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Abstract

For wave propagation problems in homogeneous, isotropic media exponentially-
convergent domain truncation techniques based on perfectly-matched damp-
ing layers or optimal rational approximations to the exact radiation opera-
tor are known. However these methods fail for systems with wave families
satsfying general dispersion relations, forcing practitioners to resort to
ad hoc procedures based on grid stretching and artificial damping. Here
we propose a new method for constructing convergent approximations on
truncated domains, the phase space filter, which unlike other methods is
completely general and mathematically-justified. Based on the fact that
outgoing waves can be characterized as waves located near the boundary
of the computational domain with group velocities pointing outward, the
key idea of the phase space filtering algorithm consists of applying a filter
to the solution that removes outgoing waves only. The method intro-
duced in this work is a simplified version of the original phase space filter,
originally proposed in [34] for the Schrödinger equation. The method is
applied to anisotropic wave models for which existing techniques unstable,
namely free space problems governed in the far field by the Euler equa-
tions linearized about a uniform mean flow and Maxwell’s equations in an
anisotropic medium. Theoretical results concerning the convergence and
computational costs of the phase space filter are discussed and stability is
proven.
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1 Introduction

We consider the solution of linear wave equations of the form:

u⃗t(x⃗, t) = Hu⃗(x⃗, t) (1.1)

Here, u⃗ : RN → Rn (or RN → Cn) and H is a skew-adjoint linear differen-
tial operator. This is a prototypical example of a linear wave equation. Such

equations admit linear waves of the form ei(k⃗·x⃗−ωj(k⃗)t)d⃗j(k) with d⃗j(k⃗) the j’th

eigenvector of H and ωj(k⃗) the j-th eigenvalue of H in the frequency domain.
In particular we wish to solve numerically problems which are governed by (1.1)
exterior to some finite region B ⊂ RN , possibly with scatterers, potentials, or
even nonlinear effects confined to B.

A great many systems of practical importance can be recast in such a form,
including the wave equation, Schrödinger’s equation, and, as considered here,
symmetrizable hyperbolic systems. For an important subclass of such systems,
in particular isotropic systems where the directions of the phase and group ve-
locity point in the same direction, exponentially-convergent domain truncation
methods are available. Most popular among these is the so-called perfectly
matched layer (PML). Introduced as a numerical method for Maxwell’s equa-
tions by Bérenger [8], the original PML can be interpreted as complex coordinate
stretching [11] or more generally as a rational transformation of the dispersion
relation [4]. (The complex stretching technique was used in scattering theory for
a long time [16, 33].) An even more efficient local method can be built from op-
timal rational approximations to the exact non-reflecting boundary conditions
(NRBCs), the complete radiation boundary conditions (CRBC) introduced in
[21]. However, these efficient methods are not general. For certain types of
anisotropic waves, the PML can become exponentially unstable in time regard-
less of the particular method used (the instability exists on the level of the
PDE). This was first noticed in [23] for the Euler equations linearized about a
mean flow (see also [5, 6] for other examples). In [5], a simple geometrical cri-
terion1 was provided for a PML to be unstable. This instability occurs because
the PML shifts the spectrum of the Hamiltonian into the upper half plane.
Similarly, the convergence argument for CRBC fails in the same cases where
the geometric criterion in [5] applies, and it seems clear that only by entering
the realm of matrix-valued rational approximations is there any possibility of
making CRBC generally applicable.

There have been somewhat successful attempts to extend PML [17, 14, 22,
9] and high-order approximate boundary conditions [20, 7, 19, 18] to time-
dependent anisotropic problems or cases where the geometric criterion applies.
However, these have generally been limited to problems with only a single wave
family, such as scalar problems or Maxwell’s equations in dispersive media,
or reliant on underresolution to suppress the instabilities. Generalizations to
the linearized Euler equation have worked in duct geometries, but attempts to

1There are some other conditions necessary for the proof to apply, but it is convincingly
argued that this is the fundamental criteria.
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use them in free space have required ad hoc stabilizations [27]. In principle,
temporally-localized, spatially nonlocal approximations should be applicable to
general problems, but to date their use has been limited to isotropic problems
[1, 2, 24, 25, 26] or in one space dimension [15]. The only general approach,
aside from the one developed here, is the use of ad hoc damping layers. Al-
though, as shown in [3], the method can effectively treat problems for which
PML is unstable, it is tied to particular discretizations and lacks analysis in the
continuous setting.

