
WAVE TURBULENCE AND COLLECTIVE BEHAVIOR MODELS FOR WAVE
EQUATIONS WITH SHORT- AND LONG-RANGE INTERACTIONS

ALEJANDRO ACEVES1, RICARDO ALONSO2, MINH-BINH TRAN3,∗

1Department of Mathematics, Southern Methodist University, Dallas, Texas 75275, USA
2Department of Mathematics, Texas A & M University at Qatar, PO Box 23874, Education City Doha, Qatar

3Department of Mathematics, Southern Methodist University, Dallas, Texas 75275, USA

Dedicated to the memory of Professor Roland Glowinski.

Abstract. In this work, we discuss a situation which could lead to both wave turbulence and collective behavior
kinetic equations. The wave turbulence kinetic models appear in the kinetic limit when the wave equations have
local differential operators. Viewing wave equations on the lattice as chains of anharmonic oscillators and replacing
the local differential operators (short-range interactions) by non-local ones (long-range interactions), we arrive at
a new Vlasov-type kinetic model in the mean field limit under the molecular chaos assumption reminiscent of
models for collective behavior in which anharmonic oscillators replace individual particles.
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1. INTRODUCTION

Having the origin in the works of Peierls [71, 72], Hasselmann [50, 51], Benney-Saffman-Newell [11, 12],
Zakharov [88], wave turbulence (WT) theory describes the dynamics of weakly nonlinear and dispersive waves
(classical or non-classical) out of thermal equilibrium. Even though wave fields describing the processes of random
wave interactions in nature are enormously diverse, a common mathematical framework can be used to model the
dynamics of spectral energy transfer in both quantum or classical wave systems. In this mathematical framework,
the probability density functions associated with weakly nonlinear wave interactions are solutions of wave kinetic
(WK) equations. Over the years, WK equations have been shown to play important roles in a vast range of physical
applications, as discussed in the books [88, 67]. We also mention closely related kinetic models developed when
the interest focuses in the interaction of particles and oscillators, see for example [32].

In addition, since the realization of Bose-Einstein condensation (BEC) in trapped atomic vapors of 23Na [30],
87Rb [6] and 7Li [17], a period of intense theoretical and experimental research has been initiated. A theoretical
Quantum Kinetic (QK) theory, which takes into account the coupled non-equilibrium dynamics of both the thermal
cloud of the Bose gas and the BEC under investigation, is needed to support the experimental results. Although
being used to described different physical phenomena, QK kinetic equations are quite similar with WT ones [73,
84, 85]. During the last few years, there has been a growing interests in rigorously understanding those kinetic
equations. Starting with the pioneering work of Lukkarinen and Spohn [63], there have been a lot of recent works
in in rigorously deriving WK equations (see, for instance [5, 18, 19, 25, 26, 34, 35, 38, 39, 40, 41, 79] and the
references therein). The analysis of WK and QK equations is also a topic of current interest. We list here an
incomplete list and refer to the references therein for more detailed descriptions of the literature [2, 3, 7, 8, 9, 20,
31, 42, 43, 44, 45, 46, 47, 54, 60, 61, 62, 69, 68, 77, 76, 78, 82, 83].
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Collective behavior of self-propelled particles such as swarming of bacteria, schooling of fishes, flocking of
birds and mobile agents, appears in many contexts [14, 27, 29, 28, 37, 53, 65, 70, 86, 89]. How and when clusters
emerge, and what type of rules of engagement in influences clusters are among the questions that have been
attracted the attention of scientists for decades. Over the last years, there have been growing interests in the
mathematical community in studying those models rigorously. We list here only a few of those works and refer the
readers to the references therein as the list is quite incomplete [1, 10, 15, 21, 22, 33, 36, 48, 49, 52, 55, 58, 64, 66,
75, 80, 81].

