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Abstract. We analyse a 3-wave kinetic equation, derived from the elastic
beam wave equation on the lattice. The ergodicity condition states that two
distinct wavevectors are supposed to be connected by a finite number of colli-
sions. In this work, we prove that once the ergodicity condition is violated, the
domain is broken into disconnected domains, called no-collision and collisional
invariant regions. If one starts with a general initial condition, whose energy is
finite, then in the long-time limit, the solutions of the 3-wave kinetic equation
remain unchanged on the no-collision region and relax to local equilibria on
the disjoint collisional invariant regions. This behavior of 3-wave systems was
first described by Spohn in [54], without a detailed rigorous proof. Our proof
follows Spohn’s physically intuitive arguments.
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1. Introduction

Having the origin in the works of Peierls [48, 49], Hasselmann [31, 32], Benney-
Saffman-Newell [5, 6], Zakharov [60], wave kinetic equations have been shown
to play important roles in a vast range of physical examples and this is why a
huge and still growing number of situations have used WT theory: inertial waves
due to rotation; Alfvén wave turbulence in the solar wind; waves in plasmas of
fusion devices; and many others, as discussed in the books of Zakharov et.al. [60],
Nazarenko [41] and the review papers of Newell and Rumpf [42, 43].
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In rigorously deriving wave kinetic equations, the work of Lukkarinen and
Spohn [40] for the cubic nonlinear Schödinger equation at equilibrium is pio-
neering. Works that rigorously derive the wave kinetic equations out of statis-
tical equilibrium from the NLS equations with random initial data have been
carried out by Buckmaster-Germain-Hani-Shatah [8, 9], Deng-Hani [17, 18], and
Ampatzoglou-Collot-Germain [2, 14, 15]. Works that try to derive the 4-wave
kinetic equation from the stochastic cubic nonlinear Schrödinger equation (NLS)
have been written by Dymov, Kuksin and collaborators in [19, 20, 21, 22].

In a recent work by Staffilani-Tran in [56], the authors start from KdV type
equations and derive the associated 3-wave kinetic equation rigorously. The
method of proof is based on the use of Feynman diagrams and crossing esti-
mates, under the observation that, most of the diagrams after being integrated
out, produce positive powers λθ, θ > 0 of the small parameter λ of the nonlinearity
and hence become very small as λ approaches 0. The other diagrams are very
special: they are self-repeated. The repeating structure was discovered the pio-
neering works of Erdos-Salmhofer-Yau for the Anderson model (see [24, 23]) and
Lukkarinen-Spohn for the cubic nonlinear Schrödinger equation and other models
(see [39, 40, 54, 55]). Let us also emphasize that in deriving kinetic equations from
wave systems, the repeating structure and crossing estimates have a long history
since the work of Erdos-Yau [11, 12, 13, 23, 24, 38, 40]. This repeating structure
has been developed in combination with sophisticated crossing estimates and an
analysis of the associated optimal transport equation, to study the KdV equation
in [56].

We consider the quadratic elastic beam wave equation (Bretherton-type equa-
tion) (see Bretherton [7], Benney-Newell [4], Love [37])

∂2ψ

∂T 2
(x, T ) + (∆ + c)2ψ(x, T ) + λψ2(x, T ) = 0,

ψ(x, 0) = ψ0(x),
∂ψ

∂T
(x, 0) = ψ1(x),

(1)

for x being on the torus [0, 1]3, T ∈ R+, c ∈ R is some real constant, λ is a small
constant describing the smallness of the nonlinearity. Equations of type (1) have
been widely studied in control theory, and have been shown to have a Schrödinger
structure (see, for instance, Burq [10], Fu-Zhang-Zuazua [26], Haraux [30], Lebeau
[34], Lions [36], and Zuazua-Lions [61].) The analysis of (1) is also an interesting
mathematical question of current interest (see, for instance, Hebey-Pausader [33],
Levandosky-Strauss [35], Pausader [46] Pausader-Strauss [47].)

Performing a similar analysis with [56], we obtain the 3-wave kinetic equation

∂tf(k, t) = Qc[f ](k), f(k, 0) = f0(k), ∀k ∈ T3,

Qc[f ](k) =

∫
T6

K(ω, ω1, ω2)δ(k − k1 − k2)δ(ω − ω1 − ω2)[f1f2 − ff1 − ff2]dk1dk2

− 2

∫
T6

K(ω, ω1, ω2)δ(k1 − k − k2)δ(ω1 − ω − ω2)[f2f − ff1 − f1f2]dk1dk2,

(2)
where K(ω, ω1, ω2) = [

√
8ω(k)ω(k1)ω(k2)]

−1, with

ω(k) = ω0 +
3∑

j=1

2
(
1− cos(2πkj)

)
,
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and Td is the periodic torus [0, 1]d.
One of the main challenges in understanding the behaviors of solutions to the 3-

wave kinetic equations is the so-called ergodicity, which is quite typical for 3-wave
processes. Ergodicity has a long history in physics and we refer to [54][Section 17]
for a more detailed discussion. To define ergodicity, we will need the concept of
the connectivity between two wave vectors k and k′, which we briefly discuss here,
leaving the precise definition for later. Given a wave vector k, a wave vector k′ is
understood to be connected to k in a collision if either ω(k′) = ω(k) + ω(k′ − k),
ω(k) = ω(k′) + ω(k − k′), or ω(k + k′) = ω(k) + ω(k′).

Ergodicity Condition (E): For every k, k′ ∈ T3\{0}, there is a finite sequence
of collisions such that k is connected to k′.

It was shown that (see [54]) under the Ergodicity Condition (E), the only
stationary solutions of the spatially homogeneous Boltzmann equations (2) take
the forms

1

βω(k)
,

in which β can be computed via the conservation laws.
The aim of this work is to develop a rigorous analysis for the equations when

the ergodicity condition is violated, to tackle the above problem. We will show
that when the condition is violated, the domain of integration is broken into dis-
connected domains. There is one region, in which if one starts with any initial
condition, the solutions remain unchanged as time evolves. In general, the equili-
bration temperature will differ from region to region. We call it the “no-collision
region”. The rest of the domain is divided into disconnected regions, each has
their own local equilibria. If one starts with any initial condition, whose energy
is finite on one subdomain, the solutions will relax to the local equilibria of this
subregion, as time evolves. Those subregions are named “collisional invariant re-
gions”, due to the fact that we can rigorously establish unique local collisional
invariants on each of them, using the conservation of energy and momenta. This
confirms Spohn’s enlightening discussions [54] on the behavior of 3-wave systems.
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2. From the Bretheton equation to the 3-wave kinetic equation

We follow the same strategy of [54, 56]. We put the equation on a lattice

Λ = Λ(D) = {1, . . . , 2D}d , (3)
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for some constant D ∈ N. Thus, the set Λ is a subset of the d-dimensional torus

[0, 1]d. We also define the mesh size to be

hd =

(
1

2D + 1

)d

. (4)

The discretized equation is now

∂TTψ(x, T ) = −
∑
y∈Λ

O1(x− y)ψ(y, T ) − λ(ψ(x, T ))2,

ψ(x, 0) = ψ0(x), ∂Tψ(x, 0) = ψ1(x), ∀(x, T ) ∈ Λ× R+,

(5)

where O1(x − y) is a finite difference operator that we will express below in the
Fourier space. We remark that a similar beam dynamics of non-acoustic chains
has also been considered in [3][Section 7]. To obtain the lattice dynamics, we
introduce the Fourier transform

ψ̂(k) =
∑
x∈Λ

ψ(x)e−2πik·x, k ∈ Λ∗ = Λ∗(D) =

{
0, · · · , 2D

2D + 1

}d

, (6)

at the end of this standard procedure, (5) can be rewritten in the Fourier space
as a system of ODEs

∂TT ψ̂(k, T ) = − ω(k)2ψ̂(k, T )

− λ
∑

k1,k2∈Λ∗

ψ̂(k1, T )δ(k − k1 − k2)ψ̂(k2, T ),

ψ̂(k, 0) = ψ̂0(k), ∂T ψ̂(k, 0) = ψ̂1(k),

(7)

where the dispersion relation takes the discretized form

ωk = ω(k) = sin2(2πhk1) + · · ·+ sin2(2πkd) + c, (8)

with k = (k1, · · · , kd).
We define the inverse Fourier transform to be

f(x) =
∑
k∈Λ∗

f̂(k)e2πik·x. (9)

We also use the following notations∫
Λ
dx = hd

∑
x∈Λ

, ⟨f, g⟩ = hd
∑
x∈Λ

f(x)∗g(x), (10)

where if z ∈ C, then z̄ is the complex conjugate, as well as the Japanese bracket

⟨x⟩ =
√
1 + |x|2, ∀x ∈ Rd. (11)

And ∑
k∈Λ∗

=

∫
Λ∗

dk. (12)

Moreover, for any N ∈ N\{0}, similar with [56], we define the delta function
δN on (Z/N)d as

δN (k) = |N |d1(k mod 1 = 0), ∀k ∈ (Z/N)d. (13)

In our computations, we omit the sub-index N and simply write

δ(k) = |N |d1(k mod 1 = 0), ∀k ∈ (Z/N)d. (14)
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Equation (7) can now be expressed as a coupling system

∂

∂T
q(k, T ) = p(k, T ),

∂

∂T
p(k, T ) = −ω2(k)q(k, T )

− λ

∫
(Λ∗)2

dk1dk2δ(k − k1 − k2)q(k1, T )q(k2, T ),

q(k, 0) = ψ̂0(k), p(k, 0) = ψ̂1(k), ∀(k, T ) ∈ Λ∗ × R+,

(15)

which, under the transformation (see [59])

a(k, T ) =
1√
2

[
ω(k)q(k, T ) +

i

ω(k)
p(k, T )

]
, (16)

with the inverse

q(k, T ) =
1√

2ω(k)

[
a(k) + a∗(−k)

]
,

p(k, T ) = iω(k)

√
1

2

[
− a(k) + a∗(−k)

]
,

(17)

leads to the following system of ordinary differential equations

∂

∂T
a(k, T ) = iω(k)a(k, T ) − iλ

∫
(Λ∗)2

dk1dk2δ(k − k1 − k2)×

× [8ω(k)21ω(k1)
2ω(k2)

2]−
1
2

[
a(k1, T ) + a∗(−k1, T )

][
a(k2, T ) + a∗(−k2, T )

]
,

a(k, 0) = a0(k) =
1√
2

[
ω(k)q(k, 0) +

i

ω(k)
p(k, 0)

]
,∀(k, T ) ∈ Λ∗ × R+.

(18)
In order to absorb the quantity iω(k)â(k, σ, T ) on the right hand side of the

above system, we set

α(k, T ) = a(k, T )e−iω(k)T . (19)

The following system can be now derived for αT (k)

∂

∂T
α(k, T ) = − iσλ

∑
k1,k2∈Λ∗

δ(k − k1 − k2)[8ω(k)
2ω(k1)

2ω(k2)
2]−

1
2×

×
[
α(k1, T ) + α∗(−k1, T )

][
α(k2, T ) + α∗(−k2, T )

]
e−iT (−ω(k1)−ω(k2)+ω(k)).

(20)
Consider the two-point correlation function

fλ,D(k, T ) = ⟨αT (k,−1)αT (k, 1)⟩. (21)

In the limit of D → ∞, λ→ 0 and T = λ−2t = O(λ−2), the two-point correlation
function fλ,D(k, T ) has the limit

lim
λ→0,D→∞

fλ,D(k, λ
−2t) = f(k, t)

which solves the 3-wave equation (2).

Remark 1. As a consequence of the definition (13)-(14), the delta function δ(k −
k1 − k2) in the collision operator of (2) means that there exists a vector z ∈ Zd

such that k = k1 + k2 + z.



6 B. RUMPF, A. SOFFER, AND M.-B. TRAN
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Figure 1. For the graph on the left, k2,2 = k1,2 + k1,1 and k1,1 =
k0,1 + k0,2, these are the vertices where one applies the Duhamel
expansions. For the graph on the right, the Duhamel expansions
are applied at vertices v1, v2, v3, v4. The graph on the left contains
a cluster vertex that connects 4 edges: k0,1 + k0,2 + k0,3 + k0,4 = 0.

The analysis of [54] and [56] can be repeated, to derive the 3-wave kinetic
equation, leading to a formal derivation of the kinetic equation. Let us briefly
recall the derivation of [56], which is done by expressing (20) in terms of a Duhamel
expansion. By repeating this process N times, one then obtains a multi-layer
equation of N Duhamel expansions. While performing this process, the time
interval [0, t] is divided into N + 1 time slices [0, s0], [s0, s0 + s1], . . . , [s0 + · · ·+
sN−1, t] and t = s0 + · · · + sN . The Duhamel expansions can be presented as
Feynman diagrams, to be introduced below. The time slices are represented from
the bottom to the top of the diagram, with the lengths s0, s1, . . . , sN , as shown
in Picture 1. At time slice si, the two momenta k1, k2 are combined into the
momentum k in (20). This is represented on the diagram by the fact that at time
slice si, there is exactly one couple of the segments of time slice si−1 fuses into
one segment of time slice si. At the bottom of the graph, one adds cluster vertices
indicating the delta functions δ(

∑m
l=1 k0,jl), which come out naturally when one

takes the expectations E(
∏m

l=1 ak0,jl ) as the initial condition is randomized.

Most of the Feynman diagrams, after being integrated out, produce positive
powers λθ, θ > 0 of the small parameter λ and hence become very small as λ
approaches 0. The other diagrams have very special structures: they are self-
repeated. This repeating structure was first discovered for the Anderson model
by Erdos-Salmhofer-Yau [24, 23] and for the cubic nonlinear Schrödinger equation
as well as quantum fluids by Lukkarinen-Spohn [40, 39]. The structure has been
adopted and developed, in combination with an analysis of the associated optimal
transport equation, for the KdV equation in [56] (see Picture 2). The repeating
structure of the quadratic Bretheton equation under consideration is precisely the
one considered in [56]. Taking the limit D → ∞ and summing all the recollisions
in Figure 2, one obtains a solution to our 3-wave equation (1), yielding a formal
derivation of the kinetic equation.

Remark 2. It is discussed in [56] that the dispersion relation (8) is less troublesome
the dispersion relation of the KdV equation, thus, the rigorous derivation of (1)
should be similar but much simpler than the analysis performed in [56]. As the
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Figure 2. Examples of the repeating structures.

focus of our work is to confirm Spohn’s enlightening discussions in [54], we skip
the rigorous derivation here.