In [34] an alternative and new approach to the problem of open boundaries
was introduced, the Time Dependent Phase Space Filter (TDPSF). Phase space
analysis is a major tool in modern scattering theory [30, 31, 32]. The key idea in
this approach is that certain regions of quantum phase space (the set of points

{(x⃗, k⃗) ∈ RN × RN}, where x⃗ represents a position and k⃗ a spatial frequency)
consist solely of outgoing waves, whereas other regions have more complicated
interactions. The philosophy of the TDPSF is to identify parts of the solution
u⃗(x⃗, t) localized in the outgoing regions of phase space, and filter them from the
solution before they reach the boundary. After these waves are filtered, u⃗(x⃗, t) is
not approaching the boundary, and therefore boundary conditions don’t matter.

In [34, 35, 36], this approach is used to construct open boundaries for the
Schrödinger equation. The phase space projections there are based on the Gaus-
sian windowed Fourier transform [12]. In this paper, we extend the work of
[35, 34] to symmetrizable hyperbolic (Friedrichs) systems. We also simplify
the method significantly, replacing the windowed Fourier transform by stan-
dard phase space projections of the form χ(x⃗)P (k)χ(x⃗) (this approach was also
taken in [35]). We begin by briefly reviewing the dynamics of linear waves
(Section 1.1) and note its applicacion to they hyperbolic case. In Section 2 we
present the phase space filtering algorithm for general systems of the form (1.1).
In Section 3, we show some numerical examples. In Section 4, we briefly discuss
a method of filtering outgoing waves with frequencies too small to resolve on an
absorbing boundary layer of reasonable width.

1.1 Dynamics of Waves

For concreteness and to pin down our notation, we review a few facts about wave
propagation. Recall that we defined ωj(k⃗) as the k’th branch of the dispersion

relation, and d⃗j(k⃗) as the corresponding normalized eigenvector. With this

notation, ei(k⃗·x⃗−ωj(k)t)dj(k⃗) is a standard plane wave solution of (1.1).

Let us define the matrix D to be the (unitary) matrix with j’th row d⃗j(k).
This matrix can be used to diagonalize H, i.e:

H = D†

 iω1(k⃗) . . . 0

. . . iωj(k⃗) . . .

0 . . . iωn(k⃗)

D (1.2)

Let eHt denote the propagation operator for (1.1), i.e. the operator mapping
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u⃗(x, 0) to u⃗(x, t). In the frequency domain, the propagator can be written as:

eHt = D† exp


 iω1(k⃗) . . . 0

. . . iωj(k⃗) . . .

0 . . . iωn(k⃗)

 t

D (1.3)

Now consider an initial condition u⃗0(x) localized in frequency about the

point k⃗0 and in position about the point x⃗0. Consider the solution u⃗(x, t) with
u⃗(x, t = 0) = u⃗0(x). This solution can be written in the frequency domain as:

̂⃗u(k⃗, t) = eHtu⃗0(x)̂⃗u0(k⃗)

= D† exp


 iω1(k⃗) . . . 0

. . . iωj(k⃗) . . .

0 . . . iωn(k⃗)

 t


 u1(k⃗)

. . .

un(k⃗)

 (1.4)

where uj(k⃗) is the projection of ̂⃗u0(k⃗) onto d⃗j(k⃗) and f̂(k⃗) denotes the Fourier
transform of f(x⃗).

The j-th component corresponds to a superposition of plane waves propa-
gating with velocity ∇kωj(k⃗). If we consider only regions of k⃗-space in which

∂k1ωj(k⃗) > 0, then we are considering only waves with a rightward moving
component. The same can be said about other directions. It is this property
combined with phase space localization techniques which we will use to filter
outgoing waves.

Our focus here is on symmetrizable hyperbolic systems:

T u⃗t(x⃗, t) =
∑
j

Aj u⃗xj
(x⃗, t) +Bu⃗, (1.5)

where T = TT > 0, Aj = AT
j , and BT = −B. We put the system in the

form (1.1) with the transformation u⃗ → T 1/2u⃗, Aj → T−1/2AjT
−1/2, B →

T−1/2BT−1/2, and henceforth assume this has been done. (That is T = I.)
Then the dispersion relations correspond to real algebraic varieties

det

(
ωj(k⃗) +

∑
ℓ

kℓAℓ − iB

)
= 0,

and the group velocity ∇kωj(k⃗) is well-defined except possibly at exceptional
points, which at worst form a subvariety of lower dimension [29, Ch. 2]. We
will assume that such points are not encountered, as will be the case for our ex-
amples. We also recall that hyperbolic systems have finite speed of propagation
and denote by vmax the largest group velocity:

vmax = sup
j

sup
k⃗

∣∣∣∇kωj(k⃗)
∣∣∣ (1.6)
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2 Method

The methodology of the phase space filter is rather simple. First, given the
operator H, we find the generalized eigenfunctions and the dispersion relation.
Suppose that the dispersion relations ωj(k⃗) and d⃗j(k⃗) are given. If this is the

case, then d⃗j(k⃗) is a plane wave propagating with group velocity ∇kωj(k⃗).

