jk
[T1(os)

' (k)|

<o)
[T1(es)

_ _ / 2\ —1
2—-o0+o05) <1 4 2(0 Qsilw (€3]] ) dk
£ £

dk
7 S pe)

dk
< / < !
S p@) / 1+k2Np(9)/1+
o' (IT1(es))/¢ R

A.3.4. Proof of (109)
As O* is a Schwartz function, we approximate O*(n, k + ¢£/2) by O*(&,k) and D/ (k, &)
by ' (k)&. Hence, we approximate IG)(Z, e, F) with

F0/(Z,6, F) = / ! / We®',k +¢87/2)
T 3o (Z/2)? +a? Z[2—ia+iw'(k)(E +£7)/2

RxTa/e Tt

5 |F(@®k)/@m))6r (k)[> 0% (&, k)
(Z/2+ia+ i/ (K)E ~&")/2)(Z + i/ K)E)

d&"dE dkdeda.

We change the variable k into k — ¢£” /2 and denote by [T€3] the image of TS +.+.+ under this
change. The integral 73 becomes

I0(Z.6. F)= 2= / ! f AGRD)
T 30y (Z/2)2+a? | Z/)2—ia+io (k—eE"/2)(E +E")/2
RxTy, (T3]
y |F(w(k — 8" /2)/Q21))0F (k — & /2)[>O* (£, k — ££" /2)
(Z/2+ia+io (k—e&"/2)(E —E")/2)(Z +iw (k — €" [2)E)

dg"dg'dkdEda

Once again, we use the regularity of O* to estimate O*(&,k — € /2) by O*(€, k) and o' (k —
e&” /2)n by o' (k)&. Now, we approximate ZC) with

PR S A
T 30 (Z)2)2+a2 ] Z)2—ia+iw (k—eE"/2)(E +E")/2
RxTo/e (73]
|F(w(k — & /2)/2m))0p (k — £ /2)|> O* (&, k)
(Z)2+ia+ i (k—s€"/2)(E —€")]2)(Z + i/ (k)E)

dg"dg'dkdEda.

Then, we will approximate 73 with

500 2.6 7y = £ / 1 / We (€' k)
T 3o (Z/2)?+a? | Z)2—ia+io (k)(E +E7))2
]Rx’]l“z/g [Tg]
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y |F (0(k)/2m)0F (k) O* (€, k)
(Z)2+ia+i0 (k) (E —&")/2)(Z +iw (k)E)

d&"dE dkdtda.
We denote

de(k, &' E")
_ |F(o(k — £8"/2)/27))0r (k — £8" /2)|?
T (Z)2—ia+io(k—eE"/2)(E +E)/2)(Z/2+ia+ i (k—£E"/2)(E —E")/2)

~ |F (0 k)/@r)8r (k)
(Z/2—ia+i0 () E +E)/2)(Z[2+ia+i0 (k) E —E)/2)

This difference converges to 0 as ¢ — 0 and

|F(w(k — £8"/2)/2m))0r (k — £"/2) 2

(Z)2+ i (k — 8" /2)E'/2)? + (a + o' (k — £ [2)E" /2)*
|F (k) /@m)0F (k)

(Z)2+ i (K)E'/2)* + (a + o/ (K)E"/2)*

lde| <

+

To reach the desired result, we can repeat the techniques used in (120) and (121). We consider
k e [T — 0/2'%), because W, (&', k) vanishes otherwise. We consider two domains k —
e€” € [T1°(0¢) and k — ¢&” € [T1(06). The techniques in (120) are reused to bound the terms
concerning the first domain by Dominated Convergence Theorem. The techniques in (121) are
reused to choose the small parameter gg.

For the final step in this proof, we approximate 73 with Z®. This can is done by using
Dominated Convergence Theorem to turn T2/, into R and [TS] into T x R? in the limit of
e —0.

A.3.5. Proof of Lemma 17
We compute Im SSI ! using similar computations used to obtain (99) and (100)

ImS!(Z, k, F)
t t
=’z / e e < /cos(w(k)s)(@;: * Fx W) (s)ds

0 0
t

x /sin(w(k)s)(@F*F*\Il)(s)ds > dt.

0 He

Similar computations used to obtain (106) - (109) can be reused and we get

O*(&,k +€£/2)

dedk 124
Z+iD(k, &) § (124)

1in% ImS!(Z, k, F)
E—>
RxT
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de'dgdk

o / |F(w(k)/Q2m)) P10 (k) We (&', k) O (£, k)
- 16i v (K)(Z +iw(k)ENZ +in' (k)E)
T xR2
/ |F(w(k)/Qm)210F R) > We (&', —K) O (£, k)

- - - dg'dEdk.
16i|vg (K)|(Z —iw(k)E')N(Z + i/ (k)E)

T xR2

.. Il O*(6.k—e£/2) .
On the other hand, the limit when ¢ — 0 of /IR{XT ImS;*(Z,k, F) ZeiDr D gives exactly the
same result with (124). Thus, the limit of the difference is 0.