3. Main results

Let us first normalize the dispersion ω as

ω(k) = ω0 +

3∑
j=1

2
(
1− cos(2πkj)

)
, (22)

where 2 < ω0 < 3, and k = (k1, k2, k3). This will result in an addition factor 4
comparison to the dispersion relation defined in (8), leading to a factor of 4 to the
kernel K(ω, ω1, ω2). In our proof, we suppose K(ω, ω1, ω2) is [ω(k)ω1(k)ω1(k)]

−1

for the sake of simplicity.
For ∞ > m ≥ 1, let S be a Lebesgue measurable subset of T3 such that its

measure is strictly positive, we introduce the function space Lm(S), defined by
the norm

∥f∥Lm(S) :=

(∫
S
|f(p)|mdp

) 1
m

. (23)

In addition, we also need the space L∞(S), defined by the norm

∥f∥L∞(S) := esssupp∈S |f(p)|. (24)

We denote by Cm(S), m = 0, 1, 2, . . . , the restrictions of all continuous and m-
time differentiable functions on T3 onto S. The space C0(S) = C(S) is endowed
with the usual sup-norm (24). In addition, for any normed space (Y, ∥ · ∥Y ), we
define

C([0, T ), Y ) :=
{
F : [0, T ) → Y

∣∣F is continuous from [0, T ) to Y
}

(25)

and

C1((0, T ), Y ) :=
{
F : (0, T ) → Y

∣∣F is continuous and differentiable from (0, T ) to Y
}
,

(26)
for any T ∈ (0,∞]. The above definitions can also be extended to the spaces
C([0, T ], Y ), C1((0, T ], Y ) for any T ∈ (0,∞).

Let us state our main theorem.



8 B. RUMPF, A. SOFFER, AND M.-B. TRAN

Theorem 3. Under the assumption that there exists a positive, classical solution
f in C([0,∞), C1(T3)) ∩ C1((0,∞), C1(T3)) of (2), with the initial condition
f0 ∈ C(T3), f0(k) ≥ 0 for all k ∈ T3.

The torus T3 can be decomposed into disjoint subsets as follows

T3 = I
⋃
x∈V

S(x), (27)

where S(x)∩S(y) = ∅ and S(x)∩ I = ∅ for x, y ∈ V. The set I is not empty and
is called the “no-collision region”. The set S(x) is called the “collisional-invariant
region”. For all x ∈ V, the Lebesgue measure m(S(x)) of S(x) is strictly positive.
The solution f behaves differently on each sub-region.

(I) On I the solution stays the same for all time

f(t, k) = f0(k), ∀t ≥ 0, ∀k ∈ I.

(II) For all x ∈ V, let (Mx, Ex) ∈ R3 × R+ be a pair of admissible constants
in the sense of Definition 1 below and assume further that they are indeed
the local momenta and the local energy of the initial condition on S(x)∫

S(x)
f0(k)kdk =Mx,

∫
S(x)

f0(k)ω(k)dk = Ex.

Suppose that the system of equations∫
S(x)

1

ax
dk = Ex,∫

S(x)

k

axω(k)
dk = Mx,

(28)

has a unique solution ax ∈ R+; the local equilibrium on the collision in-
variant region S(x) can be uniquely determined as

1

axω(k)
. (29)

Then, the following limits always holds true

lim
t→∞

∥∥∥∥f(t, k)− 1

axω(k)

∥∥∥∥
L1(S(x))

= 0. (30)

and

lim
t→∞

∣∣∣∣∣
∫
S(x)

ln[f ]dk −
∫
S(x)

ln

[
1

axω(k)

]
dk

∣∣∣∣∣ = 0. (31)

If, in addition, there is a positive constant M∗ > 0 such that f(t, k) < M∗

for all t ∈ [0,∞) and for all k ∈ S(x), then

lim
t→∞

∥∥∥∥f(t, ·)− 1

axω(k)

∥∥∥∥
Lp(S(x))

= 0, ∀p ∈ [1,∞). (32)

If we assume further that f0(k) > 0 for all k ∈ S(x), there exists a constant
M∗ such that f(t, k) > M∗ for all t ∈ [0,∞) and for all k ∈ S(x).

Definition 1 (Admissible pairs of conservation constants). Let S(x) be a colli-
sional region.

The pair (Ex,Mx) of a constant Ex ∈ R+ and a vector Mx ∈ R3 is said to be
admissible to be conservation constants if there exists a constant ϵ > 0 such that
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for all positive constant E′
x ∈ (Ex − ϵ, Ex + ϵ) and vector M ′

x ∈ B(Mx, ϵ), the ball
of Rx centered at Mx with radius ϵ, the system of equations∫

S(x)

1

axω(k)
dk = E′

x,∫
S(x)

k

axω(k)
dk = M ′

x,

(33)

has a unique solution ax. In addition, ax is a continuous function of E′
x and M ′

x.

Remark 4. In the above theorem, we assume the well-posedness of the equation.
As this piece of analysis is quite subtle and long, we reserve it for a separate paper.

Remark 5. Notice that, according to our result, the torus T3 can be decomposed
into disjoint subsets as follows

T3 = I
⋃
x∈V

S(x), (34)

where S(x) ∩ S(y) = ∅ and S(x) ∩ I = ∅ for x, y ∈ V. However, those disjoint
subsets might be topologically disconnected sets.

The above two theorems assert that those subregions are all non-empty. In
the no-collision region I, any wavevector k ∈ I is totally disconnected to other
wavevectors, and thus the solutions on I do not change as time evolves. In each
of the collisional invariant regions S(x), as time goes to infinity, the solutions
converge in the L1(S(x))-norm to 1

axω(k)
. In the classical case, to obtain the con-

vergence, we need more regularity on the solutions: we assume that the solutions
are in C([0,∞), C1(T3)) ∩ C1((0,∞), C1(T3)).

Let us also mention that this asymptotic behavior of the solutions to this 3-
wave equations is very different from what is observed in spatially homogeneous
and isotropic capillary or acoustic kinetic wave equations. It is showed in [53]
that if one looks for a solution whose energy is a constant for all time to one of
these isotropic capillary/acoustic kinetic wave equations, then this solution can
exist only up to a finite time, after this time, some energy is lost to infinity. In
other words, the solution exhibits the so-called energy cascade phenomenon.

4. The analysis of the 3-wave kinetic equation

In our proof, as discussed above, we suppose K(ω, ω1, ω2) is [ω(k)ω1(k)ω1(k)]
−1

for the sake of simplicity.

4.1. No-collision, collisional regions and the 3-wave kinetic operator on
these local disjoint sets.

4.1.1. Collisional invariant regions. For a vector x = (x1, x2, x3) ∈ T3, we say
that the wave vector x is connected to the wave vector y = (y1, y2, y3) ∈ T3 by a
forward collision if and only if

Ff
x(y) :=

3∑
j=1

2[cos(2π(yj−xj)) + cos(2πxj) − cos(2πyj)] − 6−ω0 = 0. (35)

In a forward collision, a particle with wave vector y−x merges with a particle with
wave vector x, resulting in a new particle with wave vector y. Following Remark
1, we could see that y − x does not need to belong to Td. Indeed, there exists
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a vector z ∈ Zd such that y − x − z ∈ Td. In this collision, the conservation of
energy ω(y) = ω(x)+ω(y−x), describing by equation (35), needs to be satisfied.
Therefore, given a particle with wave vector x, there maybe no wave vector y such
that the conservation of energy is guaranteed. In other words, there may be no y
such that x is connected to y by a forward collision.

On the other hand, we say that the wave vector x is connected to the wave
vector y = (y1, y2, y3) ∈ T3 by a backward collision if and only if

Fb
x(y) :=

3∑
j=1

2[cos(2πyj) + cos(2π(xj −yj)) − cos(2πxj)] − 6−ω0 = 0. (36)

Different from forward collisions, in a backward collision, a particle with wave
vector x is broken into two particles, one with wave vector y, and the other one
with wave vector x−y. Again, in a backward collision, the conservation of energy
ω(x) = ω(y)+ω(x−y) needs to be satisfied; and therefore, for a given wave vector
x, it could happen that one cannot break x into y and x−y, such that the energy
conservation (36) is satisfied. Again, following Remark 1, we could see that x− y
does not need to belong to Td. Indeed, there exists a vector z ∈ Zd such that
x− y − z ∈ Td.

Finally, we say that the wave vector x is connected to the wave vector y or the
wave vector y is connected to the wave vector x by a central collision if and
only if

Fc
x(y) = Fc

y(x) :=

3∑
j=1

2[cos(2πyj) + cos(2π(xj))− cos(2π(xj+yj))]− 6−ω0 = 0.

(37)
Similarly to the above types of collisions, in a central collision, we require that
ω(x) + ω(y) = ω(x + y) and this conservation of energy is not always satisfied.
Following Remark 1, we could see that y + x does not need to belong to Td.
Indeed, there exists a vector z ∈ Zd such that y + x− z ∈ Td.

Note that if y is connected to x by a forward collision, then x is connected to
y by a backward collision. Moreover, if y is connected to x by a central collision,
then x is connected to y by a central collision and x + y is connected to both x
and y by backward collisions. We simply say that x and y are connected by one
collision; or x is connected to y and y is connected to x by one collision.

If a wave vector k is not connected to any other wave vectors in forward colli-
sions, the second term in the collision operator Qc[f ](k)∫

T6

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f2f − ff1 − f1f2]dk1dk2

vanishes, no matter how we choose the function f .
If a wave vector k is not connected to any other wave vectors in backward

collisions, the first term in the collision operator Qc[f ](k)∫
T6

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[f1f2 − ff1 − ff2]dk1dk2

vanishes.
We define the set of all wave vectors k such that k is not connected to any other

wave vectors to be the no-collision region I. It is clear that Ff
0(y) = Fc

0(y) =
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−ω0 < 0 and

Fb
0(y) =

3∑
j=1

2[2 cos(2πyj)− 1]− 6− ω0 =
3∑

j=1

2[2 cos(2πyj)− 2]− ω0 ≤ −ω0 < 0,

for all wave vectors y. As a consequence, the origin belongs to I. Since Ff
0(y),F

b
0(y),F

c
0(y) ≤

−ω0 < 0, there exists a ball B(0, R) := {x ∈ R3 | |x| < R}, (R > 0), such that

Ff
x(y),Fb

x(y),F
c
x(y) < 0, for all y ∈ T3 and for all x ∈ B(0, R). The ball B(0, R)

is therefore a subset of the no-collision region I.
The condition 2 < ω0 < 3 implies that the set T3\I is then not empty. For a

vector x ∈ T3\I, we define S1(x) to be the one-collision connection set of x,
containing all wave vectors y ∈ T3 such that y is connected to x by a collision.
By a recursive manner, we also define Sn(x) = S1(Sn−1(x)), the n-collision
connection set of x, for n ≥ 2, n ∈ N. This set consists of all wave vectors
connecting to x by at most n collisions. The union

S(x) =
⋃

1≤n<∞
Sn(x) (38)

contains all wave vectors y connecting to x by a finite number of collisions. We
then call S(x) a finite collision connection set of x or a collision invariant
region.

Note that if k ∈ S(x) and k is connected to k+k′ ∈ S(x) by a forward collision,
then k+k′ is also connected with k′ by a backward collision, and hence k′ ∈ S(x).

Proposition 6 (The effect of the collision operator on the no-collision region).
Any smooth solution f(t, k) of (2), is time invariant on the no-collision region I.
In other words, f(t, k) = f0(k) for all k ∈ I.

Proof. Since k ∈ I, the wave vector k is not connected to any other wave vectors in
any collisions, the collision operator Qc[f ](k) vanishes, which implies ∂tf(t, k) = 0
for all k ∈ I. Therefore, f(t, k) = f0(k) for all k ∈ I. □

Proposition 7 (Decomposition into collisional invariant regions). Let x, y be two
wave vectors in T3\I, then either S(x) = S(y) or S(x)∩S(y) = ∅. In other words,
either x and y are connected by a finite number of collisions (∃m > 0 such that
x ∈ Sm(y)) or they are totally disconnected (∄m > 0 such that x ∈ Sm(y)).

As a consequence, there exists a subset V of T3\I such that the torus T3 can
be decomposed into disjoint collisional invariant regions, as follows

T3\I =
⋃
x∈V

S(x), (39)

and S(x) ∩ S(y) = ∅ for x, y ∈ V.

Proof. Let x, y be two wave vectors in T3\I and suppose that S(x)∩S(y) ̸= ∅, we
can therefore choose a wave vector z belonging to both sets S(x) and S(y), that
means z is connected to both wave vectors x and y by finite numbers of collisions.
It follows that z ∈ Sn(x) and z ∈ Sm(y), for some positive integers n and m.
Since z ∈ Sn(x), it is clear that S(z) ⊂ Sn+1(x), and in general Sp(z) ⊂ Sn+p(x)
for all p ∈ N. As a result, S(z) ⊂ S(x). By a similar argument, it also follows
that S(z) ⊂ S(y). Now, let ϑ be an wave vector of S(y)\S(z). Being a wave
vector of S(y), ϑ is connected to y by a finite number p ∈ N of collisions. Since z
is connected to y by m collisions, ϑ is connected to z by at most p+m collisions.



12 B. RUMPF, A. SOFFER, AND M.-B. TRAN

In other words, ϑ ∈ Sp+m(z); and hence, ϑ ∈ S(z), contradicting the fact that
ϑ ∈ S(y)\S(z). This contradiction leads to S(y) ⊂ S(z); however, as shown above
S(z) ⊂ S(y), it then follows S(y) = S(z). The same argument can also be used
to prove S(x) = S(z). We finally get S(y) = S(x).

The existence of V and the decomposition (39) then follows straightforwardly.
□

Remark 8. The decomposition of the domain T3 in to several collisional invariant
and no-collision regions is a very special and interesting feature of the specific
form of the dispersion relation (22).

In the previous works, several other dispersion relations have been considered
in many other contexts ω(k) = |k| for very low temperature bosons (see [1, 25]),

ω(k) = |k|γ , (1 < γ ≤ 2) for capillary waves (see [44]), ω(k) =
√
c1|k|2 + c2|k|4,

(0 < c1, 0 ≤ c2) for bosons (see [50, 52]). In all of these cases, the division of the
domain of wavenumbers into disjoint regions has never been observed.

Notice that in [27], the dispersion relation ω(k) =
√
c1 + c2|k|2, (0 < c1, c2)

for stratified flows in the ocean, has been considered. However, the resonance is
broadened and the extended resonance manifold is then studied

k = k1 + k2, |ω(k)− ω(k1)− ω(k2)| ≤ θ, k, k1, k2 ∈ R2,

for θ > 0, in stead of the standard resonance one

k = k1 + k2, ω(k) = ω(k1) + ω(k2), k, k1, k2 ∈ R3,

due to some physical correctness (see [51]). Of course, in all resonance broadening
cases, the decomposition of the full domain into local no-collision and collisional
invariant regions does not exist.