2.1 The Propagation Algorithm

The propagation algorithm is simple. Fix a time Tstep ≤ w/3vmax, with being
the the largest group velocity relevant to the problem. This criterion ensures
that waves cannot cross the buffer region in a time interval shorter than Tstep.

On the time intervals [0, Tstep], [Tstep, 2Tstep], . . ., we solve (1.1) with the
interior propagator. At times Tstep, 2Tstep, . . ., we apply outgoing wave filters
O±

j (defined in the next section) to the regions [−L−w,L+w]N \[−L,L]N . After
the application of this filter, all propagating waves which would have reached
the boundary before a time Tstep have been removed, and we simply apply a
stable boundary condition.

Algorithm 2.1 TDPSF Propagation Algorithm
Given an initial condition u⃗0(x), this algorithm calculates u⃗d(x, t).

Input:

• The dispersion relations and diagonalizing matrices, ωj(k⃗) and D.

• eHbt, a propagator that accurately solves the interior problem.

• kmax, the maximal frequency of the problem.

1. Define Tstep = w/3vmax.

2. Define the approximate solution u⃗d(x, t) recursively. At times which are
an integer multiple of Tstep, we filter off the outgoing waves:

u⃗d(x, (m+ 1)Tstep) =

 N∏
j=1

(1−O+
j )(1−O−

k )

 eHbTstep u⃗d(x,mTstep)

(2.1a)
The outgoing wave filters are computed using Algorithm 2.2, described in
Section 2.2.

For other times, we use the given interior propagator:

u⃗d(x,mTstep + τ) = eHbτ u⃗d(x,mTstep) for τ ∈ [0, Tstep) (2.1b)

u⃗d(x, 0) = u⃗0(x) (2.1c)

It now remains to construct the outgoing wave filters, O±
j .
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2.2 Construction of the boundary filter

Consider a fixed boundary region, say the boundary at x⃗1 = L. For a frequency
k⃗, if ∂1ωj(k⃗) > 0, then waves with frequency k⃗ are outgoing at this boundary.
The outgoing region of phase space at the right boundary is therefore

{(x⃗, k⃗) ∈ RN × RN : x⃗1 > L and ∂1ωj(k⃗) > 0}. (2.2)

We now construct a projection onto this region. The Heisenberg uncertainty
principle makes an exact projection impossible, but we will do the best it allows.

Extend the box a width w, to be specified shortly. Define the function

χ±
j (x) =

(
1

σ
√
π

)N

e−x⃗2/σ2

⋆ Ij(x) (2.3)

where Ij(x) = 1 for xj ∈ [±(L+w/3),±(L+2w/3)] and xk ∈ [−L− 2w/3, L+
2w/3] (for k ̸= j), and 0 elsewhere. The parameter σ = O(w/ ln(δ−1)1/2); a
precise bound is given in (2.7). This ensures that χ±

j (x) < δ for xj ̸∈ [±L,±(L+
w) or xk ̸∈ [−L− w,L+ w]. This function is smooth, and well localized inside
the buffer region on the j’th sides of the box.

The set Rj,l = {k⃗ ∈ RN : ∂kj
ωl(k⃗) > 0} is the set of frequencies with

the k’th branch of the group velocity pointing right. Due to the Heisenberg
uncertainty principle, we cannot project onto this set precisely. However, we
can approximately project onto most of these wave-vectors. Define

Rj,l,δ = {k⃗ ∈ Rk : d(k⃗, RC
j,l) > kb} (2.4a)

The set of vectors within a distance kb of group velocity ∂kj
ωl(x) = 0 is the set

of group velocities with motion normal to side j approximately equal to zero.
The width kb is a buffer to ensure that the frequency spreading caused by our
spatial localization operators does not cause an error larger than δ. Given kb, we
must also choose σ ≥ O(kb

−1 ln(δ−1)1/2) to ensure that the spatial localization
operators do not spread the frequency content of the solution past the buffer
region of width kb. Neglecting these waves causes an error if the simulation time
is long enough for them to reach the boundary of the buffer zone. In this case,
we must assume that ∫

{k⃗∈Rk:d(k⃗,RC
j,l)≤kb}

∣∣∣̂⃗u0(k⃗)
∣∣∣2 dk⃗ ≤ δ (2.4b)

This difficulty can be resolved at logarithmic cost, and this is discussed briefly
in Section 4.