A.4. An Ito analysis

A.4.1. Proof of Lemma 10
Consider the SDE (stochastic differential equation):

dyr(t, k) = —iw()V (1, k)dt — ivag(t)dt + i F(t)dt + N2vTidR(7).

Taking the functional g(t}, 1}*) = ||y ||i2 (T’ and applying the Ito-formula we get

dlyr Ol 72p) = f V(. k) (_iw(km(k, 1) — iver(r) + iF(t)> dr
T

+ /g&(k,r)(iw(k)&*(k,t)ﬂvao(z)—iF(t)) dt

LT

— i«/ZvT/(v,@(k,t)—t}*(k,t)) dR(t)
T

+[2vTdr.
Using the definition of ag = [ Im(yr) we get
dIF Oy, = [—2ua§(t) +2a0()F(1) + ZUT] dt + 20T ag(t)dR(1).

Upon a time rescaling ¢ — t /¢, using scaling properties of the Wiener process we get:

A 2v 2 2vT 2vT
d”lﬂ@)(f)”i?(qr) = [_?[a(()s)]z(t) + ga(()f)(t)F(*?)(t) + T] dt + ./ Tozo(t)dR(t).
We would like bounds of the form:

sup eEe [V )72y < sup eEelly @O 72p, + C1, (125)
ee(0,1] £e(0,1]
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for a constant C > Q. For this, it is sufficient to have bounds of the form:

t/e

1
sup —/8F2(s)ds <C't,

as stated in Assumption (C3).

A.4.2. Proof of Lemma 13
We consider

Ay (t, k) = —iw (k) (t, k)dt + i F xag(t)dt + i~20TdR ().

Thanks the It6 formula we get

Al O122p, =L/ P60 (—io O d K, 1) +iF xao(t))
+ / bk, 1) (iw(k)lff*(k, ) —iF *ozo(t)):|dt
T

- ivszf(lﬁ(k,t)—lﬁ*(k,t)) dR(t) 4+ 2vTdt
T

=[2F xap()ao(t) + 2vT]dt + 20T ag()dR(t).

Rescaling time by 1/¢ and using scaling properties of R(t) yields:

O 2 2vT 2T
IO O p) = | SF xao(t/)ao(t/e) + = |di +,/ ==ao(t/e)dR ().
€ € €
By solving (89), «g is given by

ao(t/e) =OpF xW(t/e) + V2vTOF xCy, xdR(t /).
Combining above expressions, and applying the It6 formula we get

1
eE: 1V N2 p, = €Be @ O 3o, +20T1 42 f Ec [FxOF » W(s/)OF x W(s/e)]ds
0

t s/e

+4va/F*@F*Cw(s/s—s1)®p*Cw(s/8—s1)dslds
0 0
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t s/e

+ 20T /<E, //@F*Cw(s/s—sl)dR(sl)dR(s)
00

In the above expression, we used the fact that terms with single d R has expectation zero thanks to
properties of the Wiener process. Moreover, the second term is obtained by E [d w(s)dw(s’ )] =
8(s — s’) (in the distribution sense). Using the mentioned covariance structure we also get

t s/e

VEE, / / O + Culs/e — s)dR(s1)dR(s)
00

t s/e

=E. //@p*Cw(s/s—sl)dR(sl/e)dR(s)
0 0

<OfrxC,(0)=Ct

To obtain a linear in-time growth bound as in (125), it is sufficient to bound the following
expression uniformly in time

t/e
E, [F*@F*\IJ(I/S)@F*\Il(t/b‘)]-l-ZvT/ FxOpxCu,(s)OF % Cy,(s)ds .
(a) 0

()

(126)
To this end, we approximate the terms using the Laplace transform. For term (a) in (126),
E [FxOpxW(t/e)OF xW(t/e)]
1 a . o .
= ;K / U (k)F * O * e_“”(k)'(t/e)dk/ U k)OF xR (1/e)dk | + c.c.
T T
(127)

where c.c. stands for the complex conjugate. Thanks to the assumption of F, this term will be

negative when ¢ is small enough. Indeed, taking a Laplace transform and by some manipulations
we have

L|E, /&(k)F*@)F*e—iw<’<>'(t/g)dk/@*(k)@F*eiw“”'(t/e)dk (2)
T T
V|
- / B9 099 ()

T2
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t/e t/e

x L / S F w @p(s)e ®1/e g / e 1OWS' @ (5" Oe g | (Z)dkdh
0 0
) c+il t
:/ES[&(k)@*(h)] ®  lim /C /ei‘”(k)SF*®F(s)ds (e2)
2Z7i L—>o0