Proposition 9. The set Sn(x) is a closed subset of T3 for all n ∈ N\{0}.

Proof. We first observe that the set S1(x) contains all wave vectors y such that
x is connected to y by either a forward, a backward or a central collision. By
definition, the set of all y such that x is connected to y by a forward collision is

S1
f (x) =

[
Ff
x

]−1
({0}) . (40)

Similarly, the sets of all y such that x is connected to y by backward and central
collisions are

S1
b (x) =

[
Fb
x

]−1
({0}) , (41)

and
S1
c (x) = [Fc

x]
−1 ({0}) . (42)

By the continuity of Ff
x,Fb

x and Fc
x, the sets S1

f (x), S1
b (x) and S1

c (x) are all closed.

Since S1(x) = S1
f (x) ∪ S1

b (x) ∪ S1
c (x), it is also a closed set.

We now follow an induction argument in n. When n = 1, it is clear from
the above argument that S1(x) is closed. Suppose that Sk(x) is closed, we will
show that Sk+1(x) is also closed for all k ≥ 1. To this end, let us suppose that
{xm}∞m=1 is a sequence in Sk+1(x) and limm→∞ xm = x∗. By the definition of the
set Sk+1(x), there exists a sequence {ym}∞m=1 such that ym ∈ Sk(x) and either

Ff
ym(xm) = 0, Fb

ym(xm) = 0 or Fc
ym(xm) = 0. Without loss of generality, we can

assume that there exist subsequences {xmq}∞q=1 and {ymq}∞q=1 of {xm}∞m=1 and

{ym}∞m=1 such that Ff
ymq

(xmq) = 0. Since the sequence {ymq}∞q=1 is a subset of
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Sk(x), which is closed and hence compact, there exists a subset of {ymq}∞q=1, still

denoted by {ymq}∞q=1, such that this sequence has a limit y∗ ∈ Sk(x) as q tends

to infinity. By the continuity of Ff
y(x) in both x and y, limq→∞ Ffymq(xmq) =

Ff
y∗(x∗). That implies Ff

y∗(x∗) = 0 and hence x∗ ∈ Sk+1(x). We finally conclude
that the set Sk+1(x) is closed. By induction Sn(x) is closed for all n ∈ N\{0}.

□

Corollary 10. The set S(x) is Lebesgue measurable.

Proof. The proof of this corollary follows directly from Proposition 9 and the
definition of S(x). □

Remark 11. The two sets S1
f (x) and S1

b (x) defined in (40) and (41) are indeed
disjoint. This can be seen by a proof of contradiction. Suppose that y is a common
wave vector of both S1

f (x) and S1
b (x). This means

3∑
i=1

2[cos(2π(yi − xi)) + cos(2πxi)− cos(2πyi)] = 6 + ω0,

and
3∑

i=1

2[cos(2π(xi − yi)) + cos(2πyi)− cos(2πxi)] = 6 + ω0.

Taking the sum of the above two identities yields

3∑
i=1

2 cos(2π(yi − xi)) = 6 + ω0.

The left hand side is smaller than or equal to 6, while the right hand side is
strictly greater than 6 due to the fact that ω0 > 0. This leads to a contradiction;
and thus, S1

f (x) and S1
b (x) are disjoint. However, S1

c (x) can have common wave

vectors with both S1
f (x) and S1

b (x).

Proposition 12. The Lebesgue measure of S(x) is strictly positive.

Proof. Let x = (x1, x2, x3) and y = (y1, y2, y3) be two wave vectors in S(x)
satisfying

ω0 + 6 =

3∑
i=1

2[cos(2πxi) + cos(2πyi)− cos(2π(xi + yi))]. (43)

For any numbers α, β ∈ T, define the function

Υ(α, β) := cos(2πα) + cos(2πβ)− cos(2π(α+ β)), (44)

then it is straightforward that −3 ≤ Υ(α, β) ≤ 3
2 .

For any number ϵi ∈ T, set

δi(ϵ
i) := cos(2π(yi + ϵi)) − cos(2πyi) − cos(2π(xi + yi + ϵi)) + cos(2π(xi + yi))

:=Υ(xi, yi + ϵi)−Υ(xi, yi),
(45)
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for i = 1, 2, 3. Taking the sum of the three functions δi(ϵ
i) yields

3∑
i=1

δi(ϵ
i) =

3∑
i=1

2[cos(2πxi) + cos(2π(yi + ϵi))− cos(2π(xi + yi + ϵi))]

−
3∑

i=1

2[cos(2πxi) + cos(2πyi)− cos(2π(xi + yi))]

=

3∑
i=1

2[Υ(xi, yi + ϵi)−Υ(xi, yi)].

(46)

We will show that for all i = 1, 2, 3, Υ(xi, yi) > −3. Suppose the contrary,
that there is one i ∈ {1, 2, 3} satisfying Υ(xi, yi) = −3, then

∑
j ̸=i 2Υ(xj , yj) =

ω0 + 12 > 12, which contradicts the upper bound Υ(xj , yj) ≤ 3
2 . In addition,

the case when Υ(x1, y1) = Υ(x2, y2) = Υ(x3, y3) = 3
2 will also not happen since

ω0 < 3. Suppose, without loss of generality that Υ(x1, y1),Υ(x2, y2) > −3 and
Υ(x3, y3) < 3

2 . By the continuity of Υ, there exist intervals I1, I2, I3 where Ii
can be either [0, ri] or [−ri, 0] for positive constant ri > 0, such that −3 <
Υ(x1, y1 + ϵ1) < Υ(x1, y1) for all ϵ1 ∈ I1, −3 < Υ(x2, y2 + ϵ2) < Υ(x2, y2) for all
ϵ2 ∈ I2 and 3

2 > Υ(x3, y3 + ϵ3) > Υ(x3, y3) for all ϵ3 ∈ I3.

Due to the continuity of δi, we can choose ri small enough, i = 1, 2, 3, such
that for each pair (ϵ1, ϵ2) ∈ I1 × I2, there exists Ω(ϵ1, ϵ2) ∈ I3 satisfying δ1(ϵ

1) +
δ2(ϵ

2) + δ3(Ω(ϵ
1, ϵ2)) = 0. The function Ω(ϵ1, ϵ2) can be chosen to be continuous

in the two variables ϵ1, ϵ2 and Ω(0, 0) = 0. We then clearly have

ω0 + 6 = 2[cos(2πx1) + cos(2π(y1 + ϵ1))− cos(2π(x1 + y1 + ϵ1))]

+ 2[cos(2πx2) + cos(2π(y2 + ϵ2))− cos(2π(x2 + y2 + ϵ2))]

+ 2[cos(2πx3) + cos(2π(y3 +Ω(ϵ1, ϵ2)))− cos(2π(x3 + y3 +Ω(ϵ1, ϵ2))],
(47)

for all (ϵ1, ϵ2) ∈ I1 × I2. We deduce from this identity that the wave vector
(y1 + ϵ1, y2 + ϵ2, y3 + Ω(ϵ1, ϵ2)) is connected to the wave vector x by a central
collision.

For all (ϵ1, ϵ2) ∈ I1 × I2 and θ1, θ2, θ3 ∈ T, define

∆1(ϵ
1, θ1) := cos(2π(x1 + θ1))− cos(2πx1)

− cos(2π(x1 + y1 + ϵ1 + θ1)) + cos(2π(x1 + y1 + ϵ1)),

∆2(ϵ
2, θ2) := cos(2π(x2 + θ2))− cos(2πx2)

− cos(2π(x2 + y2 + ϵ2 + θ2)) + cos(2π(x2 + y2 + ϵ2)),

∆3(Ω(ϵ
1, ϵ2), θ3) := cos(2π(x3 + θ3))− cos(2πx3)

− cos(2π(x3 + y3 +Ω(ϵ1, ϵ2) + θ3)) + cos(2π(x3 + y3 +Ω(ϵ1, ϵ2)).
(48)

The same argument as above can also be applied, for each fixed (ϵ1, ϵ2,Ω(ϵ1, ϵ2)) ∈
I1 × I2 × I3. That leads to the existence of intervals I4, I5, I6 where Ii can
be either [0, ri] or [−ri, 0] for positive constant ri > 0, such that for each pair
(θ1, θ2) ∈ I4 × I5, there exists Θ(ϵ1, ϵ2) ∈ I6 satisfying ∆1(ϵ

1, θ1) + ∆2(ϵ
2, θ2) +

∆3(Ω(ϵ
1, ϵ2),Θ(θ1, θ2)) = 0. Similarly, Θ is a continuous function of the two vari-

ables θ1, θ2 and Θ(0, 0) = 0. If 3
2 > Υ(x1, y1),Υ(x2, y2),Υ(x3, y3), the intervals
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I1, I2, I3 and I4 can be chosen such that I3 ⊂ I1 and I4 ⊂ I2. If there is an index
j ∈ {1, 2, 3} such that Υ(xj , yj) = 3

2 , then xj = yj = 1
6 , the intervals I1, I2, I3

and I4 can still be chosen such that I3 ⊂ I1 and I4 ⊂ I2. In addition, by taking
r1, r2 smaller, we can guarantee that I1 = I3 and I2 = I4. The following identity
then follows

ω0 + 6 = 2[cos(2π(x1 + θ1)) + cos(2π(y1 + ϵ1))− cos(2π(x1 + y1 + θ1 + ϵ1))]

+ 2[cos(2π(x2 + θ2)) + cos(2π(y2 + ϵ2))− cos(2π(x2 + y2 + θ2 + ϵ2))]

+ 2[cos(2π(x3 +Θ(θ1, θ2))) + cos(2π(y3 +Ω(ϵ1, ϵ2)))

− cos(2π(x3 + y3 +Ω(ϵ1, ϵ2) + Θ(θ1, θ2)))],
(49)

for all ϵ1, θ1 ∈ I1, ϵ
2, θ2 ∈ I2.

Now, we will show that there exists a pair (ρ1, ρ2) ∈ (I1+ I1)× (I2+ I2) (recall
that we have made r1, r2 smaller, to have I1 = I3 and I2 = I4), such that the
closed set

A(ρ1,ρ2) =
{
Ω(ϵ1, ϵ2) + Θ(ρ1 − ϵ1, ρ2 − ϵ2), ∀(ϵ1, ϵ2) ∈ I1 × I2

}
, (50)

does not reduce to a single point. This can be easily seen by a proof of contradic-
tion with the assumption that for all (ρ1, ρ2) ∈ (I1+I1)×(I2+I2), the set A(ρ1,ρ2)

contains only one point. For (ϵ1, ϵ2) = (0, 0), since Ω(0, 0) = 0, it follows that
Ω(0, 0)+Θ(ρ1, ρ2) = Θ(ρ1, ρ2) ∈ A(ρ1,ρ2). For (ϵ

1, ϵ2) = (ρ1, ρ2), since Θ(0, 0) = 0,
it also follows that Θ(0, 0)+Ω(ρ1, ρ2) = Ω(ρ1, ρ2) ∈ A(ρ1,ρ2). Since A contains only
one point, it is clear that Ω(ρ1, ρ2) = Θ(ρ1, ρ2) for all (ρ1, ρ2) ∈ (I1+I1)×(I2+I2).
The set A(ρ1,ρ2) becomes

A(ρ1,ρ2) =
{
Ω(ϵ1, ϵ2)+Ω(ρ1−ϵ1, ρ2−ϵ2), ∀(ϵ1, ϵ2) ∈ I1×I2

}
= {Ω(ρ1, ρ2)}, (51)

which implies Ω(ϵ1, ϵ2)+Ω(ρ1−ϵ1, ρ2−ϵ2) = Ω(ρ1, ρ2) for all (ϵ
1, ϵ2), (ρ1−ϵ1, ρ2−

ϵ2) ∈ I1 × I2. Choosing ϵ2 = ρ2 = 0 yields Ω(ϵ1, 0) + Ω(ρ1 − ϵ1, 0) = Ω(ρ1, 0),
which means Ω(ρ1, 0) = Θ(ρ1, 0) = Cρ1, where C is a universal constant. This
function does not satisfies (49) no matter what choice of the constant C is. In
other words, there exists (ρ1, ρ2) ∈ (I1 + I1) × (I2 + I2) such that the closed set
A(ρ1,ρ2) contains a closed interval [γ1, γ2].

Since x + y + (θ1 + ϵ1, θ2 + ϵ2,Ω(ϵ1, ϵ2) + Θ(ρ1 − ϵ1, ρ2 − ϵ2)) is connected to
(y1 + ϵ1, y2 + ϵ2, y3 + Ω(ϵ1, ϵ2)) by a backward collision. The above argument
shows the existence of two numbers ρ1, ρ2 and an interval [γ1, γ2] such that for
any ζ ∈ [γ1, γ2] the wave vector x+ y + (ρ1, ρ2, ζ) is connected to x by at most 2
collisions.

Due to the continuity of the function Ω(ϵ1, ϵ2) +Θ(ρ1 − ϵ1, ρ2 − ϵ2), there exist
intervals J1, J2, I

′
1, I

′
2, J

∗ such that ϵ1 ∈ I ′1 ⊂ I1, ϵ
2 ∈ I ′2 ⊂ I2, J1 × J2 ⊂

(I1 + I1) × (I2 + I2), J
∗ ⊂ [γ1, γ2]. In addition, for each ρ′1 ∈ J1, ρ

′
2 ∈ J2 and

ξ ∈ J∗, there exists ϵ10 ∈ I ′1, ϵ
2
0 ∈ I ′2, such that ξ = Ω(ϵ10, ϵ

2
0) + Θ(ρ′1 − ϵ10, ρ

′
2 − ϵ20).

Hence, the wave vector x+ y+(ρ′1, ρ
′
2,Ω(ϵ

1
0, ϵ

2
0)+Θ(ρ′1− ϵ10, ρ

′
2− ϵ20)) is connected

to (y1 + ϵ10, y
2 + ϵ20, y

3 +Ω(ϵ10, ϵ
2
0)) by a backward collision. Since the wave vector

(y1 + ϵ10, y
2 + ϵ20, y

3 + Ω(ϵ10, ϵ
2
0)) is connected to the wave vector x by a central

collision, it follows that the wave vector x+ y+ (ρ′1, ρ
′
2,Ω(ϵ

1
0, ϵ

2
0) +Θ(ρ′1 − ϵ10, ρ

′
2 −

ϵ20)) is connected to the wave vector x by at most two collisions. Thus, for any
(ζ1, ζ2, ζ3) ∈ J1×J2×J∗, the vector x+y+(ζ1, ζ2, ζ3) belongs to S(x). Therefore
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the Lebesgue measure m(S(x)) of S(x) satisfies the inequality m(S(x)) ≥ m(J1×
J2 × J∗) > 0. This finishes our proof of the Proposition. □

4.1.2. Lipschitz continuity of set index functionals. In the study of the wave ki-
netic equation, we frequently encounter integrals of the types∫

T3

δ(ω(x)− ω(x− y)− ω(y))f(y)dy, (52)∫
T3

δ(ω(y)− ω(y − x)− ω(x))f(y)dy, (53)

and ∫
T3

δ(ω(x+ y)− ω(x)− ω(y))f(y)dy. (54)

Special cases of (52)-(53)-(54) involve f(y) = χA(y), the characteristic function
of a Lebesgue measurable set A.