In particular, as shown below, we must choose the buffers widths kb, w and
standard deviation σ to satisfy

kb
−1

(
ln(δ−1) + ln

(
w2LN−1σ3N

π3N/2

))1/2

≤ σ ≤ w

3
√∣∣ln 3δσπ1/2/w

∣∣ , (2.4c)
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which ensures that spreading in frequency does not turn waves around (thus
minimizing reflection). This is estimated in Section 2.2.1. In particular, note
that (2.4c) implies the buffer width w must be at least O(kb

−1 ln(δ−1)) (as
expected from the Heisenberg uncertainty principle).

The frequency projection operator is defined as:

Pj,l,δ(k) =

(
σ√
π

)N

e−k2σ2

⋆

 1Rj,l,δ
(k⃗) . . . 0

. . . 1Rj,l,δ
(k⃗) . . .

0 . . . 1Rj,n,δ
(k⃗)

 (2.4d)

Thus, the operator Pj,l,δ(k) is a smooth projection (in the basis of eigenvectors

of H) onto wave-vectors propagating rightward. Conjugation of P (k⃗) by D
moves the projection into the domain of frequency vectors. Finally, we define
the operator:

O+
1 = χ+

1 (x)D
†P (k⃗)Dχ+

1 (x) (2.5)

This operator both localizes in the buffer region at x = L, and projects onto
waves with group velocity pointing to the right. This operator can be computed
efficiently and with spectral accuracy as follows:

Algorithm 2.2 Outgoing Wave Filter Algorithm
This algorithm applies the outgoing wave filters, i.e. it numerically approx-

imates (1−O±
j )u⃗(x).

Input:

• The dispersion relations and diagonalizing matrices, ωj(k⃗) and D.

• A function u⃗(x).

• Indices (j, ·) with j ∈ 1 . . . n and · ∈ {+,−}.

We assume that the operator D†P (k⃗)D is precomputed.

1. Compute the function χ±
j (x)u⃗(x), and take it’s Fast Fourier Transform.

2. Apply D†P (k⃗)D to the Fast Fourier transform of χ±
j (x)u⃗(x).

3. Apply the inverse Fast Fourier Transform, and multiply the result by
χ±
j (x).

4. Subtract the result from u⃗(x), and return the result.

2.2.1 Choosing the Buffer Widths

The buffer widths, w and kb must be chosen carefully for this algorithm to
work. There are two competing concerns, namely width of the buffer region
and frequency spreading, which we must address at this point.
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If w is too small, then the spatial localization functions χ±
j (x) will become

rougher. But roughness in χ±
j (x) will spread the frequencies of the solution

around. In the frequency domain, multiplication by χ±
j (x) corresponds to con-

volution, and behaves much like a diffusion operator in the k variable. The
danger is that the diffusion in k might move mass from the region with positive
group velocity to the region with negative group velocity.

However, a larger w will increase the size of the computational box, and
therefore the computational complexity of the method. Thus, it is desirable to
take w as small as possible.

We analyze this as follows. Multiplication by χj(x) corresponds (in the

k-domain to convolution with2 (wLN−1/3)(σNπ−N/2)e−k2σ2

. Thus, we can
approximate the frequency domain operations by:

(wLN−1/3)(2NσNπ−N/2)e−k2σ2

⋆ (wLN−1/3)(σNπ−N/2)e−k2σ2

⋆

= w2LN−1σ2Nπ−Ne−k2σ2/2⋆

The frequency domain operators Pj,l,δ(k⃗) are localized on the regions Rj,k,δ,

also with a Gaussian tail of the form (σπ−1/2)Ne−k2σ2

.
The region Rj,l,δ is separated from the region containing incoming waves by

a buffer of width kb. We want to make sure that the spreading in frequency is
small past this buffer of width kb, i.e.:

w2LN−1σ2Nπ−Ne−k2σ2/2 ⋆ (σπ−1/2)Ne−k2σ2

∣∣∣∣∣
|k⃗|=kb

≤ δ

This can be guaranteed by:

kb
−1

(
ln(δ−1) + ln

(
w2LN−1σ3N

π3N/2

))1/2

≤ σ (2.6)

On the other hand, if we take σ too large, then the tails of χ±
j (x⃗) will enter

the computational domain. To ensure that this is minimized, we want to make
certain that χ±

j (x⃗) ≤ δ for x⃗ ∈ [−L,L]N . By examining the form of (2.3), we
find that this can be accomplished if