In this paper, we discuss a connection between wave turbulence and collective behavior kinetic models. Starting
from the weakly nonlinear wave equation on the lattice, it has been showed [63, 79] that the wave kinetic equations
can be derived rigorously, under suitable assumptions on the randomization of the initial condition and the wave
equations. This procedure is summarized in Section 2 for a wave equation with a quadratic nonlinearity and
the kinetic equation under consideration is the 3-wave kinetic equation (2.24). However, by using other type of
nonlinearities, we could arrive at different wave kinetic equations, with the same procedure. It is well-known in the
physical community that chains of anharmonic oscillators, such as the Fermi-Pasta-Ulam-Tsingou (FPTU), also
exhibit collective behaviors, if the interactions are long-range (see for instance [23, 24]). As wave equations on
the lattice could also be viewed as chains of anharmonic oscillators, by replacing the local differential operators
(for example, the Laplace or Biharmonic operators) in the wave equations by operators that describe long-range
interactions (for example, the fractional Laplace operators), we could expect to obtain models that exhibit collective
behaviors. One of the key difference between our chains of anharmonic oscillators and models for consensus,
flocking and swarming [29, 28, 49] is that, in our case, the system under consideration will need to “label” the
location of the oscillator in the lattice. This is done by adding a new kinetic variable in the density distribution of
anharmonic oscillators representing such location.

In Section 3, we derive formally three Vlasov-type kinetic equations (3.17), starting from a wave equation
whose differential operator is a fractional Laplacian. Here, the density g is not only a function of the position
r (of the oscillation), the velocity v (of the oscillation), the time t variables but also of an additional continuous
variable x, which “labels” the location of the anharmonic oscillator in the lattice. This framework is reminiscent
of polyatomic and multicomponent models that add a kinetic variable to differentiate species, see for example [16]
and references therein.

Let us mention, however, that the concept of “label” has been previously introduced in consensus models in the
work of Biccari, Ko and Zuazua [13], which considers “networked consensus models” and has an inspiration from
the previous work of Kawamura [56] on the nonlocal Kuramoto-Sakaguchi equation, where the “label” is indeed
as a location vector. A different form of the Kuramoto-Sakaguchi equation is used in [4], where the distribution
function f depends on the state θ and the natural frequency Ω, which represents the “label”.

These type of Vlasov-type kinetic equations are recent and increasingly important in the literature and their
mathematical properties are open for investigation. Due to the scope of our paper, in Section 3, we only focus on
an example of a linear wave equation.

In considering collective behavior, we are reminded of the surprising recurrence result in FPUT, that countered
the expected thermalization. It is perhaps the nearest neighbor coupling (i.e. local interaction as in classical random
walk) combined with nonlinearity that triggers this behavior. Alternatively, in the canonical model for global cou-
pling, the Kuramoto model [59], at sufficiently high coupling strength, collective synchronous behavior emerges,
which overcomes the expected deviations from the natural frequency of the ideally identical oscillators. The ques-
tion is, if these observations are representative in our newly obtained Vlasov-type kinetic equations. A perhaps
subtle but important difference between the Kuramoto model and wave-like and corresponding Schödinger-like
models, is that in the first one the state variable referred to as an angle is real, whereas in particular in applications
on electromagnetism and quantum mechanics, in the second case the state variable is complex. In this second case
recent research in quantum mechanics and photonics suggests the importance of long range (global) coupling of
for example photonic resonators of fiber amplifiers, to enhance coherence. In fact, it is coherence that one views
as the order parameter than in the Kuramoto models measures the degree of synchronization.

Acknowledgements. We dedicate this paper to the Special Issue of the Journal in honor of Professor Roland
Glowinski. M.-B. T would like to express his gratitude toward Professor Roland Glowinski for his constant guid-
ance, support and friendship over the years. M.-B.T would also like to thank Dongnam Ko for the fruitful remarks
on Collective Behavior Theory and the explanations of the work [4, 13, 56].
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2. WAVE TURBULENCE KINETIC MODELS FOR DISCRETE NONLINEAR WAVE EQUATIONS WITH

SHORT-RANGE INTERACTIONS

Let us first start with a nonlinear wave equation, with a quadratic nonlinearity. However, our discussion could
be extended to cubic and higher order nonlinearities.

