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1. Introduction

For more than 60 years, the theory of wave turbulence has been proved to have
a wide range applications [1, 2, 3, 4, 5, 6, 7, 8]. Among the most important classes
of wave kinetic equations (WKEs), 3-wave kinetic equations read

∂t f (t, k) = Q3w[ f ](t, k),
f (0, k) = f0(k),

(1)

in which f (t, k) is the nonnegative wave density at wavenumber k ∈ RN , N ≥ 2;
f0(k) is the initial condition. The quantity Q[ f ] is of the form

Q3w[ f ](k) =
∫∫

R2N

[
Rk,k1,k2[ f ] − Rk1,k,k2[ f ] − Rk2,k,k1[ f ]

]
kNk1dNk2, (2)

with

Rk,k1,k2[ f ] := |Vk,k1,k2 |
2δ(k − k1 − k2)δ(ω − ω1 − ω2)( f1 f2 − f f1 − f f2),

with the short-hand notation f = f (t, k), ω = ω(p) and f j = f (t, k j), ω j = ω(k j),
for wavenumbers k, k j, j ∈ {1, 2}. The function ω(k) is the dispersion relation
of the wave system. This type of wave kinetic equations has several applications
from ocean waves, acoustic waves, gravity capillary waves to Bose-Einstein con-
densates and many others (see [3, 4, 9, 10, 11, 12, 13, 14] and references therein).
In the isotropic case, we identify f (t, k) with f (t, ω) and the isotropic 3-wave ki-
netic equation now has the following form

∂t f (t, ω) = Q[ f ](t, ω), ω ∈ R+,
f (0, p) = f0(p),

Q[ f ](t, ω) =
∫ ∞

0

∫ ∞

0

[
R(ω,ω1, ω2) − R(ω1, ω, ω2) − R(ω2, ω1, ω)

]
dω1dω2,

R(ω,ω1, ω2) := δ(ω − ω1 − ω2)
[
U(ω1, ω2) f1 f2 − U(ω,ω1) f f1 − U(ω,ω2) f f2

]
,

(3)

where U satisfies |U(ω1, ω2)| = (ω1ω2)γ/2, in which γ is a non-negative constant
which plays an important role in the sequel.

In [15], the authors show that if we define the energy of the solution (3) as
g(t, ω) = ω f (t, ω), the energy is conserved. It has been proved in [15] that g can
be decomposed into two parts

g(t, ω) = ḡ(t, ω) + g̃(t)δ{ω=∞}, (4)
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where ḡ(t, ω) ≥ 0 is a non-negative function, and g̃(t)δ{ω=∞}, is a measure. At time
t = 0, we assume ḡ(0, ω) = g(0, ω) and g̃(0) = 0. It has been proved in [15], that
there exists infinitely many blow-up times

0 < t∗1 < t∗2 < · · · < t∗n < · · · , (5)

such that
ḡ(t∗1, ω) > ḡ(t∗2, ω) > · · · > ḡ(t∗n, ω) > · · · → 0, (6)

and
0 < g̃(t∗1) < g̃(t∗2) < · · · < g̃(t∗n) < · · · (7)

In the limit t → ∞, all of the energy will be accumulated to the measure g̃(t)δω=∞,
while the function will vanish g̃(t)δω=∞ → 0. We refer to time t∗1 as the first blow-
up time. We define χ[0,R](ω) be a cut-off function of ω on the finite domain [0,R],
the multiple blow-up time phenomenon (4)-(5)-(6)-(7), with the decay rate O( 1

√
t
),

can be observed as the decay of the total energy on any finite interval [0,R]∫ R

0
g(t, ω)dω =

∫
R+
χ[0,R](ω)g(t, ω)dω ≤ O

( 1
√

t

)
as t → ∞, (8)

for all truncated parameter R. Inequality (8) simply means that the energy of the
solution will move away from any truncated finite interval [0,R] as t → ∞ with
the rate O

(
1
√

t

)
. This theoretical finding has been numerically verified via a Finite

Volume Scheme in [16].
In the important works [17, 18, 19], several numerical experiments were de-

signed to investigate time dependent solutions of isotropic 3-wave equations. We
refer to [16] for a detailed comparison between the different results of [17, 18, 19,
15, 16]. Below, we recall a brief comparison. The works [17, 18, 19] and [15, 16]
complement each other as they consider very different scenarios of the solutions
of (3). The works [15, 16] focuses on the finite capacity case (γ > 1), under the
condition that the energy of the solution f of (3) is conserved in time∫ ∞