Definition 2 (Index functionals of sets). Let A be a Lebesgue measurable set, we
define the following three functionals.

(I) The “forward collision” index of the set A:

µ1[A](x) :=

∫
R

∫
T3

eit(ω(x)−ω(x−y)−ω(y))χA(y)dydt, (55)

where χA is the characteristic function of the set A.
(II) The “backward collision” index of the set A:

µ2[A](x) :=

∫
R

∫
T3

eit(ω(y)−ω(y−x)−ω(x))χA(y)dydt, (56)

where χA is the characteristic function of the set A.
(III) The “central collision” index of the set A:

µ3[A](x) :=

∫
R

∫
T3

eit(ω(x+y)−ω(x)−ω(y))χA(y)dydt, (57)

where χA is the characteristic function of the set A.

We will prove the interesting property that the index functionals of T3, µ1(T3)(x),
µ2(T3)(x) and µ3(T3)(x), are Lipschitz continuous functions, if for all i = 1, 2, 3,
xi ̸= ±1

2 , 0 with x = (x1, x2, x3). For the sake of simplicity, in this section, we

denote µ1(T3), µ2(T3) and µ3(T3) by F (x), G(x) and H(x).

Proposition 13. The functions F (x), G(x) and H(x) are Lipchitz continuous
on T3 excluding the edges, i.e. the set S of all points x = (x1, x2, x3) in which
xi ̸= ±1

2 , 0, for all i = 1, 2, 3.

Proof. First, we prove that F is continuous functions on S. Notice that

ω(x)−ω(x−y)−ω(y) = −ω0 − 6 +
3∑

i=1

2[cos(2πxi−2πyi) + cos(2πyi)− cos(2πxi)],

(58)
where x = (x1, x2, x3), y = (y1, y2, y3).
We will need to bound
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J =

∫
T3

eit(
∑3

i=1 2[cos(2πx
i−2πyi) + cos(2πyi)])dy

=

∫
T
eit2[cos(2πx

1−2πy1) + cos(2πy1)]dy1
∫
T
eit2[cos(2πx

2−2πy2) + cos(2πy2)]dy2×

×
∫
T
eit2[cos(2πx

3−2πy3) + cos(2πy3)]dy3

= J1 × J2 × J3

(59)
which is a product of three oscillation integrals with phases tΦi(y), where Φi(y) =
2[cos(2πxi − 2πyi) + cos(2πyi)], i = 1, 2, 3.

To estimate (59), we will use the method of stationary phase, similar to [56]. Let
us point out that in [28], the authors use different kinds of techniques, to estimate
integrals of similar types but for different classes of dispersion relations. Notice

that ∂yiΦi(y
i) = −4π sin(2πyi−2πxi)−4π sin(2πyi) = 0 when yi = xi

2 , y
i = 1

2+
xi

2 ,

or xi = ±1
2 . Observe that when yi = xi

2 , y
i = 1

2 + xi

2 , we have |∂yiyiΦi(y
i)| =

8π2| cos(2πyi − 2πxi) + cos(2πyi)| = 16π2| cos(πxi)| = 8π2|1 + ei2πx
i |.

We observe that all xi, i = 1, 2, 3, need to be different from ±1
2 . This could be

seen by a proof of contradiction, in which we suppose that x1 is equal to 1
2 or −1

2 .
Since S(x) is non-empty, then either

0 = ω(x)−ω(x−y)−ω(y) = −ω0 − 6 +
3∑

i=1

2[cos(2πxi−2πyi) + cos(2πyi)− cos(2πxi)],

0 = ω(x+y)−ω(x)−ω(y) = −ω0 − 6 +
3∑

i=1

2[cos(2πxi) + cos(2πyi)− cos(2πxi+2πyi)],

or

0 = ω(y)−ω(x)−ω(y−x) = −ω0 − 6 +

3∑
i=1

2[cos(2πxi) + cos(2πyi−2πxi)− cos(2πyi)],

has to have a solution. Let us consider the first equation. Plugging the values ±1
2

of x1 into the equation yields

ω0 + 4 =

3∑
i=2

2[cos(2πxi − 2πyi) + cos(2πyi) − cos(2πxi)],

which has no solutions since ω0 + 4 > 6 and [cos(2πα − 2πβ) + cos(2πβ) −
cos(2πα)] ≤ 3

2 for all α, β ∈ T. Now, we consider the second equation, and plug

the values ±1
2 of x1 into the equation to get

ω0 + 8 − 4 cos(2πy1) =
3∑

i=2

2[cos(2πxi) + cos(2πyi) − cos(2πxi + 2πyi)],

which also has no solution since ω0 + 8 − 4 cos(2πy1) > 6 and [cos(2πα) +
cos(2πβ) − cos(2πα + 2πβ)] ≤ 3

2 for all α, β ∈ T. Finally, in the last case, the
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same argument gives

ω0 + 8 + 4 cos(2πy1) =
3∑

i=2

2[cos(2πxi) + cos(2πyi − 2πxi) − cos(2πyi)],

which again has no solution.
Since xi is different from ±1

2 , it is clear that ∂yiΦi(y
i) = −4π sin(2πyi−2πxi)−

4π sin(2πyi) = 0 when yi = xi

2 and yi = 1
2 + xi

2 . By the method of stationary
phase

Ji ≲
1

⟨t⟩
1
2

√
|1 + ei2πxi |

, (60)

when xi is different from ±1
2 .

Multiplying all inequalities (60) for i = 1, 2, 3 yields

J ≲
1

⟨t⟩
3
2

√
|1 + ei2πx1 ||1 + ei2πx2 ||1 + ei2πx3 |

. (61)

Let x be a point in S and a sequence {xn}∞n=1 ⊂ S such that limn→∞ xn = x.
Since the set T3\S is closed, without loss of generality, we suppose that there exists
a ball B(x, r) with radius r and centered at x such that B(x, r)∩ (T3\S) = ∅ and
then {xn}∞n=1 ⊂ B(x, r). From the assumption B(x, r) ∩ (T3\S) = ∅, it follows

∣∣∣∣∫
T3

eit(ω(x)−ω(x−y)−ω(y))dy

∣∣∣∣ ≲
1

⟨t⟩
3
2

√
|1 + e2πx1 ||1 + e2πx2 ||1 + e2πx3 |

≲ 1.

(62)
By the Lebesgue dominated convergence theorem, limn→∞ F (xn) = F (x) and
the function F is then continuous on S. Let x, z be two elements of S and
suppose that there exists a number r > 0 such that z ∈ B(x, r), x ∈ B(z, r) and
B(x, r), B(z, r)∩ (T3\S) = ∅. We compute the different between F (x) and F (z),
using the mean value theorem

F (x)− F (z) = i|x− z|
∫ 1

0

∫
R

∫
T3

eit(ω(sx+(1−s)z)−ω(sx+(1−s)z−y)−ω(y))×

×
[
x1 − z1

|x− z|
(sin(sx1 + (1− s)z2)− sin(sx1 + (1− s)z1 − y1))−

+
x2 − z2

|x− z|
(sin(sx2 + (1− s)z2)− sin(sx2 + (1− s)z2 − y2))+

+
x3 − z3

|x− z|
(sin(sx3 + (1− s)z3)− sin(sx3 + (1− s)z3 − y3))

]
dydtds.

(63)
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Again, the stationary phase method, used in the proof of Proposition ??, yields∣∣∣∣i|x− z|
∫
T3

eit(ω(sx+(1−s)z)−ω(sx+(1−s)z−y)−ω(y))×

×
[
x1 − z1

|x− z|
(sin(sx1 + (1− s)z1)− sin(sx1 + (1− s)z1 − y1))−

+
x2 − z2

|x− z|
(sin(sx2 + (1− s)z2)− sin(sx2 + (1− s)z2 − y2))+

+
x3 − z3

|x− z|
(sin(sx3 + (1− s)z3)− sin(sx3 + (1− s)z3 − y3))

]
dy

∣∣∣∣
≲

1

⟨t⟩
3
2

√
|1 + e2π(sx1+(1−s)z1)||1 + e2π(sx2+(1−s)z2)||1 + e2π(sx3+(1−s)z3)|

,

(64)

which, after integrating in s and t and plugging back to (63), leads to

|F (x)− F (z)| ≲

≲ |x− z|
∫ 1

0

∫
R

dtds

⟨t⟩
3
2

√
|1 + e2π(sx1+(1−s)z1)||1 + e2π(sx2+(1−s)z2)||1 + e2π(sx3+(1−s)z3)|

.

(65)
Integrating in t

|F (x)− F (z)| ≲ |x− z|
∫ 1

0

ds√
|1 + e2π(sx1+(1−s)z1)||1 + e2π(sx2+(1−s)z2)||1 + e2π(sx3+(1−s)z3)|

,

(66)
which, by the fact that z ∈ B(x, r), x ∈ B(z, r) and B(x, r), B(z, r)∩ (T3\S) = ∅,
yields |F (x)− F (z)| ≲ |x− z|. Therefore the function F is Lipschitz on S. By
the same argument, G,H are also Lipschitz continuous. □

Corollary 14. The edges, i.e. the set T3\S of all wave vectors y = (y1, y2, y3)
in which there is an index i ∈ {1, 2, 3} such that yi = ±1

2 or 0, is a subset of the
no-collision region I.

Proof. The corollary follows directly from the proof of Proposition 13. □

4.1.3. Restrictions on S(x).

Proposition 15. Given any function f ∈ L1(T3) and a collisional invariant
region S(x). Define restriction of f on S(x) as follows

f|S(x)
(y) = f(y) if y ∈ S(x) and f|S(x)

(y) = 0 if y ∈ T3\S(x). (67)

Then, in the distributional sense, we have∫
T3

δ(ω(x)−ω(x− y)−ω(y))f(y)dy =

∫
T3

δ(ω(x)−ω(x− y)−ω(y))f|S(x)
(y)dy,

(68)∫
T3

δ(ω(y)−ω(y− x)−ω(x))f(y)dy =

∫
T3

δ(ω(y)−ω(y− x)−ω(x))f|S(x)
(y)dy,

(69)
and∫
T3

δ(ω(x+ y)−ω(x)−ω(y))f(y)dy =

∫
T3

δ(ω(x+ y)−ω(x)−ω(y))f|S(x)
(y)dy.

(70)
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Proof. We only prove (68), as the proofs of (69)-(70) follow by the same argument.
Recall from Proposition 9 that S1

b (x) is the closed set of all wave vectors y, such

that x is connected to y by a backward collision. We denote A = Td\S(x). Since
A ∩ S(x) = ∅, it is straightforward that A ∩ S1

b (x) = ∅. Since S1
b (x) is a closed

set in T3, there exists a constant δ > 0 such that for any two wave vectors z ∈ A
and y ∈ S1

b (x), the distance between z and y always satisfies |z − y| > δ > 0. We
denote by Aθ with θ > 0 the set of all z in A such that

|ω(x)− ω(z)− ω(x− z)| > θ > 0 (71)

for all z in A.
Let us introduce the following approximation∫

R

∫
T3

eit(ω(x)−ω(x−y)−ω(y))−ϵ2t2χAθ
(y)f(t)dydt. (72)

Integrating in t, we obtain from (72) that

C

ϵ

∫
T3

e−
π(ω(x)−ω(x−y)−ω(y)2

ϵ2 χAθ
(y)f(y)dy, (73)

for some universal positive constant C.
Combining (71) with the approximation (72), we find∫

R

∫
T3

eit(ω(x)−ω(x−z)−ω(z))−ϵ2t2χA(z)f(z)dydt

=
C

ϵ

∫
T3

e−
π(ω(x)−ω(x−z)−ω(z))2

ϵ2 χA(z)f(z)dz

≲
1

ϵ

∫
T3

e−
πθ2

ϵ2 χAθ
(z)f(z)dz.

Using the fact that χAθ
is a subset of T3, we deduce

∫
R

∫
T3

eit(ω(x)−ω(x−z)−ω(z))−ϵ2t2χAθ
(z)f(z)dzdt ≲

e−
πθ2

ϵ2

ϵ
→ 0 as ϵ→ 0. (74)

Let φ(x) be a test function in C∞(Td). Again, the same stationary phase argument
used in Proposition 13 can be applied to show that∣∣∣ ∫

R

∫
T3

eit(ω(x)−ω(x−z)−ω(z))−ϵ2t2φ(x)dzdt
∣∣∣ ≲ 1, (75)

uniformly in ϵ. By the Lebesgue dominated convergence theorem, we find

∫
R

∫
T6

eit(ω(x)−ω(x−z)−ω(z))χA(z)φ(x)dzdxdt

= lim
ϵ→0

lim
θ→0

∫
R

∫
T6

eit(ω(x)−ω(x−z)−ω(z))−ϵ2t2χAθ
(z)f(z)φ(x)dzdxdt = 0.

(76)

□
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4.1.4. Weak formulation, local conservation of momentum and energy on colli-
sional invariant regions.

Lemma 16. For any smooth function f(k), there holds∫
T3

Qc[f ](k)φ(k)dk =

∫∫∫
T9

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

×[f1f2 − ff1 − ff2]
(
φ(k)− φ(k1)− φ(k2)

)
dkdk1dk2

for any smooth test function φ.
If φ is supported in a collisional invariant region S(x), then, we also have∫

T3

Qc[f ](k)φ(k)dk =

∫∫∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

×[f1f2 − ff1 − ff2]
(
φ(k)− φ(k1)− φ(k2)

)
dkdk1dk2.

Proof. We have∫
T3

Q[f ](k)φ(k)dk =

=

∫
T9

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[f1f2 − ff1 − ff2]φ(k)dkdk1dk2

−
∫
T9

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f2f − ff1 − f1f2]φ(k)dkdk1dk2

−
∫
T9

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f2f − ff1 − f1f2]φ(k)dkdk1dk2,

by switching the variables k ↔ k1 and k ↔ k2 in the second and third integrals, re-
spectively, the first identity follows. The second identity follows straightforwardly
from Corollary 15 and the first identity. □

As a consequence, we obtain the following corollary.