∂ 2ψ

∂ t2 (x, t) + L ψ(x, t) +λψ
2(x, t) = 0,

ψ(x,0) = ψ0(x),
∂ψ

∂ t
(x,0) = ψ1(x),

(2.1)

for x being on the torus [0,1]d , t ∈ R+, λ is a small constant describing the smallness of the nonlinearity. We
suppose that the interactions are short-range, which is, the operator L is a standard local differential operator,
for instance, when L = ∆, we obtain the Klein-Gordon equation and when L = −∆2, we obtain the beam wave
equation. Similar with [79], we introduce the finite volume mesh, namely

Λ = Λ(D) =

{
0,

1
2D+1

. . . ,
2D

2D+1

}d

, (2.2)

for some constant D ∈ N. As we will work on the Fourier transform, we define the mesh size of the frequency
space to be

h =
1

2D+1
. (2.3)

We follow [79] and introduce discretized equation

∂ttψ(x, t) = −∑
y∈Λ

O1(x− y)ψ(y, t) − λ (ψ(x, t))2,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = ψ1(x), ∀(x, t) ∈ Λ×R+,
(2.4)

in which O1(x−y) is the finite difference operator obtained from the continum operator L . We now introduce the
discrete Fourier transform

ψ̂(k) = hd
∑
x∈Λ

ψ(x)e−2πik·x, k ∈ Λ
∗ = Λ

∗(D) = {−D, · · · ,0, · · · ,D}d . (2.5)

At the end of this standard procedure, (2.4) can be rewritten in the Fourier space as a system of ODEs

∂ttψ̂(k, t) = −
(
ω̄(k)

)2
ψ̂(k, t) −λ ∑

k=k1+k2;k1,k2∈Λ∗
ψ̂(k1, t)ψ̂(k2, t),

ψ̂(k,0) = ψ̂0(k), ∂tψ̂(k,0) = ψ̂1(k).
(2.6)

In the beam wave case, L =−∆2 and the dispersion relation takes the discretized form (see [74])

ω̄(k) = sin2(2πhk1)+ · · ·+ sin2(2πhkd), (2.7)

with k = (k1, · · · ,kd). Later, we will also need the rescaled dispersion relation

ω(k) = sin2(2πk1)+ · · ·+ sin2(2πkd). (2.8)

We define the inverse Fourier transform

f (x) = ∑
k∈Λ∗

f̂ (k)e2πik·x, (2.9)

as well as the shorthand notations∫
Λ

dx = hd
∑
x∈Λ

, 〈 f ,g〉 = hd
∑
x∈Λ

f (x)∗g(x), 〈x〉 =
√

1+ |x|2, ∀x ∈ Rd , (2.10)

where if z ∈ C, then z∗ is the complex conjugate. We also denote

∑
k∈Λ∗

=
∫

Λ∗
dk. (2.11)

In addition, for any N ∈ N\{0}, similar with [79], we define the delta function δN on (Z/N)d as

δN(k) = |N|d1(k mod 1 = 0), ∀k ∈ (Z/N)d , (2.12)
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in which the sub-index N is commonly omitted and written as

δ (k) = |N|d1(k mod 1 = 0), ∀k ∈ (Z/N)d . (2.13)

Equation (2.6) can now be expressed as a coupling system

∂tq(k, t) = p(k, t),

∂t p(k, t) = −
(
ω̄(k)

)2q(k, t)

−λ

∫
(Λ∗)2

dk1dk2δ (k− k1− k2)q(k1,T )q(k2, t),

q(k,0) = ψ̂0(k), p(k,0) = ψ̂1(k), ∀(k, t) ∈ Λ
∗×R+,

(2.14)

which, under the transformation (cf. [87])

a(k, t) = ω̄(k)q(k, t) +
i

ω̄(k)
p(k, t), (2.15)

with the inverse

q(k,T ) =
1

2ω̄(k)

[
a(k) + a∗(−k)

]
,

p(k,T ) = i
ω̄(k)

2

[
−a(k) + a∗(−k)

]
,

(2.16)

leads to the following system of ordinary differential equations

∂ta(k, t) = − iω̄(k)a(k, t) − iλ
∫
(Λ∗)2

dk1dk2δ (k− k1− k2)×

× [8ω̄(k)ω̄(k1)ω̄(k2)]
−1
[
a(k1, t) + a∗(−k1, t)

][
a(k2, t) + a∗(−k2, t)

]
,

a(k,0) = a0(k) =
1
2

[
ω̄(k)q(k,0) +

i
ω̄(k)

p(k,0)
]
,∀(k, t) ∈ Λ

∗×R+.