1

σ
√
π

∫ 2w/3

w/3

e−x2/σ2

dx ≤ w

3σ
√
π
e−w2/(9σ2) < δ,

which implies

σ ≤ w

3
√∣∣ln 3δσπ1/2/w

∣∣ . (2.7)

2We have suppressed the sinc(...)-factor corresponding to the Fourier transform of Ij(x),
just for simplicity. This is an overestimate.
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Additionally, to satisfy simultaneously (2.6) and (2.7), we must have that:

kb
−1

(
ln(δ−1) + ln

(
w2LN−1σ3N

π3N/2

))1/2

≤ w

3
√∣∣log 3δσπ1/2/w

∣∣ . (2.8)

This condition demands essentially that w ≥ Ckb
−1, where C = O(ln(δ−1)),

which is what we should expect based on the Heisenberg uncertainty principle.

2.3 Computational Cost and Implementation Details

The computational cost of the proposed method is determined primarily by
the width of the extended buffer region. This, in turn, is determined by the
frequency range of the problem.

The cost of a filtering operation is the cost of performing an FFT on the
buffer region. This region has volume w ·LN−1 with sampling rate O(kNmax) for
a total of O(kNmaxwL

N ) lattice points. By rearranging (2.8), we find that the
filter width scales like:

Filter width = w = O(k−1
min(ln(δ

−1) + ln(L))) (2.9)

When k−1
min ≪ L, then the buffer width is small compared to the size of the

box. We conjecture that the logarithmic dependence on L is merely an artifact
of our calculation techniques. We thus find that the complexity of a single
filtering operation (on one side of the box) is:

Cost of one filtering = O(n log(n)) (2.10a)

n = O
[
k−1
mink

N
maxL

N−1(ln(δ−1) + ln(Lw))
]
(2.10b)

In particular, this implies that the added computational cost of the boundary
filter depends only logarithmically on the size of the computational domain.

The filtering must then be performed 2N times, once for each side of the box,
every Tstep ≤ w/3vmax. Thus, the added complexity of the filtering operation
is:

Filtering cost = O

(
2N

Tmaxvmax

w
n log(n)

)
(2.10c)

This additional cost is small in the regime k−1
min ≪ L, i.e. the regime where the

longest wavelengths relevant to the problem are small compared to the size of
the computational domain.

2.3.1 Powers of 2

As a practical matter, there is an additional constraint on the buffer width. The
projections onto outward moving group velocities (the D†P (k⃗)D part of O±

j )
are performed using an FFT, which is fastest when performed on a grid of size
2m in each dimension. For this reason, it is efficient to take w = 2mδx with
m = ⌈log2(wmin/δx)⌉. Here, wmin is minimal w satisfying (2.8) and δx is the
lattice spacing in position. This does not affect the computational complexity (in
terms of Big-O), though it can impose substantial additional costs in practice.

9



2.3.2 Implementation Details

Programming a phase space filter is a reasonably straightforward matter, and
most existing codes can be adapted to use them. Given an existing time-
stepping program for solving (1.1), one simply needs to stop the simulation
at t = Tstep, 2Tstep, . . ., apply the phase space filter, and continue. The main
requirements made by the phase space filter is that δt, the timestep of the exist-
ing code, satisfies δt < Tstep. Since Tstep < O(w/vmax) while δt < O(δx/vmax)
(assuming the interior solver has a CFL condition of this nature), this condition
will almost certainly be satisfied in practice.

2.4 Stability

The stability of the method is readily proved. The main reason that the algo-
rithm is stable is simply that it is dissipative: the filtering operator (1 − O±

j )
has norm bounded by 1 and can therefore not increase the norm of u⃗(x, t).
Additionally, all dissipation occurs only at discrete instants of time, which min-
imizes interactions with the propagator. Using these ideas, it is straightforward
to prove that the algorithm is stable, under the sole assumption that the inte-
rior propagator and the boundary conditions applied at the terminations of the
buffer zones are stable.

Theorem 1 The Time Dependent Phase Space Filtering propagation algorithm
is stable if the interior solver is. In particular, we have the estimate:

∥u⃗d(x, t)∥L2 ≤ ∥u⃗0(x)∥L2 (2.11)

Proof. The idea of the proof is to show that the numerical solution operator
at time t can be written as the product of operators of norm 1. Thus energy
(L2 norm) at time t must be bounded by the initial energy.