Corollary 17 (Conservation of momentum and energy on collisional invariant
regions). Smooth solutions f(t, k) of (2), with initial data f(0, k) = f0(k), satisfy∫

S(x)
f(t, k)kdk =

∫
S(x)

f0(k)kdk. (77)∫
S(x)

f(t, k)ω(k)dk =

∫
S(x)

f0(k)ω(k)dk. (78)

for all t ≥ 0 and for all x ∈ V, defined in Proposition 7.

Proof. This follows from Lemma 16 by taking φ(k) = k1, k2, k3 and ω(k) with
k = (k1, k2, k3). □

4.1.5. Local equilibria on collisional invariant regions. In this section, we establish
the form of local equilibria on collisional invariant regions. The key different
between these local equilibria and the equilibria of classical kinetic equations is
that these equilibria are only defined locally on collisional invariant regions. This
is a very special feature of the 3-wave kinetic equation.



22 B. RUMPF, A. SOFFER, AND M.-B. TRAN

Lemma 18 (C2-collisional invariants). Let ψ ∈ C2(S(x)) be a collisional invari-
ant on the collisional invariant region S(x), in the following sense. For any wave
vectors k, k1, k2 ∈ S(x),

k = k1 + k2, ω(k) = ω(k1) + ω(k2),

we have
ψ(k) = ψ(k1) + ψ(k2).

Then there exist a constant ax ∈ R, such that

ψ(k) = axω(k).

Proof. Let us first prove that for k ∈ S(x), the partial derivatives ∂kjψ(k), with
k = (k1, k2, k3), are well-defined. Without loss of generality, we only prove that
the partial derivative with respect to the first component ∂k1ψ(k) is well-defined.
Since k ∈ S(x), there are two wave vectors k1, k2 such that either k = k1+k2 and
ω(k) = ω(k1) + ω(k2); or k + k1 = k2 and ω(k) + ω(k1) = ω(k2).

Case 1: k = k1 + k2 and ω(k) = ω(k1) + ω(k2). Since ψ ∈ C2(T3), in
order to show that ∂k1ψ(k) is well-defined at k1 ∈ T, we only have to prove that
there exists ϵ > 0 such that for each k̄1 ∈ (k1 − ϵ, k1 + ϵ) there are k̄2, k̄3 ∈ T3,
k̄ = (k̄1, k̄2, k̄3) ∈ S(x). For any x, y ∈ T, define

F (x, y) = cos(2π(x+ y))− cos(2πx)− cos(2πy).

Since k = (k1, k2, k3) = k1 + k2 = (k11, k
2
1, k

3
1) + (k12, k

2
2, k

3
2), we then have

F (k11, k
1
2) + F (k21, k

2
2) + F (k31, k

3
2) = −ω0/2− 3.

Now, we develop

F (x, y) + 1 = − cos(2πx)− cos(2πy) + 1 + cos(2π(x+ y))

= 2 cos (π(x+ y)) [− cos (π(x− y)) + cos (π(x+ y))]

= − 4 cos (π(x+ y)) sin (πx) sin (πy) ≤ 4.

.

Hence maxx,y∈T F (x, y) = 3 when (x, y) =
(
1
2 ,−

1
2

)
=
(
−1

2 ,
1
2

)
. We observe

that the sum F (k21, k
2
2) + F (k31, k

3
2) must be strictly smaller than 6; otherwise,

F (k11, k
1
2) = −ω0/2− 9 < −9, which is a contradiction.

Since F (k21, k
2
2)+F (k

3
1, k

3
2) < 6, then for any δ small, either positive or negative,

there exist δ1, δ2, either positive or negative, such that

F (k11 + δ, k12) + F (k21 + δ1, k
2
2) + F (k31 + δ2, k

3
2) = −ω0/2− 3,

due to the continuity of F . If k̄1 = k1 + δ, then we choose k̄2 = k1 + δ1 and
k̄3 = k3 + δ2.

Case 2: k + k1 = k2 and ω(k) + ω(k1) = ω(k2). Similar as Case 1, we
only need to show that, for each k1 ∈ T, there exists ϵ > 0 such that for each
k̄1 ∈ (k1 − ϵ, k1 + ϵ) there are k̄2, k̄3 ∈ T3, k̄ = (k̄1, k̄2, k̄3) ∈ S(x). Since k2 =
(k12, k

2
2, k

3
2) = k1 + k = (k11, k

2
1, k

3
1) + (k1, k2, k3), we then have

F (k11, k
1) + F (k21, k

2) + F (k31, k
3) = −ω0/2− 3.

Since F (k21, k
2)+F (k31, k

3) < 6, then for any δ small, either positive or negative,
there exist δ1, δ2, either positive or negative, such that

F (k11, k
1 + δ) + F (k21, k

2 + δ1) + F (k31, k
3 + δ2) = −ω0/2− 3,

due to the continuity of F . If k̄1 = k1 + δ, then we choose k̄2 = k1 + δ1 and
k̄3 = k3 + δ2.
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Since on S(x), ψ(k) is a function of ω(k) and k, there exists a twice differentiable
continuous function ϕ ∈ C2(R+ × T3) such that ψ(k) = φ(ω(k), k).

For k ∈ S(x), there exist two wave vectors k1, k2 ∈ T3, such that either k =
k1 + k2 and ω(k) = ω(k1) + ω(k2), or k + k1 = k2 and ω(k) + ω(k1) = ω(k2). We
assume that k = k1+k2 and ω(k) = ω(k1)+ω(k2), k1, k2 ∈ T3, the other case can
be consider with exactly the same argument. As we observe before, k1, k2 also
belong to S(x) due to the fact that k is connected to both k1, k2 by one-collisions.
We have

ψ(k1) + ψ(k2) = ψ(k) = φ(ω(k), k) = φ(ω(k1) + ω(k2), k1 + k2).

Differentiating the above identity with respect to kj1 and kj2 yields

∂
kj1
ψ(k1) = ∂rφ(ω(k), k)∂kj1

ω(k1) + ∂
kj1
φ(ω(k), k),

∂
kj2
ψ(k2) = ∂rφ(ω(k), k)∂kj2

ω(k2) + ∂
kj2
φ(ω(k), k).

Letting i ∈ {1, 2, 3} be a different index, we manipulate the above identity as

(∂
kj1
ψ(k1)− ∂

kj2
ψ(k2))(∂ki1

ω(k1)− ∂ki2
ω(k2))

= (∂ki1
ψ(k1)− ∂ki2

ψ(k2))(∂kj1
ω(k1)− ∂

kj2
ω(k2)).

We differentiate the above identity in k1, with l being an index in {1, 2, 3}
∂
kj1
∂kl1

ψ(k1)(∂ki1
ω(k1)− ∂ki2

ω(k2)) + (∂
kj1
ψ(k1)− ∂

kj2
ψ(k2))∂ki1

∂kl1
ω(k1)

= ∂ki1
∂kl1

ψ(k1)(∂kj1
ω(k1)− ∂

kj2
ω(k2)) + (∂ki1

ψ(k1)− ∂ki2
ψ(k2))∂kj1

∂kl1
ω(k1),

and now in k2, with h being an index in {1, 2, 3}
∂
kj1
∂kl1

ψ(k1)∂ki2
∂kh2

ω(k2) + ∂
kj2
∂kh2

ψ(k2)∂ki1
∂kl1

ω(k1)

= ∂ki1
∂kl1

ψ(k1)∂kj2
∂kh2

ω(k2) + ∂ki2
∂kh2

ψ(k2)∂kj1
∂kl1

ω(k1).

A particular case of the above identity is the following

∂2ki1
ψ(k1)∂

2
kj2
ω(k2) = ∂2

kj1
ψ(k1)∂

2
ki2
ω(k2),

which implies

∂2ki1
ψ(k1) cos(k

j
2) = ∂2ki2

ψ(k1) cos(k
j
1),

for any k1, k3 ∈ S(x), and k1, k2 are connected to k1 + k2 by one collision.
Hence ψ(k) = axω(k)+bx ·k+cx, with ax, cx ∈ R, bx ∈ R3 for any k ∈ S(x). By

the fact ψ(k) = ψ(k1)+ψ(k2) whenever k is connected to k1, k2 by one-collisions,
it is straightforward that cx = bx = 0. □

Proposition 19 (L1-collisional invariants). Let ψ ∈ L1(S(x)) be a collisional
invariant on the collisional invariant region S(x), in the following sense. For any
k ∈ S(x), such that

k = k1 + k2, ω(k) = ω(k1) + ω(k2),

we have

ψ(k) = ψ(k1) + ψ(k2).

Then there exist a constant ax ∈ R, such that

ψ(k) = axω(k).
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Proof. For any function ϕ ∈ C∞(T3), we define the standard mollifier ϕδ(k) =
δ−3ϕ

(
k
δ

)
and the standard approximation ψδ = ψ ∗ ϕδ with δ > 0. It is then

classical that limδ→0 ∥ψδ − ψ∥L1(S(x)) = 0.
Since ψ(k) = ψ(k1) + ψ(k2), we also have ψδ(k) = ψδ(k1) + ψδ(k2). Lemma 18

can be applied to ψδ, yielding ψδ(k) = aδxω(k) + bδx · k for some constant aδx ∈ R
and vector bδx ∈ R3. The conclusion of the Proposition then follows after passing
δ to 0, while taking into account the limit limδ→0 ∥ψδ − ψ∥L1(S(x)) = 0. □

Proposition 20 (Equilibria in Collisional Invariant Regions). Given a collisional
invariant region S(x), a function Fc(k) ∈ C(S(x)) is said to be a local equilibrium
of Qc on S(x) if and only if Qc[Fc](k) = 0 and Fc(k) > 0 for all k ∈ S(x).

Let (Mx, Ex) ∈ R3 × R+ be a pair of admissible constants in the sense of
Definition 1 and assume further the system of equations∫

S(x)

1

axω(k)
dk = Ex,∫

S(x)

k

axω(k)
dk = Mx,

(79)

has a unique solution ax ∈ R+; the local equilibrium on S(x) of Qc can be uniquely
determined as

Fc(k) =
1

axω(k)
, (80)

subjected to the local energy and local moment constraints∫
S(x)

Fc(k)ω(k)dk = Ex,∫
S(x)

Fc(k)kdk = Mx.

(81)

Proof. Since Qc[Fc](k) = 0 for all k ∈ S(x), using 1
Fc as a test function, we obtain

0 =

∫
S(x)

Qc[Fc](k)
1

Fc(k)
dk

=

∫
S(x)×S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)[Fc
1Fc

2 −Fc
1Fc −Fc

2Fc]×

×
[
1

Fc
− 1

Fc
1

− 1

Fc
2

]
dkdk1dk2

=

∫
S(x)×S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)FcFc
1Fc

2

[
1

Fc
− 1

Fc
1

− 1

Fc
2

]2
dkdk1dk2,

(82)
which implies 1

Fc − 1
Fc

1
− 1

Fc
2
= 0 for all k, k1, k2 ∈ S(x) satisfying k = k1 + k2 and

ω = ω1 + ω2. Therefore 1
Fc is a collisional invariant; and by Proposition 19, Fc

takes the form (80), given that the system (79) has a unique solution ax.
□

4.1.6. Entropy formulation on the collisional invariant region S(x). Let f be a
positive solution of (2), we define the local entropy on the collisional invariant
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region S(x) as follows

Sc,S(x)[f ] =

∫
S(x)

sc[f ]dk =

∫
S(x)

ln(f)dk. (83)

In the sequel, we only consider the local entropy on one collisional invariant region,
then, for the sake of simplicity, we denote Sc,S(x)[f ] by Sc[f ].

Now, we take the derivative in time of Sc[f ]

∂tSc[f ] =

∫
S(x)

∂tf

f
dk. (84)

Replacing the quantity ∂tf in the above formulation by the right hand side of (2)
, we find

∂tSc[f ] =

∫∫∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [f1f2 − ff1 − ff2]
1

f
dkdk1dk2

− 2

∫∫∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)×

× [f2f − ff1 − f1f2]
1

f
dkdk1dk2.

(85)
We now apply Lemma 16 to the above identity to get

∂tS[f ] =

∫∫∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[f1f2 − ff1 − ff2]×

×
[
1

f2
+

1

f1
− 1

f

]
dkdk1dk2.

(86)
By noting that

f1f2 − ff1 − ff2 = ff1f2

[
1

f1
+

1

f2
− 1

f

]
,

we obtain from (86) the following entropy identity

∂tSc[f ] =

∫
S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)ff1f2×

×
[
1

f1
+

1

f2
− 1

f

]2
dkdk1dk2

=: Dc[f ].

(87)

It is clear that the quantity Dc[f ] is positive. Borrowing the idea of [16, 58], we
now define the inverse of f

g =
1

f
. (88)
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As a consequence, the formula (87) can be expressed in the following form

∂tSc[f ] = Dc[f ] = Dc[g] :=

∫∫∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [g1 + g2 − g]2

gg1g2
dkdk1dk2.

(89)

4.1.7. Cutting off and splitting the collision operator on the collisional invariant
region S(x). In this subsection, we follow the idea of [16] to introduce a cut-off
version for the collision operator Qc[f ]. The intuition behind this cut-off operator
is explained below. We expect that as t tends to infinity, the solution f of (2)
converges to an equilibrium, which is a function bounded from above and below
by positive constants. Since the equilibrium is bounded from above and below, it
is not affected by the cut-off operator. As a result, the solution f is expected to
be unchanged, under the effect of the cut-off operator, as t goes to infinity.

Let ϱN (for 0 < N ≤ ∞) be a function in C1(R+) satisfying ϱN [z] = 1 when
1
N ≤ z ≤ N , ϱN [z] = 0 when 0 ≤ z ≤ 1

2N and z ≥ 2N , and 0 ≤ ϱN [z] ≤ 1 when
1
2N ≤ z ≤ 1

N and N ≤ z ≤ 2N . For f ∈ C1(S(x)) and 0 < N ≤ ∞, define the
cut-off function

χN [f ] = ϱN [f ]ϱN [|∇f |]. (90)

Note that χ∞[f ] = 1 for all f ∈ C1(S(x)).
We set the cut-off collision operator on the collisional invariant region S(x) for

f and for g defined in (88)

QN
c [f ](k) =

=

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)[f1f2 − ff1 − ff2]dk1dk2

− 2

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k1 − k − k2)δ(ω1 − ω − ω2)[f2f − ff1 − f1f2]dk1dk2

=

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

N [gg1g2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[g − g1 − g2]dk1dk2

− 2

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

N [gg1g2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[g1 − g2 − g]dk1dk2,

(91)
in which

χ∗
N = χN [f ]χN [f1]χN [f2] = χN [1/g]χN [1/g1]χN [1/g2]. (92)
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When N = ∞, we have that

QN
c [f ](k) = Q∞

c [f ](k)

=

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[f1f2 − ff1 − ff2]dk1dk2

− 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f2f − ff1 − f1f2]dk1dk2

=

∫
S(x)×S(x)

[ωω1ω2]
−1[gg1g2]

−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[g − g1 − g2]dk1dk2

− 2

∫
S(x)×S(x)

[ωω1ω2]
−1[gg1g2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[g1 − g2 − g]dk1dk2.