(2.17)

Let a,a∗ denote the vectors (ak)k∈Λ∗ , (a∗k)k∈Λ∗ , and let us set

H(a,a∗) = H1(a,a∗) + λH2(a,a∗), (2.18)

with

H1(a,a∗) = ∑
k∈Λ∗B

1
2

ω̄(k)|ak|2,

H2(a,a∗) = ∑
k,k1,k2∈Λ∗

W (k,k1,k2)δ (k− k1− k2)
[
a(k1, t) + a∗(−k1, t)

]
×
[
a(k2, t) + a∗(−k2, t)

]
a∗k ,

W (k,k1,k2) = [ω̄(k)ω̄(k1)ω̄(k2)]
−1, M (k,k1,k2) = [8ω̄(k)ω̄(k1)ω̄(k2)]

−1. (2.19)

We then obtain the system

∂tak = i
∂H(a,a∗)

∂a∗k
. (2.20)

By defining
â(k,1, t) = ak(t), and â(k,−1, t) = a∗k(t), (2.21)

we rewrite the system (2.17) as

∂t â(k,σ , t) = −iσω̄(k)â(k,σ , t)dt − iσλ ∑
σ1,σ2∈{±1}

∑
k1,k2∈Λ∗

δ (σk−σ1k1−σ2k2)

×M (k,k1,k2)â(k1,σ1, t)â(k2,σ2, t),

â(k,1,0) = a0(k), ∀(k, t) ∈ Λ
∗×R+.

(2.22)
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For sake of simplicity, we also denote â(k,σ , t) as ât(k,σ)

∂t ât(k,σ) = −iσω̄(k)ât(k,σ)dt − iσλ ∑
σ1,σ2∈{±1}

∑
k1,k2∈Λ∗

δ (σk−σ1k1−σ2k2)

×M (k,k1,k2)ât(k1,σ1)ât(k2,σ2),

â0(k,1) = a0(k), ∀(k, t) ∈ Λ
∗×R+.

(2.23)

By setting
fλ ,D(k, t) = 〈ât(k,−1), ât(h−1k,1)〉,

and scaling k→ hk, in the kinetic limit of D→ ∞, λ → 0 and t = λ−2τ = O(λ−2), under suitable randomization
of the system, we obtain [79]

lim
λ→0,D→∞

fλ ,D(k,λ
−2

τ) = f (k,τ)

which solves the wave turbulence model

∂τ f (k, t) = C [ f ](k), f (k,0) = f0(k), ∀k ∈ Td ,

C [ f ](k) =
∫
T6

K(ω,ω1,ω2)δ (k− k1− k2)δ (ω−ω1−ω2)[ f1 f2− f f1− f f2]dk1dk2

− 2
∫
T6

K(ω,ω1,ω2)δ (k1− k− k2)δ (ω1−ω−ω2)[ f2 f − f f1− f1 f2]dk1dk2,

(2.24)

where f = f (k), f1 = f (k1), f2 = f (k2), ω =ω(k), ω1 =ω(k1), ω2 = f (k2) and K(k,k1,k2) = [8ω(k)ω(k1)ω(k2)]
−1.

3. COLLECTIVE BEHAVIOR KINETIC MODELS OF DISCRETE NON-LOCAL WAVE EQUATIONS WITH

LONG-RANGE INTERACTIONS

The model (2.20) is indeed a chain of anharmonic oscillators, in which the Hamiltonian H given by (2.18). The
collective behavior of chains of anharmonic oscillators is a subject of growing interests in the physical community.
For instance, in the case of the Fermi-Pasta-Ulam chains, the collective behavior can be obtained via a long-range
interaction generalisation, in which the interactions are chosen to be non-local (see for instance [23, 24]). Inspired
by this idea, we replace the local operator L by a non-local one. As an illustration, we consider L = (−∆)α with
0 < α < 1 and obtain the following discrete wave equation with long-range lattice interactions (see [57] for the
same setting for the nonlinear Schödinger equation)

∂ttψ(x, t) = hd
∑

y∈Λ,y6=x

ψ(y, t)−ψ(x, t)
|y− x|d+2α

− λ (ψ(x, t))2,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = ψ1(x), ∀(x, t) ∈ Λ×R+.