0
ω f (t, ω)dω = constant. (9)

and shows that there exist an infinite series of blow up times (4)-(5)-(6)- (7) (or
inequality (8)). The works [17, 18, 19] focus on both cases - finite capacity (γ > 1)
and infinite capacity (0 ≤ γ ≤ 1). In the finite capacity case (γ > 1), the solution
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is studied before the first blow-up time t < t∗1, rigorously proved later in [15] under
the self-similar assumption

f (t, ω) ≈ s(t)aF
(
ω

s(t)

)
. (10)

and it is also assumed that the energy grows linearly in time∫ ∞

0
ω f (t, ω)dω = Jt. (11)

Solving for the self-similar profiles before the first blow-up times t∗1 is an inter-
esting direction of research. We mention, for instance, [20], where a self-similar
profile of the solution for a different finite capacity system - the Alfven wave
turbulence kinetic equation - is computed before the first blow-up time t∗1. In
addition, a recently published paper [21] presents a numerical method for for a
collision integral 4-wave kinetic equation based on Chebyshev approximations.

Concerning the analysis of 3-wave kinetic equation, we mention the work [22],
where a 3-wave kinetic equation, derived from the elastic beam wave equation on
the lattice, has been studied. The global existence of 3-wave kinetic equations
has been investigated in [23, 24] and the link to reaction networks has also been
pointed out in [25, 26].

The goal of our current paper is to present an alternative numerical method,
based on deep learning of the solution of the conservative form of equation (3)
introduced in [16]. It is difficult to exaggerate the impact and scope of machine
learning within applied mathematics and scientific computing more broadly. A
very active branch of scientific machine learning is the development of neural net-
work approximations of the solutions to partial differential equations. As opposed
to data-driven discovery of the dynamics of a physical process in which known
governing equations may not be used, a physics-informed neural network (PINN)
[27, 28] trains the neural network by minimizing the residual of the governing
PDE along with minimization terms for the initial and boundary conditions. For
completeness, we describe briefly the general idea.

Let L be a linear or non-linear (integro-)differential operator. Let (t, x) ∈
[0,T ] × Ω ⊂ R+ × Rd for d ≥ 1 and Γ = ∂Ω smooth. Assume for simplicity that
u(t, x) ∈ L2((0,T );Ω) is the solution to the evolution equation

(∂t +L)u = 0,
Bu = uΓ,

u(0, x) = u0(x),
(12)
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where B denotes a boundary operator and u0 ∈ L2(Ω).
If we wish to approximate the solution to (12) by a neural network n(t, x; θ)

where θ ∈ Θ the set of weights and biases of the neural network, then a common
approach is to first define the residual operator, R, such that

n(t, x; θ) ∈ HR = {φ(t, x) | φ(t, x) ∈ L2((0,T );Ω), Rφ(t, x) ∈ L2((0,T );R)},

with
∥φ(t, x)∥HR = ∥φ(t, x)∥L2((0,T );Ω) + ∥Rφ(t, x)∥L2((0,T );Ω),

for
R = (∂t +L). (13)

We then define the functional

Jθ[n](t, x) = ∥Rn(t, x; θ)∥2L2((0,T );Ω) + ∥Bn(t, x; θ) − uΓ∥2L2(Γ) + ∥n(0, x; θ) − u0∥
2
L2(Ω).

(14)
To obtain the neural network approximation to u(t, x), one then solves the

following stochastic optimization problem

θ∗ = arg min
θ

Jθ[n](t, x), (15)

for the (probably local and non-unique) minimizer θ∗ from which we obtain

n(t, x; θ∗) ≈ u(t, x).

In solving (15), one has many choices even when one excludes the usual hyper-
parameter tuning that comes with selecting an architecture. In the absence of
empirical measurements, a major choice to be made is how one selects inputs
(t, x) ∈ (0,T ) × Ω for the residual and initial and boundary conditions. A com-
mon approach is to take samples from the uniform distribution and approximate
the integrals in (14) by taking expectations ([27, 28] and many, many others). As
in [29], one may use knowledge about the underlying distribution of the sam-
ple space to select a sampling distribution which more closely mimics empirical
measurements and may be more relevant to the approximated solution.