(93)
We also define the splitting collision operators on S(x), in which the kernel

[gg1g2]
−1 is removed

QN,−
c [g](k) =

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k − k1 − k2)δ(ω − ω1 − ω2)[g1 + g2]dk1dk2

+ 2

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g1dk1dk2

− 2

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g2dk1dk2,

(94)

QN,+
c [g](k) = gLN

c (k)

= g

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2g

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2,

(95)
and

QN
c [g] = QN,+

c [g] − QN,−
0 [g]. (96)

Due to the symmetry of k1 and k2, QN,−
c [g](k) can be rewritten as

QN,−
c [g](k) = QN,−,1

c [g](k) +QN,−,2
c [g](k) +QN,−,3

c [g](k) :=

= 2

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k − k1 − k2)δ(ω − ω1 − ω2)g1dk1dk2

+ 2

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g1dk1dk2

− 2

∫
S(x)×S(x)

χ∗
N [ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g2dk1dk2.

(97)

Note that in all of the above definitions, the cut-off parameter N takes values in
the interval (0,∞]. We then have the following lemma.

Lemma 21. Given a collisional invariant region S(x), a function Fc(k) ∈ C(S(x))
is said to be a local equilibrium of QN

c on S(x) if and only if QN
c [Fc](k) = 0 and

Fc(k) > 0 for all k ∈ S(x).
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Under the local energy and moment constraints∫
S(x)

Fc(k)ω(k)dk = Ex∫
S(x)

Fc(k)kdk = Mx,

(98)

where Ex is a given positive constant andMx is a given vector in R3. Suppose that
(Mx, Ex) ∈ R3 ×R+ is a pair of admissible constants in the sense of Definition 1
and assume further that the system∫

S(x)

1

ax
dk = Ex,∫

S(x)

k

axω(k)
dk = Mx,

(99)

has a unique solution ax ∈ Rx; the local equilibrium on S(x) can be uniquely
determined, when N is sufficiently large, as

Fc(k) =
1

axω(k) + bx · k
. (100)

Similarly, a function Ec(k) is said to be a local equilibrium of QN
c on S(x) if and

only if QN
c [Fc](k) = 0 and

Ec(k) = axω(k).

Proof. The proof follows from the same lines of arguments used in the proof of
Proposition 20. □

4.2. The long time dynamics of solutions to the 3-wave kinetic equation
on non-collision and collisional invariant regions.

4.2.1. An estimate on the distance between f and Fc. This section is devoted to
the estimate of the difference between a function f and a local equilibrium Fc,
defined on the same collisional invariant region. The two functions f and Fc are
supposed to have the same energy and momenta.

Proposition 22. Let S(x) be a collisonal invariant region and f be a positive
function such that f ∈ L1(S(x)). Let

Fc(k) =
1

axω(k)
=:

1

Ec(k)
, (101)

where ax ∈ R satisfying Fc(k) > 0 for all k ∈ S(x).
In addition, we assume∫

S(x)
f(k)ω(k)dk =

∫
S(x)

F(k)ω(k)dk, (102)

and ∫
S(x)

f(k)kdk =

∫
S(x)

F(k)kdk. (103)

We also define g using (88).
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Then, the following inequalities always hold true for 0 ≤ N ≤ ∞∫
S(x)

√
f
∣∣∣QN,+

c [g]−QN,−
c [g]

∣∣∣dk ≲

[∫
S(x)

fdk

] 1
2

×

×

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2

] 1
4

,

(104)
and∥∥∥∥√LN

c Ec|f −Fc|
∥∥∥∥
L1(S(x))

≲

[∫
S(x)

fdk

] 1
2 {

∥g − Ec∥
1
2

L1(S(x)) +∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1 χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2
] 1
4

}
(105)

in which the constants on the right hand sides do not depend on f .

Proof. Considering the difference between f and Fc on S(x), we find

|f −Fc| =

∣∣∣∣1g − 1

Ec

∣∣∣∣ =
|g − Ec|
gEc

,

which then implies

Ec|f −Fc| = f |g − Ec|.
Multiplying both sides with LN

c and taking the square yields√
LN
c Ec|f −Fc| =

√
LN
c f |g − Ec|,

which, by the fact that LN
c g = QN,+

c [g] and LN
c Ec = QN,+

c [Ec], implies√
LN
c Ec|f −Fc| =

√
f
∣∣∣QN,+

c [g]−QN,+
c [Ec]

∣∣∣.
Applying the triangle inequality to the right hand side gives√

LN
c Ec|f −Fc| ≲

√
f
∣∣∣QN,+

c [g]−QN,−
c [g]

∣∣∣ +

√
f
∣∣∣QN,−

c [g]−QN,−
c [Ec]

∣∣∣
+

√
f
∣∣∣QN,+

c [Ec]−QN,−
c [Ec]

∣∣∣.
By Lemma 21, the last term on the right hand side of the above inequality van-
ishes, yielding√

LN
c Ec|f −Fc| ≲

√
f
∣∣∣QN,+

c [g]−QN,−
c [g]

∣∣∣ +

√
f
∣∣∣QN,−

c [g]−QN,−
c [Ec]

∣∣∣.
(106)

Integrating the first term on the right hand side and using Hölder’s inequality
leads to(∫

S(x)

√
f
∣∣∣QN,+

c [g]−QN,−
c [g]

∣∣∣dk)2

≤

(∫
S(x)

fdk

)(∫
S(x)

∣∣QN,+
c [g]−QN,−

c [g]
∣∣ dk) .

(107)
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Observe that

∣∣QN,+
c [g]−QN,−

c [g]
∣∣ ≤

≤
∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − g2 − g|dk1dk2,

which, after integrating in k and taking into account the symmetry of k, k1, k2,
yields

∫
S(x)

∣∣QN,+
c [g]−QN,−

c [g]
∣∣ dk ≤

≤ 3

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|dkdk1dk2.

Applying Hölder’s inequality again to the right hand side implies

∫
S(x)

∣∣QN,+
c [g]−QN,−

c [g]
∣∣ dk ≤

≤ 3

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)dkdk1dk2

] 1
2

×

×

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2

] 1
2

.

(108)
Using the fact that χ∗

N ≤ 1, Corollary 14 and Proposition 15 to bound the integral
containing only [ωω1ω2]

−1χ∗
Nδ(k−k1−k2)δ(ω−ω1−ω2), we derive from the above

inequality the following estimate

∫
S(x)

∣∣QN,+
c [g]−QN,−

c [g]
∣∣ dk ≤

≤ 3

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)dkdk1dk2

] 1
2

×

×

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2

] 1
2

≲

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2

] 1
2

.

(109)
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Putting (107) and (109) together, we obtain

∫
S(x)

√
f
∣∣∣QN,+

c [g]−QN,−
c [g]

∣∣∣dk ≲

[∫
S(x)

fdk

] 1
2

×

×

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2

] 1
4

.

(110)
Integrating the second term on the right hand side of (106) and using Hölder’s
inequality(∫

S(x)

√
f
∣∣∣QN,−

c [g]−QN,−
c [Ec]

∣∣∣dk)2

≤

(∫
S(x)

fdk

)(∫
S(x)

∣∣QN,−
c [g]−QN,−

c [Ec]
∣∣dk) .

(111)
It is straightforward that∣∣QN,−

c [g]−QN,−
c [Ec]

∣∣ ≤

≤
∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)[|g1 − E1|+ |g2 − E2|]dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − E1|dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k1 − k − k2)δ(ω1 − ω − ω2)|g2 − E2|dk1dk2.

Integrating in k, we immediately find∫
S(x)

∣∣QN,−
c [g]−QN,−

c [Ec]
∣∣ dk ≤

≤
∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)[|g1 − E1|+ |g2 − E2|]dkdk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − E1|dkdk1dk2

+ 2

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k1 − k − k2)δ(ω1 − ω − ω2)|g2 − E2|dkdk1dk2,

which, by the symmetry between k1 and k2 and the fact that χ∗
N ≤ 1, implies∫

S(x)

∣∣QN,−
c [g]−QN,−

c [Ec]
∣∣ dk ≤

≤ 2

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − E1|dkdk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − E1|dkdk1dk2

+ 2

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g2 − E2|dkdk1dk2.
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Now, we can also combine the last and the first terms on the right hand side using
the change of variables between k, k1, k2 to get∫

S(x)

∣∣QN,−
c [g]−QN,−

c [Ec]
∣∣dk ≤

≤ 4

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − E1|dkdk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − E1|dkdk1dk2.

(112)
Let us estimate each term on the right hand side of (112).

Taking the integration in k2 of the first term yields

4

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − E1|dkdk1dk2

= 4

∫
S(x)×S(x)

[ω(k)ω(k1)ω(k − k1)]
−1δ(ω(k)− ω(k1)− ω(k − k1))|g1 − E1|dkdk1.

Observing that ω(k) ≥ ω0 > 0 for all k ∈ T3, we find

4

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − E1|dkdk1dk2

≲
∫
S(x)×S(x)

δ(ω(k)− ω(k1)− ω(k − k1))|g1 − E1|dkdk1,

which, after integrating with respect to k1, leads to

4

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − E1|dkdk1dk2

≲
∫
S(x)

[∫
S(x)

δ(ω(k)− ω(k1)− ω(k − k1))dk

]
|g1 − E1|dk1.

Note that the integration with respect to k is uniformly bounded in k1 ∈ T3 by
Corollary 14 and Proposition 15, we then get

4

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)|g1 − E1|dkdk1dk2

≲
∫
S(x)

|g1 − E1|dk1 = ∥g − E∥L1(S(x)).

(113)
The second term on the right hand side of (112) can also be estimated in the

same way. Taking the integration in k2 of the second term yields

2

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − E1|dkdk1dk2

= 2

∫
S(x)×S(x)

[ω(k)ω(k1)ω(k − k1)]
−1δ(ω(k1)− ω(k)− ω(k1 − k))|g1 − E1|dkdk1,
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which, similarly as above, can be bounded as

2

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − E1|dkdk1dk2

≲
∫
S(x)

[∫
S(x)

δ(ω(k1)− ω(k)− ω(k1 − k))dk

]
|g1 − E1|dk1.

Again, the integration with respect to k is bounded, we therefore have

4

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)|g1 − E1|dkdk1dk2

≲
∫
S(x)

|g1 − E1|dk1 = ∥g − E∥L1(S(x)).

(114)
Now, combining (111),(112), (113), (114) leads to∫

S(x)

√
f
∣∣∣QN,−

c [g]−QN,−
c [Ec]

∣∣∣dk ≲

≲

[∫
S(x)

fdk

] 1
2
[∫

S(x)
|g1 − E1|dk1

] 1
2

=

[∫
S(x)

fdk

] 1
2

∥g − E∥
1
2

L1(S(x)).

(115)

Putting together the three estimates (106),(110) and (115) yields

∥∥∥∥√LN
c Ec|f −Fc|

∥∥∥∥
L1(S(x))

≲

[∫
S(x)

fdk

] 1
2

∥g − E∥
1
2

L1(S(x)) +

[∫
S(x)

fdk

] 1
2

×

×

[∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1χ∗

Nδ(k − k1 − k2)δ(ω − ω1 − ω2)|g − g1 − g2|2dkdk1dk2

] 1
4

(116)
□

4.2.2. A lower bound on the solution of the equation with the cut-off collision oper-
ator on the collisional invariant region S(x). The following Proposition provides
a uniform lower bound to classical solutions of the wave kinetic equation on S(x),
under the effect of the cut-off operator χN .

Proposition 23. Suppose that the initial condition f0 of (2) is bounded from
below by a strictly positive constant f∗0 , and f0 ∈ C(S(x)). Let f be a classi-
cal solution in C0([0,∞), C(S(x))) ∩ C1((0,∞), C(S(x))) to (2) . There exists
a strictly positive function f∗(t) > 0, which is non-increasing in t, such that
f(t, k) > f∗(t) > 0 for all k ∈ S(x) and for all t ≥ 0. To be more precise, there
exists a universal constant f∗ > 0 such that

f(t, k) > f∗(t) =
f∗

sups∈[0,t] ∥f(s, ·)∥C(S(x))
.
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Proof. Rearranging the equation, one finds

∂tf =

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)f1f2dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f1f2 + ff1]dk1dk2

− f

[∫
S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)(f1 + f2)dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)f2dk1dk2

]
.

Using the symmetry of f1 and f2 in the term containing f1 + f2, we can turn this
term into a new term, in which f1 + f2 is replaced by 2f1

∂tf =

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)f1f2dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f1f2 + ff1]dk1dk2

− 2f

[∫
S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)f1dk1dk2

+

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)f2dk1dk2

]
.

(117)
Now, let us consider the term with the minus sign

2f

[∫
S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)f1dk1dk2

+

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)f2dk1dk2

]
.

(118)

We define the function B : R+ → R+

B(t) = sup
s∈[0,t]

∥f(s, ·)∥C(S(x)), (119)

which is an increasing function in t. Using the fact that ω ≥ ω0 > 0 and the
function B(t), we can bound (118) from above by

2B(t)
ω3
0

f

[∫
S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+

∫
S(x)×S(x)

δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2

]
.
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Integrating in k2 and using the definite of the two delta functions δ(k−k1−k2)
and δ(k1 − k − k2)

2B(t)
ω3
0

f(k)

[∫
S(x)

δ(ω(k)− ω(k1)− ω(k − k1))dk1

+

∫
S(x)

δ(ω(k)− ω(k1)− ω(k − k1))dk1

]
≤ 2B(t)

ω3
0

C1f(k) =: C(t)f(k).

We therefore obtain the following bound for ∂tf

∂tf ≥
∫
S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)f1f2dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f1f2 + ff1]dk1dk2

− C(t)f.
(120)

Define the positive terms on the right hand side by K[f ], we then have the sim-
plified equation

∂tf ≥ K[f ]− C(t)f, (121)

which, by Duhamel’s formula and the mononicity in t of C(t), gives

f(t, k) ≥ f0(k)e
−C(T )t +

∫ t

0
K[f ](t− s, k)e−C(T )(t−s)ds, (122)

Using the fact that f0(k) ≥ f∗0 > 0, we deduce from (122) the following estimate

f(t, k) ≥ f∗0 e
−C(T )t +

∫ t

0
K[f ](t− s, k)e−C(T )(t−s)ds. (123)

We observe that the second term on the right hand side is always positive, since
it contains only positive components. This implies

f(t, k) ≥ f∗0 e
−C(T )t, (124)

for all t ∈ [0, T ].
Now, let us examine the operator K[f ] in details. Using the fact ω ≤ ω0 + 12,

we can bound K[f ] as

K[f ] ≥ [ω0 + 12]−3

[∫
S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)f1f2dk1dk2

+ 2

∫
S(x)×S(x)

[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)[f1f2 + ff1]dk1dk2

]
.