Define the operator U by:

U =

 N∏
j=1

(1−O+
j )(1−O−

k )

 eHbTstep ,

At time t = mTstep+ τ (with τ ∈ [0, Tstep]), we can write the numerical solution
u⃗d(x, t) as:

u⃗d(x, t) = eHbτUmu⃗0(x)

By the self-adjointness of Hb,
∥∥eHbt

∥∥ = 1. If we can show that
∥∥1−O±

k

∥∥ ≤ 1,
then ∥U∥ ≤ 1, implying:

∥u⃗b(x, t)∥L2 ≤
∥∥eHbτ

∥∥ ∥U∥m ∥u⃗0(x)∥L2 ≤ 1 · 1m · ∥u⃗0(x)∥L2 = ∥u⃗0(x)∥L2

and stability is proved.
We first show that σ(O±

j ) ⊆ [0, 1]. Recall that O±
j is defined as O±

j =

χ±
j (x)D

†P (k⃗)Dχ±
j (x). Note that D†P (k⃗)D is diagonalizable (to P (k⃗)) and
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each diagonal entry is contained in [0, 1] for each k⃗. Therefore,
∥∥∥D†P (k⃗)D

∥∥∥ ≤ 1

and σ(D†P (k⃗)D) = σ(P (k⃗)) ∈ [0, 1]. This implies that
∥∥O±

j

∥∥ ≤ 1. Now write:

〈
f |O±

j f
〉
=
〈
χ±
j (x)f(x)|D

†P (k⃗)Dχ±
j (x)f(x)

〉
=
〈
Dχ±

j (x)f(x)|P (k⃗)Dχ±
j (x)f(x)

〉
=
〈
g|P (k⃗)g

〉
where g = Dχ±

j (x)f(x). Since P (k⃗) is a positive matrix for each k⃗, positivity

follows. Since O±
j is a positive operator with norm bounded by 1, O±

j has

spectrum in [0, 1]. The spectral mapping theorem implies that σ(1 − O±
j ) ⊆

1− [0, 1] = [0, 1], implying that
∥∥1−O±

j

∥∥ ≤ 1, and stability is proved. □

2.5 Tangential Waves and Evanescent Waves

The filter described in this section is not optimal. In particular, some outgoing
waves that should be filtered are not, primarily waves which are outgoing, but
nearly tangentially to the boundary or slowly decaying evanescent modes.

While it is impossible to completely resolve this issue (due to the uncer-
tainty principle), one can improve the situation by using a better phase space
localization scheme. One can build phase space projections using framelets (lo-
calized wavepackets) fine tuned to the problem of interest. For the Schrödinger
equation, canonical coherent states (the Gaussian Windowed Fourier transform)
frame [34] is a natural choice. A complete error analysis for such a method is
presented in [36]. Hyperbolic equations as condidered here require different
frames such as curvelets, wave atoms or Gaussian beams [10, 13, 28], and it
seems likely that the analysis in [36] could be extended to the hyperbolic case
using methods built on these. However, the simpler approach considered here
may be preferable. In a later work we hope to present a more detailed study
of the efficiency of the proposed method and the potential advantages of using
different filter constructions.

3 Examples

All the tests considered used periodic boundary conditions and are solved by a
FFT method. However, other numerical schemes can also be integrated into the
phase space filter algorithm, and therefore, this would work for the nonlinear
equations and linearizations around general nonconstant media.

3.1 Euler equations, linearized around a uniform mean
flow

We consider now the two-dimensional Euler equations linearized around a uni-
form mean flow in the x1 direction. (The simulation of this example is available
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on Youtube. ) The vector u⃗(x, t) is 3 dimensional, with u⃗1 representing the
pressure change, u⃗2,3 representing the velocity field in the x1,2 directions (re-
spectively). In this case, H takes the form:

H =

 M∂x1
−∂x1

−∂x2

−∂x1 M∂x1 0
−∂x2 0 M∂x1

 (3.1)

Here, 0 ≤ M < 1 is the Mach number. H has eigenvalues ω1(k⃗) = Mk1 + |⃗k|,
ω2(k⃗) = Mk1 − |⃗k| and ω3(k⃗) = Mk1. The diagonalizing matrix is

D =
1

√
2|⃗k|

 −|⃗k| k1 k2
|⃗k| k1 k2
0 −

√
2k1

√
2k2

 . (3.2)

When M ̸= 0, this is the classical example of an equation for which the PML
becomes unstable [23]. Although it has been shown how to restore stability for
PML and CRBC in the case of flows in a duct [17, 19], as mentioned in the
introduction these constructions have not been fully generalized to the three-
dimensional case.