In the present article, we choose neither of the previous approaches and opt
for a quasi-Monte Carlo (qMC) approximation of the integrals in (14) selecting
a low-discrepency sequence as our sample points, the Sobol sequence [30] (see
figure 4).
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We find the qMC approach to be appropriate for WKEs for two reasons. The
first is that given the highly non-local nature of the collision term, the approxima-
tion of this operator is expensive and when coupled with the number of samples
necessary to obtain an accurate approximation of the collision term via MC meth-
ods, we find a uniform sampling procedure to be impractical for our needs. The
latter method introduces interesting challenges in that the distribution with which
we would like to sample the wavenumber domain in order to take expectations is
in fact the solution we want to find in the first place.

Thus a qMC approach which requires fewer sample points and being determin-
istic requires no knowledge of the underlying distribution is a simple and natural
choice. For a more detailed analysis of qMC methods in neural network approx-
imations to pdes with applications to fluid dynamics the reader is referred to the
works [31, 32].

Outline
We now give a short overview of the remainder of the article. To build con-

fidence in our approach, we present a neural network (NN) approximation to the
solution of a Smoluchowski coagulation equation (SCE) in section 2. We choose
this examples because, 1) as has been discussed elsewhere ([18, 15]) the SCE can
be considered as a special case of a 3-WKE and 2) unlike for the 3-WKE the SCE
has a known analytic solution which we may compare our approximation against.
In section 3, we present results for a neural network representation of the non-
stationary solution to a 3-WKE. The results are compared with previously derived
theoretical results for the decay rate of the total energy in any finite interval of the
wavenumber domain. As a means of validation for the neural network model, we
give solutions for the same 3-WKE obtained via a finite volume scheme (FVS).

2. The Smoluchowski Coagulation Equation

Before giving results for wave kinetic equations, we provide a check of the
method on a similar type of equation, the Smoluchowski coagulation equation,
which has a known analytic solution in contrast to wave kinetic equations. Com-
parisons of the SCE and 3-WKE can be found in [15, 18, 16] and references
therein.

The SCE may be written in the form [33]

v∂t f (t, v) = −∂vQS mol[ f ](t, v) (t, v) ∈ R+ × R+,
f (0, v) = f0(v) ≥ 0 v ∈ R+ := (0,∞),

(16)
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where the f (t, v) ≥ 0 gives the density of particles at time t with volume v and

QS mol[ f ](t, v) =
∫ v

0

∫ ∞

v−v1

a(v1, v2)v1 f (t, v1) f (t, v2)dv2dv1, (17)

where the kernel is given by a(v1, v2) = v1v2 in what follows. Let us define

m(t, v) = v f (t, v),

then the total volume can be defined as

V(t) =
∫ ∞

0
m(t, v)dv.

We will consider the case where

f0(v) =
e−v

v
, (18)

i.e.,
m0(v) = e−v, (19)

and the analytic solution corresponding to this initial condition is given by [33]

f (t, v) = e−Tv I1(2vt1/2)
v2t1/2 , (20)

where
I1(v) =

1
π

∫ π

0
ev cos θ cos θdθ,

is the modified Bessel function of the first kind and

T =

1 + t t ≤ Tgel

2t1/2 t > Tgel
,

in equation (20) above.
This SCE undergoes a gelation phenomenon at time Tgel = 1, that is,the par-

ticle number density is entirely concentrated at v = ∞ (again, see [33] and the
references therein). This also means thatV(t) = 1 if t ∈ [0,Tgel) andV(t) = t−1/2

if t ≥ Tgel.
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2.1. NN Representation of the SCE
To begin, instead of (16), we solve the evolution equation for m(t, v). Then,

∂tm(t, v) = −∂vQS mol[m](t, v) (t, v) ∈ R+ × R+,
m(0, v) = m0(v) = v f0(v) ≥ 0 v ∈ R+,

(21)

and the Smoluchowski collision operator is then written as

QS mol[m](t, v) =
∫ v

0

∫ ∞

v−v1

a(v1, v2)m(t, v1)
m(t, v2)

v2
dv2dv1. (22)