From which, we can use (124), to bound f, f1, f2 from below

K[f ] ≥ [ω0 + 12]−3

[∫
S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)f
∗
0
2e−2C(T )tdk1dk2

+ 4

∫
S(x)×S(x)

δ(k1 − k − k2)δ(ω1 − ω − ω2)f
∗
0
2e−2C(T )tdk1dk2

]
,

for all t ∈ [0, T ].
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The above inequality leads to

K[f ] ≥ f∗0
2e−2C(T )t

[ω0 + 12]3

[∫
S(x)×S(x)

δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 4

∫
S(x)×S(x)

δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2

]

≥ f∗0
2e−2C(T )t

[ω0 + 12]3
C2 ≥ C1e−2C(T )t,

(125)

for all t ∈ [0, T ]. Note that C1 is a universal strictly positive constant.
We follow the strategy of [45] by plugging (125) into (123)

f(t, k) ≥ f∗0 e
−C(T )t + C1

∫ t

0
e−3C(T )(t−s)ds

≥ f∗0 e
−C(T )t +

C1
3C(T )

[1− e−3C(T )t],

(126)

for all t ∈ [0, T ].
We define the time-dependent function

F (t) = f∗0 e
−C(T )t +

C1
3C(T )

[1− e−3C(T )t],

which is continuous and non-negative.
Pick a finite time t0 =

c
C(T ) > 0, in which c is a fixed constant to be determined

later. For t ∈ [0, t0], it is clear that F (t) ≥ f∗0 e
−C(T )t = f∗0 e

−c > 0. When t > t0,

then F (t) ≥ C1
3C(T )+f

∗
0 e

−3C(T )t[e2C(T )t− C1
3C(T )f∗

0
] > C1

3C(T )+f
∗
0 e

−3C(T )t[e2c− C1
3C(T )f∗

0
].

For a suitable choice of c, e2c = C1
3C(T )f∗

0
. It then follows that F (t) > C1

3C(T ) , for all

t ∈ [0, T ].
As a consequence, f(t, k) is bounded from below by a strictly positive function

C1
3C(t) for k ∈ S(x). Since B(t) is an non-decreasing function of time, it follows that
C1

3C(t) is a non-increasing function of time.

□

4.2.3. Convergence to equilibrium of the solution of the equation with the cut-off
collision operator on the collisional invariant region S(x). The below proposition
shows the convergence to equilibrium of the equation with cut-off operators. This
contains the main ingredients of the proof of the convergence in the non cut-off
case.

Proposition 24. Let f be a positive, classical solution in C([0,∞), C1(S(x)))
∩ C1((0,∞), C1(S(x))) of (2) on S(x), with the initial condition f0 ∈ C(S(x)),
f0 ≥ 0. Let (Mx, Ex) ∈ R3 × R+ be a pair of admissible constants in the sense of
Definition 1 and assume further that the system∫

S(x)

ω(1)

ax
dk = Ex =

∫
S(x)

ω(k)f0(k)dk,∫
S(x)

k

axω(k)
dk = Mx =

∫
S(x)

kf0(k)dk,

(127)
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has a unique solution ax ∈ R+; the local equilibrium on S(x) can be uniquely
determined as

Fc(k) =
1

axω(k)
. (128)

Then, the following limits always hold true,

lim
t→∞

∥f(t, ·)−Fc∥L1(S(x)) = 0. (129)

and

lim
t→∞

∣∣∣∣∣
∫
S(x)

ln[f ]dk −
∫
S(x)

ln [Fc] dk

∣∣∣∣∣ = 0. (130)

If, in addition, there is a positive constant M∗ > 0 such that f(t, k) < M∗ for all
t ∈ [0,∞) and for all k ∈ S(x), then

lim
t→∞

∥f(t, ·)−Fc∥Lp(S(x)) = 0, ∀p ∈ [1,∞). (131)

If we suppose further that f0(k) > 0 for all k ∈ S(x), there exists a constant M∗
such that f(t, k) > M∗ for all t ∈ [0,∞) and for all k ∈ S(x).

We need the following Lemma, whose proof could be found in the Appendix.

Lemma 25. Let S(x) be a collisonal invariant region and f be a positive function
such that fω ∈ L1(S(x)). Let

Fc(k) =
1

axω(k)
=:

1

Ec(k)
, (132)

where the constant ax ∈ R+ such that Fc(k) > 0 for all k ∈ S(x).
Suppose, in addition, that∫

S(x)
f(k)ω(k)dk =

∫
S(x)

Fc(k)ω(k)dk, (133)

and ∫
S(x)

f(k)kdk =

∫
S(x)

Fc(k)kdk. (134)

Then, the following inequalities always hold true

0 ≤ Sc[Fc] − Sc[f ], (135)

and

∥f −Fc∥L1(S(x)) ≲ [Sc[Fc] − Sc[f ]]
1
2 , (136)

in which the constant on the right hand side does not depend on f ; Sc[f ] is defined
in (83).

Proof. We divide the proof in to several steps.
Step 1: Entropy estimates. Let us first recall (89), which is written as

follows

∂t

∫
S(x)

ln(f)dk =

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [g1 + g2 − g]2

gg1g2
dkdk1dk2.
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The above identity shows that
∫
S(x) ln(f)dk is an increasing function of time. In

particular
∫
S(x) ln(f)dk −

∫
S(x) ln(f0)dk ≥ 0. Picking n ∈ N and considering the

difference of the entropy at two times n and n+ 1 yields(∫
S(x)

ln(f(2n+1, k))dk −
∫
S(x)

ln(f0(k))dk

)
−

(∫
S(x)

ln(f(2n, k))dk −
∫
S(x)

ln(f0(k))dk

)

=

∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [g1 + g2 − g]2

gg1g2
dkdk1dk2dt.

Since the quantity
∫
S(x) ln(f(2

n, k))dk −
∫
S(x) ln(f0(k))dk is always positive, we

deduce from the above that∫
S(x)

ln(f(2n+1, k))dk −
∫
S(x)

ln(f0(k))dk ≥

≥
∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

[g1 + g2 − g]2

gg1g2
dkdk1dk2dt.

By Lemma 25, applied to the left hand side of the above inequality, we find∫
S(x)

ln(Fc(k))dk −
∫
S(x)

ln(f0(k))dk ≥

≥
∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

[g1 + g2 − g]2

gg1g2
dkdk1dk2dt,

(137)
which, after dividing both sides by 2n, implies

1

2n

[∫
S(x)

ln(Fc(k))dk −
∫
S(x)

ln(f0(k))dk

]
≥

≥ 1

2n

∫ 2n+1

2n

∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)

[g1 + g2 − g]2

gg1g2
dkdk1dk2dt.

(138)
As a consequence, there exists a sequence of times tn ∈ [2n, 2n+1] such that

lim
n→∞

[ ∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)×

× [g1(tn) + g2(tn)− g(tn)]
2

g(tn)g1(tn)g2(tn)
dkdk1dk2

]
= 0.

(139)

For the sake of simplicity, we denote g(tn) and f(tn) by g
n and fn.

Step 2: The convergence.
Taking advantage of the fact gn ≤ 2N in the cut-off region of the operator χ∗

N ,
the following limit can be deduced from (139)

lim
n→∞

[ ∫
S(x)×S(x)×S(x)

[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)χ

∗
N×

×[gn1 + gn2 − gn]2dkdk1dk2

]
= 0,

(140)
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in which the product gngn1 g
n
2 has been eliminated. Since gngn1 g

n
2 is removed, the

inequality (104) can be applied, leading to another limit

lim
n→∞

∫
S(x)

√
fn
∣∣∣QN,+

c [gn]−QN,−
c [gn]

∣∣∣dk = 0. (141)

The above expression contains fn, which can be, again, eliminated using the lower
bound fn ≥ 1

2N in the cut-off region, yielding

lim
n→∞

∫
S(x)

√∣∣∣QN,+
c [gn]−QN,−

c [gn]
∣∣∣dk = 0. (142)

Replacing QN,+
c [gn] = gnLN

c [gn] in the above formula leads to

lim
n→∞

∫
S(x)

√∣∣∣gnLN
c −QN,−

c [gn]
∣∣∣dk = 0. (143)

Notice that gnLN
c = gnχN [gn]L̃N

c , in which L̃N
c takes the following form

L̃N
c := GN

1 [gn] + GN
2 [gn]

:=

∫
S(x)×S(x)

χN [gn(k1)]χN [gn(k2)]δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2

∫
S(x)×S(x)

χN [gn(k1)]χN [gn(k2)]δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2.

(144)
Let us consider the first sequence {GN

1 [gn]}. We will show that this sequence is
equicontinuous in all Lp(S(x)) with 1 ≤ p < ∞. This, by the Kolmogorov-Riesz
theorem [29] implies the strong convergence of {GN

1 [gn]} towards a function G1 in
Lp(S(x)) with 1 ≤ p <∞. To see this, let us consider any vector k′ belonging to a
ball B(O, δ) centered at the origin and with radius δ, and estimate the difference
GN
1 [gn](·+ k′)− GN

1 [gn](·) in the Lp-norm∫
S(x)

|GN
1 [gn](k + k′)− GN

1 [gn](k)|pdk

=

∫
S(x)

∣∣∣ ∫
S(x)

[
χN [gn(k′ + k − k1)]δ(ω(k

′)− ω(k1)− ω(k′ + k − k1))−

− χN [gn(k − k1)]δ(ω(k)− ω(k1)− ω(k − k1))
]
χN [gn(k1)]dk1

∣∣∣pdk.
(145)

To estimate the above quantity, we will use the triangle inequality, as follows∫
S(x)

|GN
1 [gn](k + k′)− GN

1 [gn](k)|pdk

≲
∫
S(x)

∣∣∣ ∫
S(x)

|χN [gn(k′ + k − k1)]− χN [gn(k′ + k − k1)]|×

× δ(ω(k′ + k)− ω(k1)− ω(k′ + k − k1))χN [gn(k1)]dk1

+

∫
S(x)

χN [gn(k − k1)]|δ(ω(k′)− ω(k1)− ω(k′ − k1))

− δ(ω(k)− ω(k1)− ω(k − k1))|χN [gn(k1)]dk1

∣∣∣pdk.

(146)
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In the right hand side of this equality, we have the sum of two integrals inside
the power of order p. To facilitate the computations, we use Young’s inequality
to split this into two separate integrals as∫

S(x)
|GN

1 [gn](k + k′)− GN
1 [gn](k)|pdk

≲
∫
S(x)

∣∣∣ ∫
S(x)

|χN [gn(k′ + k − k1)]− χN [gn(k − k1)]|×

× δ(ω(k′ + k)− ω(k1)− ω(k′ + k − k1))χN [gn(k1)]dk1

∣∣∣pdk
+

∫
S(x)

∣∣∣ ∫
S(x)

χN [gn(k − k1)]|δ(ω(k′ + k)− ω(k1)− ω(k′ + k − k1))

− δ(ω(k)− ω(k1)− ω(k − k1))|χN [gn(k1)]dk1

∣∣∣pdk.

(147)

e can choose δ small such that χN [gn(k′ + k − k1)] − χN [gn(k − k1)] is small,

uniformly in k and k1, thanks to the cut-off property 1
N ≤ |fn(k)|, |∇f (k)| ≤ N

in the cut-off region. Combining this observation, with Proposition 15, Corollary
14 and the boundedness of χN [gn(k1)], we can choose δ small enough, depending
on a small ϵ > 0, such that the first term on the right hand side is smaller than
ϵp/2. The second term on the right hand side can also be bounded by ϵp/2 using
Proposition 13 and the fact that χN [gn(k−k1)] and χN [gn(k1)] are both bounded
by 1. As a result, for any small constant ϵ > 0, we can choose δ such that for any
k′ ∈ B(O, δ), ∫

S(x)
|GN

1 [gn](k + k′)− GN
1 [gn](k)|pdk ≲ ϵp, (148)

which shows that the sequence GN
1 [gn] is indeed equicontinuous in Lp(S(x)) and

the existence of σ1 ∈ Lp(S(x)) satisfying limn→∞ GN
1 [gn] = σ1 in Lp(S(x)) for all

p ∈ [1,∞) is guaranteed by the Kolmogorov-Riesz theorem [29].
The same argument can be applied to GN

2 [gn], leading to the existence of σ2 ∈
Lp(S(x)) satisfying limn→∞ GN

2 [gn] = σ2 in Lp(S(x)) for all p ∈ [1,∞) by the

Kolmogorov-Riesz theorem [29]. As a result limn→∞ L̃N
c = σ = σ1+σ2 in L

p(S(x))
for all p ∈ [1,∞).

Similarly, if we define

Q̃N,−
c [g](k) = Q̃N,−,1

c [g](k) + Q̃N,−,2
c [g](k) + Q̃N,−,3

c [g](k) :=

= 2

∫
S(x)×S(x)

χN [1/g](k1)χN [1/g](k2)[ωω1ω2]
−1δ(k − k1 − k2)δ(ω − ω1 − ω2)g1dk1dk2

+ 2

∫
S(x)×S(x)

χN [1/g](k1)χN [1/g](k2)[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g1dk1dk2

− 2

∫
S(x)×S(x)

χN [1/g](k1)χN [1/g](k2)[ωω1ω2]
−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g2dk1dk2,

(149)
the Kolmogorov-Riesz theorem [29] can be used in the same manner to deduce

the existence of a function ς such that we also have limn→∞ Q̃N,−
c [gn] = ς in

Lp(S(x)) for all p ∈ [1,∞).
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Now, the fact that limn→∞ Q̃N,−
c [gn] = ς and limn→∞ L̃N

c = σ can be used to

replace the quantity QN,−
c [gn] by ς and the quantity L̃N

c by σ in (141) and (143)
to have

lim
n→∞

∫
S(x)

√
|σχN [fn]− fnχN [fn]ς|dk = 0, (150)

and

lim
n→∞

∫
S(x)

√
|gnχN [gn]σ − ςχN [fn]|dk = 0. (151)

Due to its boundedness, the sequences {gnχN [fn]}, {fnχN [fn]} and {χN [fn]}
converge weakly to g∞N , f∞N and ξ∞N in L1(S(x)), it follows immediately that
g∞N σ = ξ∞N ς and ξ

∞
N σ = f∞N ς.