(3.1)

Note that hd
∑y∈Λ,y6=x

ψ(y,t)−ψ(x,t)
|y−x|d+2α

is the discretized version of the fractional Laplacian

(−∆ψ)α =− Cd,α

∫
Td

dy
ψ(y, t)−ψ(x, t)
|y− x|d+2α

, (3.2)

with Cd,α = 4α Γ(d/2+α)

π
d
2 |Γ(−α)|

.

In the scope of our paper, we restrict our considerations to the linear case λ = 0

∂ttψ(x, t) = hd
∑

y∈Λ,y6=x

ψ(y, t)−ψ(x, t)
|y− x|d+2α

,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = ψ1(x), ∀(x, t) ∈ Λ×R+,

(3.3)

or equivalently, if we set rx(t) = ψ(x, t) and vx(t) = ∂tψ(x, t), the following system can be obtained (cf. (2.14))

∂trx = vx, ∂tvx = hd
∑

y∈Λ,y6=x

ry− rx

|y− x|d+2α
,

rx(0) = ψ0(x), vx(0) = ψ1(x), ∀(x, t) ∈ Λ×R+.

(3.4)
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Under suitable randomization of the initial conditions ψ0(x) and ψ1(x), this system of equations describes the
long-range interactions of the lattice points Λ and

(ψ(x, t),∂tψ(x, t))

represents the phase space position of the x-particle at time t. Due to the long-range interactions between the
N = (2D+ 1)d particles, a collective behavior dynamics is expected for (3.3), similar to what happens for the
Fermi-Pasta-Ulam chains with long-range interactions [23, 24].

Next, we will discuss “mean-field limit” of the above system by taking the limit h → 0 or, equivalently
h−d = N = (2D+ 1)d → ∞. Formally, it is not a difficult task to derive the mean-field limit equation for Hamil-
tonian dynamics, see for instance [49] for the case of the Cucker-Smale model. Rigorously, such derivations are
challenging, especially when the interaction potentials are singular which is the current case. We assume that the
initial data are chosen in a way that the empirical measure N−1

∑x∈Λ δQx δPx weakly converges in the limit N→∞ to
the to the absolutely continuous measure g0(r,v)drdv with some smooth density g0(r,v). Here, r and v are numbers
in R. We ask whether at some positive time t > 0 the empirical measure N−1

∑x∈Λ δQx(t)δPx(t) weakly converges to
g(r,v, t)drdv with a density g(r,v, t) satisfying some limiting evolution equation. Physically, the equation follows
from the Liouville theorem, assuming that the number of particles is large enough such that it becomes meaningful
to observe the distribution function

gN = gN(t,(x,rx,vx)x∈Λ). (3.5)

Defining the one-particle marginal distribution

ρ
N (t,x,rx,vx) =

∫
R(d+2)(|Λ|−1) ∏

z∈Λ\{x}
dzdrz dvz gN(t,(z,rz,vz)z∈Λ), (3.6)

where |Λ| denotes the number of grid points. We now follow the BBGKY hierarchy to derive formally the kinetic
description. To this end denote ∆h the discrete Laplacian in d-dimensions with d ≥ 2. Set Φh

β
(x) = (∆h)−1|x|β for

β 6=−2 and x ∈ Λ. Since ∆| · |β+2 = (β +2)(d +β )| · |β we have that

Φ
h
β
(x)→ cβ ,d |x|β+2 as h→ 0 , cβ ,d =

1
(β +2)(d +β )

,

in which the boundary condition of the problem ∆Φβ = |x|β is chosen appropriately such that the discretised
sequence {Φh