Let m(t, v; θ) be the neural network approximation to the solution of (21) with
θ denoting the weights and biases of the neural network. The NN approximation
is computed for (t, v) ∈ [0,T ] × [0,R] for some time T > 0 and truncation value
R > 0.
To compute the NN approximation m(t, v; θ), the problem (21) is recast as the
following functional minimization problem [34, 35]

m(t, v; θ∗) = min
θ∈Θ

JS mol[m](t, v; θ), (23)

with θ∗ ∈ Θ a minimizing set of parameters and JS mol[m](t, v; θ) is

JS mol[m](t, v; θ) = ∥Rm(t, v; θ)∥2L2((0,T ]×[0,R]) + ∥m(0, v; θ) − m0(v)∥2L2([0,R]), (24)

where R is the residual operator defined by

Rm(t, v; θ) = ∂tm(t, v; θ) + ∂vQ[m](t, v; θ). (25)

The functional JS mol[m] and collision term QS mol[m] are discretized via a Quasi-
Monte Carlo method ([31], [32])). Sample points for the functional are drawn
from the Sobol sequence ([36]) in the unit square which are then mapped to the
discrete set S ⊂ (0,T ]× [0,R]. For the collision term, for each v, we draw samples
from the Sobol sequence in the unit square as before, but map the variables (v1, v2)
to the discrete intervals V1 ⊂ [0, v] and, for each v1, V2 ⊂ [v − v1,R], respectively.
The discretized collision operator is then given by

Q̂S mol[m](t, v; θ) =
v
|V1|

∑
v1∈V1

v1m(t, v1; θ)
(
|R + v1 − v|
|V2|

∑
v2∈V2

m(t, v2; θ)
)
, (26)

which leads to the semi-discretized residual

r̂(t, v; θ) = ∂tm(t, v; θ) + ∂vQ̂S mol[m](t, v; θ), (27)
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and so the semi-discrete functional ĴS mol[m](t, v; θ) to be minimized is

ĴS mol[m](t, v; θ) =
1
|S |

∑
(t,v)∈S

r̂(t, v; θ)2 +
1
|S 0|

∑
v∈S 0

(m(0, v; θ) − m0(v))2, (28)

where the set S 0 ⊂ S , |S 0| ≤ |S | denotes a subset of the volume samples in S .

3. A 3-Wave Kinetic Equation

In [16], a new identity for the energy of the solutions to 3-WKEs [15] is pre-
sented which takes the form of a conservation law [33]. This is the equation we
shall study in the present paper due to the simplicity provided by this form of the
equation. Specifically, there is no need to compute the resonant manifolds of the
system, though we emphasize that the method does not depend on this simplifica-
tion.

Let us write the equation to be solved. The equation is equivalent to (3) and is
explained in [15, 16]

∂tg(t, p) = p∂pQ[g](t, p) (t, p) ∈ R+ × R+,
g(0, p) = g0(p) ≥ 0 (t, p) ∈ {0} × R+,

(29)

where the collision term is given by

Q[g](t, p) = −2
∫ p

0

∫ p

0
(p1, p2)

γ
2−1g1g2χp,1,2dp2,1 +

∫ ∞

0

∫ ∞

0
(p1, p2)

γ
2−1g1g2χp,1,2dp2,1,

(30)
where we have used the notation gi = g(t, pi) for i = 1, 2, dp2,1 = dp2dp1 and
χp,1,2 = χ{p < p1 + p2} where χ{A} is the set characteristic function of some set A.
The parameter γ is the degree of the kernel as discussed in the introduction and
γ = 2 in the present work which corresponds to acoustic wave systems.

As in the previous section, we define a neural network approximation, g(t, p; θ)
to be a solution to the optimization problem [37]

g(t, p; θ∗) = min
θ∈Θ

J[g](t, p; θ), (31)

with θ∗ ∈ Θ a minimizing set of parameters of the functional

J[g](t, p; θ) = ∥r(t, p; θ)∥2L2(R+×R+) + ∥g(0, p; θ) − g0(p)∥2L2(R+), (32)

where, again, R denotes the residual operator of the evolution equation defined by

Rg(t, p; θ) = ∂tg(t, p; θ) − p∂pQ[g](t, p; θ). (33)
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The functional (32) is approximated via a Quasi-Monte Carlo method with
sample points drawn from the Sobol sequence in the unit square and then trans-
formed to some truncated rectangle of the time, wavenumber domain, i.e. we
generate the set W ∼ S obol([0,T ] × [0,R]), for T,R > 0 truncation parameters of
the time and wavenumber domain, respectively. The residual (33) is approximated
similarly where the set of sample points for (p1, p2) are given by P1 ∼ S obol(0, p)
for each p, and P2 ∼ S obol(p − p1, p) for each p, p1 in the first term of (30) and
P̂2 ∼ S obol(p − p1,R) for each (p, p1).