T2 c—ilL 0
t

x L / e 100 @ (s"ds' | (e(Z = ¢) +i(w (k) — w(h))dcdkdh

0
N ~ c+il ~
_/Es[’sﬁ(k)iﬂ*(h)] lim / L(F)(e¢ —iwk))OFp (et —iw(k))
B 27Zmi L—00 ¢
T2 c—il
OrEZ =0 +io®) . ian. (128)

“Z-otie k) - oh)
We change the variable from k into k + €& /2, h into k — €& /2, (128) becomes
N c+il ~ ~
/ We€.0) / LF)(el —iw(k)OF (el —iw(k)OF(e(Z —§) +iw(k))

Zwi Lo L(Z - +iDc(k,&))
TXTZ/S c—iL

dededk

~ c+il
e—0 / Wo(§, k) . /1”*(w(1’<)/(27T))I0F(k)|2
— ——— lim

j ; d¢dédk
Zmwi Lo (Z - +io(k)E)
T xR c—iL
_ [ 26k )
_T/R Z(Z +iw (k)E) F(w(k)/(2m))|0F (k)|"dédk.

The limit can be obtained using Dominated Convergence Theorem. Indeed, £(F), ® F are both
bounded when ¢ is small; Z — ¢ + i D¢ (k, &) is bounded by Re(Z) — ¢; lim f::lLL 1/odo
is bounded using (45); finally, Assumption (I3) gives a dominating function (&§)737% for

I—1/e,1/¢] WO(E, k). Then, a similar estimation can be made for the complex conjugate term
(c.c.). By using Parseval identity like in (83), (127) is approximated by

/ Wo(x,k)Re(ﬁ(w(k)/(Zﬂ)))IHF(k)lzl[o,vg(k)](X)dxdk.
T xR
This term is negative due to Assumption (L1). Hence, when ¢ is small enough, E.[F x O %

W(t/e)OF = W(t/e)] is negative.
In the same way, we now deal with term () in (126). We write

1 . .
FxOF * Co($)OF x Cols) = 3 F % Op %00 ()@ 1 % 7MW (0)dkdh.
01,026{"1‘1_}']1*2
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We compute the Laplace transform for each sign; as before we do the same manipulation

t/e
L ffF*@p*e“‘iw(k)'(s)@)p*e"zi“’(h)'(s)dkdh (2)
0 T2
t/e t/e
2/‘%;6 \/e—o’ll'w(k)SF*@F(S)dsealiw(k)t/s/e—(le’w(h)s/@F(ds/)eo’ziw(h)t/a (Z)dkdh
T2 0 0
5 c+ilL t
_ € Ii L —Uliw(k)SF ® d
=) 2Zxi 15 ¢ *Or()ds | (€0)
T2 c—ilL 0

t

x L / e 20 s’ g L dsy | (e(Z — ¢) — i (10 (k) + orw(h)))dcdkdh

0
c+il - ~
:/ 1 im / L(F)(et +O'1l'a)(k))®‘]:(€§ +o1iwk))OF(eC _Uliw(k))dgdkdh
2Z7i L>o00 U(Z -t —ie N oywk) + orw(h)))
T2 c—iL
(129)
The case o1 has the same sign as o», then we can easily see that the limit is 0. We estimate the
case o1 = +, 0o = —. We change k, h into k + %, then (129) becomes
c+il ~ ~
/ €  fim / LF)(e¢ +iwk)OFr(ed + i‘f)(k))("DF(g(Z -0 - iw(k))dgdkdh.
2Z7i L—oo $(Z - —iDg(k,§))
TXTZ/S c—iL
(130)

The Dominated Convergence Theorem does not work here as we don’t have a dominating func-
tion (£) 737, like the one in the first term. Though, the theorem can still be used to prove

c+il ~ ~
N S ] L(F)(e¢ +iwk)OF (el +iwk)Of(e(Z —¢) —iwk))
m — lim - d¢
$(Z —¢ —iDe(k,§))

1
e—027wi L—o00
c—iL

_ Fo®/@n)or k)P
N Z —iw' (k)&

Hence, we have that

_ [ eyeya®e o 2 B
(130)= [ FHATEE /e toPdedk+ [ Soededk
T xR TXTZ/S
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Considering the other case o1 = —, 0o = +, and we taking its inverse Laplace transform, one
gets

f 51“(227;#1[o,vg<k>,](x)Re(ﬁw(k)/(zn)))|9F<k)|2dxdk+ / so(e)dxdk.

T xR T x Ty

The above term converges to 0. This means that the term (126) converges to a negative number
as ¢ — 0, which concludes the desired linear estimate.
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