We solved the Euler equations for M = 0.5 on the region [−32, 32]2 with
lattice spacing δx = 0.125 (for a total of 5122 lattice points). Such a setup
is valid for spatial frequencies up to kmax = π/δx = 25.1. We solved the
system using the Fast Fourier transform to compute (1.3), which is accurate to
machine precision provided no waves reach the boundary ([35, Theorem A.1]).
This accuracy is independent of time-step, which we took to be δt = 0.25 in
order to get a watchable frame-rate in the plots. The phase space filter region
was taken to have width 16 (128 lattice points), with Tstep = 1.5, and σ = 1.0.
The initial condition was taken to be

u1(x, t = 0) = r2e−r2/9 cos(Kr) (3.3a)

with
r =

√
(x− 8)2 + y2. (3.3b)

with the K varying from 1 to 20 (the frequency range of the problem). This

yields an initial condition with frequency localized near |⃗k| = K. The results
were compared to another simulation on a large box. The result is that for
K > 4, L2 error of 10−3 (relative to the initial condition) is achieved up to
t = 50 (see Figure 2). The error at low frequencies can be dealt with by various
means, see Section 4 and [35].

We also vary the values of the parameter M and solved the Euler equations
for M = 0.1 and 0.9 on the region [−32, 32]2 with lattice spacing δx = 0.125
and show the results in Figures 3 and 4.
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Figure 1: The pressure field at various times for M = 0.5. Note that the phase
space filter was applied between t = 9.75 and t = 10.0.

13



0 5 10 15 20

Frequency

10-5

10-4

10-3

10-2

10-1

100

R
e
la

ti
v
e
 a

n
d

 A
b

s
o
lu

te
 e

rr
o
rs

Errors for the Euler Equations

t d 1L 0
1L|u|/|u−u|pus

t d ∞L 0
∞L|u|/|u−u|pus

t d 2L 0
2L|u|/|u−u|pus

Figure 2: The relative error (measured in various norms) for M = 0.5 as a
function of the frequency of the initial condition.

3.2 Maxwell’s Equations in an Orthotropic Medium

Let E⃗ be the electric field and H⃗ = µB⃗ with B⃗ the magnetic field. Let ϵ and µ
be the electrical and magnetic permeability’s of a medium.

In order to bring Maxwell’s equations to symmetric form, we introduce the
auxiliary variable u⃗ = (

√
µH⃗,

√
ϵE⃗)T . With this formulation, the Hamiltonian

for Maxwell’s equations can be written in block form:

H =

[
0 −µ−1/2∇× ϵ−1/2

ϵ−1/2∇× µ−1/2 0

]
(3.4)

where ∇× is interpreted as a matrix,

∇× =

 0 −∂z ∂y
∂z 0 −∂x
−∂y ∂x 0

 .

The symmetry of ϵ, µ and ∇× implies that H is skew-adjoint.
To further simplify the system, we make the following additional assump-

tions. We assume µ = 1. We assume the system is z-independent, i.e. ∂z = 0,
and we can restrict ourselves to two-dimensional simulations. Lastly, we simplify
the electrical permittivity:

ϵ =

 1 b 0
b 1 0
0 0 c

 (3.5)
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Figure 3: The pressure field at various times for M = 0.1. Note that the phase
space filter was applied between t = 9.75 and t = 10.0.
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Figure 4: The pressure field at various times for M = 0.9. Note that the phase
space filter was applied between t = 9.75 and t = 10.0.
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This is the simplest possible birefringent system. With the variables

f = (1/2)(
√
1 + b+

√
1− b)

g = (1/2)(−
√
1 + b+

√
1− b),

we can write the dispersion relation as:

ωj=1,2(k⃗) = (−1)1+jic−1 |⃗k| (3.6a)

ωj=3,4(k⃗) = (−1)1+ji
√
(f2 + g2)(k21 + k22)− 4fgk1k2 (3.6b)

ωj=5,6(k⃗) = 0. (3.6c)

with

D =



−k2√
2|k⃗|

k1√
2|k⃗| 0 0 0 2−1/2

k2√
2|k⃗|

−k1√
2|k⃗| 0 0 0 2−1/2

0 0 −2−1/2 − fk2−gk1√
2E(k⃗)

fk1−gk2√
2E(k⃗)

0

0 0 2−1/2 − fk2−gk1√
2E(k⃗)

fk1−gk2√
2E(k⃗)

0

k1

∣∣∣⃗k∣∣∣−1

k2

∣∣∣⃗k∣∣∣−1

0 0 0 0

0 0 0 fk1−gk2

E(k⃗)

fk2−gk1

E(k⃗)
0


(3.7)

with E(k⃗) =
√
(f2 + g2)(k21 + k22)− 4fgk1k2.