To see how these sample sets are defined, note that the collision term can be
rewritten as

Q[g](t, p) = −2
∫ p

0

∫ p

p−p1

(p1 p2)
γ
2−1g1g2dp2,1 +

∫ p

0

∫ R

p−p1

(p1 p2)
γ
2−1g1g2dp2,1,

(34)
where we have applied the truncation parameter of the wavenumber domain to the
second expression and enforced the restrictions p−p1 < p2 in both terms to satisfy
the characteristic set function and p1 < p to guarantee positivity of the variable
p2 in the second term. Thus, using the above collision operator and sample sets
defined in the previous paragraph, we can define the discrete collision operator to
be

Q̂[g](t, p) =
−2p
|P1||P2|

∑
p1∈P1

p
γ
2
1 g1

( ∑
p2∈P2

p
γ
2−1
2 g2

)
+

p
|P1||P̂2|

∑
p1∈P1

p
γ
2−1
1 g1

[
(R−p+p1)

( ∑
p2∈P̂2

p
γ
2−1
2 g2

)]
.

(35)
Using the discrete collision operator, we can define the semi-discrete residual

by
R̂g(t, p; θ) = ∂tg(t, p; θ) − p∂pQ̂[g](t, p; θ), (36)

and therefore we can minimize the semi-discrete functional

Ĵ[g](t, p); θ) =
1
|W |

∑
(t,p)∈W

R̂g(t, p; θ)2 +
1
|W0|

∑
p∈W0

(g(0, p; θ) − g0(p))2, (37)

where W0 ⊂ W, |W0| ≤ |W | contains only sample points for the wavenumber.

4. Numerical Results

In this section, we provide numerical results for the SCE with initial condition
(18) and compare with the anaylitc solution (20). A 3-WKE with initial condition
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(38) is then solved and the decay rate of the total energy is compared with the
results obtained in [15]. The same initial condition (38) is then used to obtain a
solution with the finite volume scheme developed in [16]. The results of the two
methods are discussed.

All deep learning tests were implemented in TensorFlow [38] with Keras [39].
Training was accelerated using multiple GPUs utilizing Horovod [40]. All com-
putations were performed on SMU’s computing cluster MII. The finite volume
computations were performed in Matlab.

4.1. Test 1
A simple, yet effective, architecture is chosen. Namely, it is enough to employ

a feedforward network with only two hidden layers with 128 hidden units in each
layer utilizing sigmoidal activation functions [41]. Given its simplicity, we can
write the neural network (NN) out explicitly as

m(t, v; θ) =Wσ(W2σ(W1 x⃗ + b1) + b2) + b,

with the entries of Wi,bi ∼ N(0, 1) for i = 1, 2, W, b ∼ N(0, 1) and σ(·) de-
noting the sigmoid function. To fully discretize the functional (28), we employ
TensorFlow’s built-in automatic differentiation method.

The training samples were drawn from the rectangle (0,T ] × [0,R] using the
strategy described above for T = 0.8 and R = 8. To achieve the results shown in
Figure 1, only the first 32 Sobol points were used to minimize the residual term
(16 time samples and 16 volume samples) and only the first 16 Sobol points were
needed to train on the initial data.

Figure 1 shows the neural network predictions on unseen data within the train-
ing interval. The inputs to the neural network to produce the plot were the first 128
Sobol points transformed to the volume training interval and t = 0.0, 0.2, 0.4 and
0.62. We see the NN solution gives a good approximation to the analytic solution.

In Figure 2, we quantify the match of the NN approximation to the analytic
solution by giving the sup norm of the error at each snapshot. Here, we supply the
first 210 Sobol points within the volume training interval and use the same points
in time t = 0.0, 0.2, 0.4, 0.62. We note here that while the NN performs well on
unseen points within the volume interval v ∈ [0,R], for v > R we generalization
error is larger. This is to be expected given the small training sample size used (16
volume points). We show the absolute error in Figure 3 for each snapshot in time
over the interval v ∈ [0, 1000] with 213 Sobol points in this volume interval. This
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Figure 1: Neural Network (NN) approximation to the Smoluchoswki equation (21). The
solid lines denote the analytic solution (20) and ∗ markers denote the NN approximation
at equivalent snapshots in time.
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Figure 2: Sup norm of the error at t = 0.0, 0.2, 0.4 and 0.62 where the maximum is taken
over the volume domain v ∈ [0, 10]. This shows the accuracy of the method on unseen
data points within the training interval.
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Figure 3: Absolute error of the NN approximation versus the analytic solution over the
volume interval v ∈ [0, 1000] with 213 volume samples given as input to the NN. We see
a slow growth in the error for large volume numbers.

result informed our decision to apply a batch sampling procedure for the wave
kinetic equation, the details of which are discussed below.