By a similar argument as above, {χN [fn]} is also equicontinuous in Lp(S(x))
and then limn→∞ χN [fn] = ξ∞N in Lp(S(x)) for all p ∈ [1,∞) by the Kolmogorov-
Riesz theorem [29]. As a consequence,

ς(k) = 2

∫
S(x)×S(x)

ξ∞N (k1)ξ
∞
N (k2)[ωω1ω2]

−1δ(k − k1 − k2)δ(ω − ω1 − ω2)g
∞
N (k1)dk1dk2

+ 2

∫
S(x)×S(x)

ξ∞N (k1)ξ
∞
N (k2)[ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g
∞
N (k1)dk1dk2

− 2

∫
S(x)×S(x)

ξ∞N (k1)ξ
∞
N (k2)[ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g
∞
N (k2)dk1dk2,

and

σ(k) =

∫
S(x)×S(x)

ξ∞N (k1)ξ
∞
N (k2)δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2

∫
S(x)×S(x)

ξ∞N (k1)ξ
∞
N (k2)δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2,

which can be combined with (151) and the fact that {gnχN [fn]}, {fnχN [fn]}
converge weakly to g∞N , f∞N to give∫

S(x)×S(x)
g∞N (k)ξ∞N (k)ξ∞N (k1)ξ

∞
N (k2)δ(k − k1 − k2)δ(ω − ω1 − ω2)dk1dk2

+ 2

∫
S(x)×S(x)

g∞N (k)ξ∞N (k)ξ∞N (k1)ξ
∞
N (k2)δ(k1 − k − k2)δ(ω1 − ω − ω2)dk1dk2

= 2

∫
S(x)×S(x)

ξ∞N (k)ξ∞N (k1)ξ
∞
N (k2)[ωω1ω2]

−1δ(k − k1 − k2)δ(ω − ω1 − ω2)g
∞
N (k1)dk1dk2

+ 2

∫
S(x)×S(x)

ξ∞N (k)ξ∞N (k1)ξ
∞
N (k2)[ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g
∞
N (k1)dk1dk2

− 2

∫
S(x)×S(x)

ξ∞N (k)ξ∞N (k1)ξ
∞
N (k2)[ωω1ω2]

−1δ(k1 − k − k2)δ(ω1 − ω − ω2)g
∞
N (k2)dk1dk2,

(152)
for a.e. k in S(x).

From (152), we deduce that

g∞N (k)ξ∞N (k) = g∞N (k1)ξ
∞
N (k1) + g∞N (k2)ξ

∞
N (k2),
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when k = k1 + k2 and ω(k) = ω(k1) + ω(k2), for a.e. k in S(x). The proofs
of Proposition 19 and Lemma 21 can then be redone, yielding g∞N (k)ξ∞N (k) =
ANω(k) + BNk =: Ec(k) > 0 for some vector BN ∈ R3 and constant AN ∈ R.
These constants are subjected to the conservation of energy and momenta∫

S(x)

k

ANω(k) +BNk
dk = lim

n→∞

∫
S(x)

kfnχN [fn]dk := MN
x ,∫

S(x)

ω(k)

ANω(k) +BNk
dk = lim

n→∞

∫
S(x)

ω(k)fnχN [fn]dk := EN
x .

(153)

In addition, we have f∞N = 1
ANω(k)+BNk . Since limN→∞MN

x =Mx, limN→∞EN
x =

Ex and due to the admissibility of the pair (Ex,Mx), when N is large enough
1
N < g∞N (k), f∞N (k) < N for all k ∈ S(x). As a consequence, gn and fn converge
almost everywhere to g∞N (k), and f∞N (k).

The fact that fn converges to f∞N (k) almost everywhere, when N is sufficiently
large, ensures the existence ofN0 > 0 such that f∞N (k) = f∞M (k) for allN,M > N0.
Passing to the limits N → ∞ in (154), we find AN = A and BN = B for all
N > N0, with ∫

S(x)

k

Aω(k) +Bk
dk = Mx,∫

S(x)

ω(k)

Aω(k) +Bk
dk = Ex.

(154)

As a result,

lim
n→∞

fn(k) =
1

Aω(k) +Bk
=: Fc

almost everywhere on S(x), which then implies

lim inf
n→∞

∫
S(x)

ln[f ]dk ≥
∫
S(x)

ln[Fc]dk,

by Fatou’s Lemma. Therefore, due to Lemma 25

lim
n→∞

[Sc[Fc] − Sc[f
n]] = 0,

leading to

lim
t→∞

[Sc[Fc] − Sc[f(t)]] = 0.

By (136), we finally obtain

lim
t→∞

∥f −Fc∥L1(S(x)) = 0.

Step 3: Additional assumption f(t, k) < M∗ for all t ∈ [0,∞) and for all
k ∈ S(x). Suppose, in addition, that f(t, k) < M∗ for all t ∈ [0,∞). By Egorov’s
theorem, for all δ > 0, there exists a set Vδ, whose measure m(Vδ) is smaller than
δ and fn converges uniformly to f∞(k) on S(x)\Vδ. Since

1
N < f∞N (k) < N , there

exists an integer nδ such that for all n > nδ, the inequality 1
N < fn(k) < N holds

true for all k ∈ S(x)\Vδ. As a consequence, for each ϵ > 0

∥f−Fc∥Lp(S(x)) ≤ C∥f−Fc∥L∞(S(x)\Vδ) + Cm(Vδ)
1
p ≤ C∥f−Fc∥L∞(S(x)\Vδ) + Cδ

1
p ,

where C is a universal constant, for all 1 < p <∞.
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For any ϵ > 0, we can choose δ > 0 and a time tδ such that for t > tδ,

Cδ
1
p < ϵ/2 and C∥f −Fc∥L∞(S(x)\Vδ) < ϵ/2. That implies the strong convergence

of f towards Fc in Lp(S(x) for all 1 < p <∞.
Now, if f0(k) > 0 for all k ∈ S(x) and f(t, k) < M∗ for all t ∈ [0,∞) and for all

k ∈ S(x), by Proposition 23, there exists a constant M∗ such that f(t, k) > M∗
for all t ∈ [0,∞) and for all k ∈ S(x).

□

4.3. Proof of Theorem 3. The proof of Theorem 3 follows from Proposition 24
and Proposition 6.

5. Appendix

5.1. Appendix A: Proof of Lemma 25. Define the functional

Ψt(f,Fc) = [Fc + t(f −Fc)]2.

It follows from the mean value theorem that

0 ≤
∫ 1

0

(1− t)(f −Fc)2

Ψt(f,Fc)
dt = sc[Fc] − sc[f ] + s′c[Fc](f −Fc).

Since s′(y) = 1/y, we find s′[Fc(k)] = axω(k). That leads to

0 ≤
∫ 1

0

(1− t)(f −Fc)2

Ψt(f,Fc)
dt = sc[Fc] − sc[f ] + (axω(k))(f −Fc).

Integrating both sides of the above inequality on S(x) yields

0 ≤
∫
S(x)

∫ 1

0

(1− t)(f −Fc)2

Ψt(f,Fc)
dtdk

=

∫
S(x)

sc[Fc]dk −
∫
S(x)

sc[f ]dk +

∫
S(x)

(axω(k))(f −Fc)dk,

which, by the fact that ∫
S(x)

(axω(k))(f −Fc)dk = 0,

implies

0 ≤
∫
S(x)

∫ 1

0

(1− t)(f −Fc)2

Ψt(f,Fc)
dtdk ≤ Sc[Fc] − Sc[f ]. (155)

Observing that

(Fc − f)+ = 2

∫ 1

0

√
1− t(Fc − f)+√

Ψt(f,Fc)

√
(1− t)Ψt(f,Fc)dt,

and applying Hölder’s inequality to the right hand side, we obtain the following
inequality

(Fc − f)+ ≤ 2

[∫ 1

0

(1− t)(Fc − f)2

Ψt(f,Fc)
dt

] 1
2
[∫ 1

0
(1− t)Ψt(f,Fc)dt

] 1
2

.

Now, observe that for k ∈ S(x) satisfying Fc(k) > f(k), then

0 < Ψt(f,Fc)(k) ≤ [Fc(k)]2
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for all t ∈ [0, 1]. This fact can reduce the above inequality to

(Fc − f)+ ≤ 2

[∫ 1

0

(1− t)(Fc − f)2

Ψt(f,Fc)
dt

] 1
2
[∫ 1

0
(1− t)[Fc(k)]2dt

] 1
2

,

which, by integrating in k∫
S(x)

(Fc − f)+dk ≤ 2

∫
S(x)

[∫ 1

0

(1− t)(Fc − f)2

Ψt(f,Fc)
dt

] 1
2
[∫ 1

0
(1− t)[Fc(k)]2dt

] 1
2

dk,

and applying Hölder’s inequality to the right hand side, gives∫
S(x)

(Fc − f)+dk ≤ 2

[∫
S(x)

∫ 1

0

(1− t)(Fc − f)2

Ψt(f,Fc)
dtdk

] 1
2
[∫

S(x)

∫ 1

0
(1− t)[Fc(k)]2dtdk

] 1
2

.

Indeed, the second term with the bracket on the right hand side can be computed
explicitly, that implies∫

S(x)
(Fc − f)+dk ≲

[∫
S(x)

∫ 1

0

(1− t)(Fc − f)2

Ψt(f,Fc)
dtdk

] 1
2

.

The above inequality can be combined with (155) to become∫
S(x)

(Fc − f)+dk ≲ [Sc[Fc] − Sc[f ]]
1
2 .

Using the boundedness of the dispersion relation ω(k), we find∫
S(x)

(Fc − f)+ω(k)dk ≲
∫
S(x)

(Fc − f)+dk ≲ [Sc[Fc] − Sc[f ]]
1
2 .

Now, from the identity

|f −Fc| = f −Fc + 2(F − f)+,

the above gives∫
S(x)

|f −Fc|ω(k)dk =

∫
T3

(f −Fc)ω(k)dk +

∫
S(x)

2(Fc − f)+ω(k)dk

≲
∫
S(x)

(f −Fc)ω(k)dk + 2 [Sc[Fc] − Sc[f ]]
1
2 .

From the hypothesis ∫
S(x)

(f −Fc)ω(k)dk = 0,

we then infer from the above inequality that∫
S(x)

|f −Fc|ω(k)dk ≲ [Sc[Fc] − Sc[f ]]
1
2 .

Using the fact that ω(k) ≥ ω0, we obtain∫
S(x)

|f −Fc|dk ≲ [Sc[Fc] − Sc[f ]]
1
2 .
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1. RMA, 8, 1988.

[37] A. E. H. Love. A treatise on the mathematical theory of elasticity. Cambridge university
press, 2013.

[38] J. Lukkarinen and H. Spohn. Kinetic limit for wave propagation in a random medium. Arch.
Ration. Mech. Anal., 183(1):93–162, 2007.

[39] J. Lukkarinen and H. Spohn. Not to normal order-notes on the kinetic limit for weakly
interacting quantum fluids. Journal of Statistical Physics, 134(5-6):1133–1172, 2009.

[40] J. Lukkarinen and H. Spohn. Weakly nonlinear Schrödinger equation with random initial
data. Invent. Math., 183(1):79–188, 2011.

[41] S. Nazarenko. Wave turbulence, volume 825 of Lecture Notes in Physics. Springer, Heidel-
berg, 2011.

[42] A. C. Newell and B. Rumpf. Wave turbulence. Annual review of fluid mechanics, 43:59–78,
2011.

[43] A. C. Newell and B. Rumpf. Wave turbulence: a story far from over. In Advances in wave
turbulence, pages 1–51. World Scientific, 2013.

[44] T. T. Nguyen and M.-B. Tran. On the Kinetic Equation in Zakharov’s Wave Turbulence
Theory for Capillary Waves. SIAM J. Math. Anal., 50(2):2020–2047, 2018.

[45] T. T. Nguyen and M.-B. Tran. Uniform in time lower bound for solutions to a quantum
boltzmann equation of bosons. Archive for Rational Mechanics and Analysis, 231(1):63–89,
2019.

[46] B. Pausader. Scattering and the levandosky–strauss conjecture for fourth-order nonlinear
wave equations. Journal of Differential Equations, 241(2):237–278, 2007.

[47] B. Pausader and W. Strauss. Analyticity of the scattering operator for the beam equation.
Discrete Contin. Dyn. Syst, 25:617–626, 2009.

[48] R. Peierls. Zur kinetischen theorie der warmeleitung in kristallen. Annalen der Physik,
395(8):1055–1101, 1929.

[49] R. E. Peierls. Quantum theory of solids. In Theoretical physics in the twentieth century
(Pauli memorial volume), pages 140–160. Interscience, New York, 1960.

[50] Y. Pomeau and M.-B. Tran. Statistical physics of non equilibrium quantum phenomena.
Lecture Notes in Physics, Springer, 2019.



WAVE TURBULENCE THEORY FOR ELASTIC BEAM WAVES 47

[51] L. M. Smith and F. Waleffe. Generation of slow large scales in forced rotating stratified
turbulence. Journal of Fluid Mechanics, 451:145–168, 2002.

[52] A. Soffer and M.-B. Tran. On the dynamics of finite temperature trapped bose gases. Ad-
vances in Mathematics, 325:533–607, 2018.

[53] A. Soffer and M.-B. Tran. On the energy cascade of 3-wave kinetic equations: beyond
kolmogorov–zakharov solutions. Communications in Mathematical Physics, pages 1–48,
2019.

[54] H. Spohn. The phonon Boltzmann equation, properties and link to weakly anharmonic
lattice dynamics. J. Stat. Phys., 124(2-4):1041–1104, 2006.

[55] H. Spohn. Weakly nonlinear wave equations with random initial data. In Proceedings of the
International Congress of Mathematicians. Volume III, pages 2128–2143. Hindustan Book
Agency, New Delhi, 2010.

[56] G. Staffilani and M.-B. Tran. On the wave turbulence theory for stochastic and random
multidimensional kdv type equations. arXiv preprint arXiv:2106.09819, 2021.

[57] G. Strang and G. J. Fix. An analysis of the finite element method, volume 212. Prentice-hall
Englewood Cliffs, NJ, 1973.

[58] M.-B. Tran, G. Craciun, L. M. Smith, and S. Boldyrev. A reaction network approach to
the theory of acoustic wave turbulence. Journal of Differential Equations, 269(5):4332–4352,
2020.

[59] V. E. Zakharov and N. N. Filonenko. Weak turbulence of capillary waves. Journal of applied
mechanics and technical physics, 8(5):37–40, 1967.

[60] V. E. Zakharov, V. S. L’vov, and G. Falkovich. Kolmogorov spectra of turbulence I: Wave
turbulence. Springer Science & Business Media, 2012.
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