This can be further simplified by noting that u1, u2 and u6 (corresponding
to Bx, By, Ez are uncoupled to u3, u4 and u5. The u1, u2 and u6 modes (cor-
responding to Bx, By and Ez) are actually isotropic waves, so we will ignore
them. We therefore restrict consideration to u3, u4 and u5 (u3 corresponds to
Bz, and u4,5 correspond to to linear combinations of Ex and Ey).

We solved the reduced system of Maxwell’s equations with the same param-
eters as in Section 3.1, with the same initial condition (replacing u1 by u3 in
(3.3a)). The anisotropy parameter b was chosen to be 0.25. The results are
comparable to those for the Euler equation, see Figures 5 and 6.

We also vary the values of the parameter b and solved the equations for
b = 0.5 and 0.75. Those results are displayed in Figures 7 and 8.

3.3 Long Time Stability

In Theorem 1 of Section 2.4, it was proved that the phase space filtering algo-
rithm is stable. To demonstrate the validity of the theorem, we ran a simulation
of the Euler equations and Maxwell’s equations up to time t = 2000. While we
can not determine the accuracy over such long time intervals (the reference sim-
ulation would require an extremely large box), we can study the growth of the
L2-norm.

The results of such a simulation are plotted in Figure 9. They indicate that
Theorem 1 is correct, and that the mass of the solution decreases monotonically
with time.

The simulation of this example is available on Youtube.
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Figure 5: The magnetic component Bz of the electromagnetic pulse at various
times for b = 0.25. Note that the phase space filter was applied between t = 9.75
and t = 10.0. The non-radial shape of the wave is due to the anisotropy of the
medium.
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Figure 6: The relative error (measured in various norms) as a function of the
frequency of the initial condition for b = 0.25.

4 The Low Frequency Problem

As is apparent from Figures 2 and 6, the phase space filtering approach does not
work well for waves with low frequency. The reason for this is that to localize in
frequency, the region in which one works must be O(1) wavelengths long. The
simplest remedy is to increase the width of the filter. If the smallest frequency
relevant to the problem is kb, then the width of the buffer is O(kb

−1), which
means that the computational cost is of order O(kb

−N ).
This problem can be remedied by a somewhat more involved method, which

has been implemented for the Schrödinger equation [35]. The essential idea is
to increase the width of the box, but reduce the sampling rate on the extended
region. Then high frequency waves are filtered at the edge of the highly sampled
region, and low frequency waves are filtered on the edge of the coarsely sampled
region, but using a wider filter capable of resolving low frequency waves.

With this method, even though the computational box has width O(kb
−1),

the number of samples required is only O(log(kmax/kb)) (computation time
scales similarly, up to logarithmic prefactors). This allows resolution of out-
going waves at low frequencies in logarithmic rather than linear cost. It is also
argued heuristically in [35] that this computational complexity is close to the
best possible. As an illustration, we apply this method to the 1-dimensional
Schrödinger equation. The results are plotted in Figure 10, and the full details
of the algorithm are described in [35].
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Figure 7: The magnetic component Bz of the electromagnetic pulse at various
times for b = 0.5. Note that the phase space filter was applied between t = 9.75
and t = 10.0. The non-radial shape of the wave is due to the anisotropy of the
medium.
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Figure 8: The magnetic component Bz of the electromagnetic pulse at various
times for b = 0.75. Note that the phase space filter was applied between t = 9.75
and t = 10.0. The non-radial shape of the wave is due to the anisotropy of the
medium.
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5 Conclusion

In summary, we have demonstrated the application to hyperbolic systems of a
general-purpose method for solving wave propagation problems on unbounded
domains. To our knowledge, this is the only mathematically-justifed method
which is stable and convergent for arbitrary systems. The focus of future devel-
opments will be:

• Optimization of efficiency and applications of the multiscale approach: in
particular we will consider the question of how to best scale a hierarchy of
buffers to minimize the degrees-of-freedom in the buffer zone. Alternatives
such as including grid stretching will be considered.

• A detailed error analysis of the simpler Gaussian filters considered here
and comparisons with more elaborate methods based on multiscale wave
representations.

References

[1] B. Alpert, L. Greengard, and T. Hagstrom. Rapid evaluation of nonreflect-
ing boundary kernels for time-domain wave propagation. SIAM J. Numer.
Anal., 37:1138–1164, 2000.

[2] B. Alpert, L. Greengard, and T. Hagstrom. Nonreflecting boundary con-
ditions for the time-dependent wave equation. J. Comput. Phys., 180:270–
296, 2002.
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