4.2. Test 2
We choose the initial condition

g0(p) =

√
7

2π
e−

7(p−2)2
2 . (38)

The neural network was trained using samples from the Sobol sequence in the
rectangle W ∼ S obol((0,T ] × [0,R]) for T = 10 and R = 10. As illustrated in
figure 4, the size of the sample set |W | was 215, which was broken up into smaller
training batches.
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Figure 4: Batched samples of Sobol points. (Top Left) All sample points. (Top Right and
Bottom Row) Example batches of sampled points.
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The architecture was again chosen to have 2 hidden layers, each with 128
units and sigmoidal activation functions. The loss was again minimized using
tensorflows implementation of ADAM. The collision terms were approximated
with the sampling procedure described above with each sample comprised of 32
Sobol points. We consider only the case γ = 2 here.

We show a few early snapshots of the approximated solution in Figure 5. The
behaviour seems consistent with predictions in that the L∞ norm decays as time
increases. This is more clearly evidenced by the total energy discussed in the
following paragraph. In Figure 5, we also present a comparison with the solution
computed the Finite Volume Scheme of [16]. This comparison will be described
later in this section, around equation (39)-(40).

The total energy of the solutions was computed and the log of the total energy
is plotted against the log of t. The comparison between the decay of the numerical
solution is made with the theoretical decay rate of t−1/2, obtained in [15] (see
(8)), in Figure 6. The total energy was predicted up to t = 148. From Figure 6,
the energy decays and the decay is in good agreement with the theoretical rate
obtained in [15].

The neural network is able to make reasonable predictions for very large, un-
seen in training, samples in the wave number domain. In Figure 7, we see the
predicted solution for wavenumber values up to 1e+06. In contrast, the most we
could push for reasonable predicitons in time was t = 148 as previously reported
in the results shown in figure 6. For better predictions in time, we needed to en-
force more dense sampling in the time domain. Thus, the neural network was not
only trained on the set W for T= 10, but also for T = 5 and T = 2 with the same
number of sample points, 215.

Comparison with a Finite Volume Scheme
As mentioned earlier, to validate the results, we provide a comparison with

another model. Here we use the finite volume scheme presented in [16], which
we briefly outline below.

The discretization of the wavenumber domain p ∈ [0,R], is given as follows.
Let i ∈ {0, 1, 2, . . . ,M} = IM

h , with h ∈ (0, 1) fixed and M = M(h). Define the set
S d = {0, . . . ,R} to be the discretization of the interval [0,R]. Let

S d = {pi+1/2}i∈IM
h
, {pi}i∈IM

h \{0}
=

pi+1/2 + pi−1/2

2
, {∆pi}i∈IM

h \{0}
= pi+1/2 − pi−1/2 ≤ h,

(39)

16



Figure 5: Top Picture: A few snapshots of the NN approximation corresponding to initial condition
(38). Bottom Picture: Comparative snapshots of the FVS solution for the same initial condition
(38). 17



Figure 6: Top Picture: Log-Log plot of the total energy corresponding to initial condition (38) as
predicted up to t = 148 the NN. Bottom Picture: The total energy computed for t ∈ [0, 148] with
the FVS. 18



Figure 7: Top picture: Neural network prediction corresponding to initial condition (38) for
wavenumbers up to 1e+06. Bottom picture: The finite volume solution for wavenumbers up to
p = 250, the largest value for which stability is maintained without further decreasing ∆t. The two
figures highlight a key strength of the presented method, in that the neural network approxima-
tion is consistent with more traditional solvers but is able to produce results for computationally
prohibitive values of the wavenumber for traditional methods while maintaining positivity and sta-
bility.

19



define the faces, pivots and step-size respectively, with p1/2 = 0 and pM+1/2 = R.
For simplicity, we use a uniform grid and set h = 0.01 which leads to

S d = {ih}i∈IM
h
, {pi}i∈IM

h \{0}
=

h
2

(2i − 1), {∆pi}i∈IM
h \{0}
= h ∈ (0, 1).

The set TN = {0, . . . ,T } with N + 1 nodes and T = 148 is the maximum time. We
fix the time step to be ∆t = T

N = 0.005, and denote by tn = ∆t ·n for n ∈ {0, . . . ,N}.
We approximate equation (29) by

gn+1(pi) = gn(pi) + λi

(
Qn

i+1/2

[g
p

]
− Qn

i−1/2

[g
p

])
, (40)

where λi =
pi∆t
∆pi

, and

Qn
i+1/2

[g
p

]
−Qn

i−1/2

[g
p

]
= −2

(
Qn

1,i+1/2

[g
p

]
−Qn

1,i−1/2

[g
p

])
+

(
Qn

2,i+1/2

[g
p

]
−Qn

2,i−1/2

[g
p

])
,

with

Qn
1,i+1/2

[g
p

]
=

i∑
m=1

∆pm
gn(pm)

pm

( i∑
j=1

∆p j
gn(p j)

p j
a(pm, p j)χ

{
pi+1/2 < pm + p j

})
, (41)

Qn
2,i+1/2

[g
p

]
=

M∑
m=1

∆pm
gn(pm)

pm

( M∑
j=1

∆p j
gn(p j)

p j
a(pm, p j)χ

{
pi+1/2 < pm + p j

})
, (42)

where we have used the midpoint rule to approximate the integrals in equation
(29) and we choose an explicit time stepping method.

The initial condition (38) is approximated by

g0(pi) =
1
∆pi

∫ pi+1/2

pi−1/2

g0(p)dp ≈ g0(pi),

by again employing the midpoint rule.
We draw the reader’s attention again to Figure 5 where a few comparative

snapshots of the solution are provided. Qualitatively, the two models seem to
agree and capture the main features of the theorized behavior of solutions. Namely,
an evacuation of the energy within any finite interval. Further, as is typical of
simple feedforward architectures, the finer oscillations seen in the FVS solutions
appear to be averaged out in the NN solution as expected. For our purposes, the
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dynamics captured by the simple feed-forward architecture we have employed
here are enough to confirm the theory presented in [15]. We leave it to a future
work to investigate more complicated architectures. For example, the architecture
described in [42] is able to capture highly oscillatory solutions for the stationary
Navier-Stokes equations.

In Figure 6 (bottom) we see the decay rate of the total energy as provided by
the computed solution of the FVS, which is compared with the predicted values
by the NN (top). Both models are in good agreement with the theorized bound on
the rate of decay [16, 15], though the FVS appears to capture a slightly faster rate
of decay.

Looking back to Figure 7, we make a comparison with the computed solu-
tion of the finite volume method for large wavenumber values with predictions
provided by the neural network. Here, we have increased h to 0.8 and R = 250
while keeping the timestep fixed at ∆t = 0.005 as in the previous figures. The two
figures highlight a key strength of the presented deep learning method, in that the
neural network approximation is consistent with more traditional solvers but is
able to produce results for computationally prohibitive values of the wavenumber
for traditional methods, while maintaining positivity and stability. Indeed, con-
structing positivity preserving schemes for PDEs is a very important direction of
research [43, 44, 45]. For the FVS (40), the positivity and thus stability is lost for
wavenumber values larger than 250 with the timestep set at ∆t = 0.005. In or-
der to preserve the positivity of the solutions produced by the FVS (40), the CFL
condition is restrictive and the time step ∆t needs to be chosen sufficiently small
as shown in Proposition 3.1 of [16]. As thus, being able to preserve the positivity
of the solutions is indeed a very important feature of the presented deep learning
approximation.

5. Conclusions

We present a deep learning approximation, stochastic optimization based, method
for the 3-wave kinetic equation, studied theoretically in [15] and numerically in
[16]. We first apply the method to a Smoluchowski coagulation equation with
multiplicative kernel for which an analytic solution exists. The deep learning
method is proved to give a good approximation of the analytic solution. Next, the
learning approach is then used to approximate the solution of the 3-wave kinetic
equation. The deep learning approximation is tested and proved to be as good
as the Finite Volume approximation introduced in [16] for the same equation and
both approximations are in good agreement with the theoretical results of [15].
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