β
(x)}h∈Λ has the desired limit. The Liouville equation reads, setting in the sequel β =−d−2α ,

∂tgN + ∑
x∈Λ

vx∂rx gN + hd
∑
x∈Λ

∂vx

(
∑

y∈Λ,y 6=x
(ry− rx)(∆

h
Φ

h
β
)(y− x)gN

)
= 0 . (3.7)

We will now integrate both sides of (3.7) with respect to drydvy, with y ∈ Λ\{x}, to study the marginal distribution
ρN(x,rx,vx). Under the assumption that gN is rapidly decaying at infinity, the transport term in (3.7) amounts to∫

R(d+2)(|Λ|−1) ∏
y∈Λ\{x}

dydrydvy

(
∑
z∈Λ

vz∂rzg
N(t,(z,rz,vz)z∈Λ)

)
= vx∂rx ρ

N(t,x,rx,vx). (3.8)

We next study the forcing term, which, by integration by parts reads

hd
∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy

[
∑
z∈Λ

∂vz

(
∑

s∈Λ,s 6=z
(rs− rz)(∆

h
Φ

h
β
)(s− z)gN

)]
= hd

∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy

[
∂vx

(
∑

s∈Λ,s 6=x
(rs− rx)(∆

h
Φ

h
β
)(s− x)gN

)]
.

(3.9)

We move ∂vx and the quantity ∑s∈Λ,s 6=x Φh
β
(s− x) outside of the integral and obtain

hd
∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy

[
∑
z∈Λ

∂vz

(
∑

y∈Λ,y6=z
(ry− rz)(∆

h
Φ

h
β
)(y− z)gN

)]
= ∂vx

(
hd

∑
s∈Λ,s 6=x

(∆h
Φ

h
β
)(s− x)

∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy(rs− rx)gN

)
.

(3.10)
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We define the two-particle marginal function

ρ
N(t,x,rx,vx,y,ry,vy) =

∫
R(d+2)(|Λ|−1) ∏

z∈Λ\{x,y}
dzdrzdvz gN(t,(z,rz,vz)z∈Λ), (3.11)

and find

hd
∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy ∑

z∈Λ

∂vz

(
∑

y∈Λ,y 6=z
(ry− rz)(∆

h
Φ

h
β
)(y− z)gN

)
= ∂vx

(
hd

∑
s∈Λ,s 6=x

(∆h
Φ

h
β
)(s− x)

∫
R2+d

dsdrs dvs (rs− rx)ρ
N
)
.

(3.12)

This leads to the following equation for the one-particle marginal function ρN

∂tρ
N + vx∂rx ρ

N

+ ∂vx

(
hd

∑
s∈Λ,s 6=x

(∆h
Φ

h
β
)(s− x)

∫
R2+d

dsdrs dvs (rs− rx)ρ
N
)

= 0. (3.13)

Recall that ∆h is a self-adjoint operator acting on the lattice location variable s ∈ Λ, consequently

hd
∑

s∈Λ,s 6=x
(∆h

Φ
h
β
)(s− x)

∫
R2+d

dsdrs dvs (rs− rx)ρ
N

= hd
∑

s∈Λ,s 6=x
(∆h

Φ
h
β
)(s− x)

∫
R2+d

dsdr̃ dṽ(r̃− rx)ρ
N

=
∫
R2+d

dsdr̃ dṽ(r̃− rx)〈Φh
β
(·− x),(∆h

ρ
N)(t,x,r,v, ·, r̃, ṽ)〉

Passing to the mean-field limit N→ ∞, we obtain the one- and two-particle density functions (dropping the sub-x
notation)

lim
N→∞

ρ
N(t,x,rx,vx) = g(t,x,r,v),

lim
N→∞

ρ
N(t,x,rx,vx,s, r̃, ṽ) = g̃(t,x,r,v,s, r̃, ṽ),

(3.14)

and the formal limit (note that β +2 >−d)

〈Φh
β
(x−·),(∆h

ρ
N)(t,x, ·,r,v, r̃, ṽ)〉 → cβ ,d

∫
Rd
|s− x|β+2(∆sg̃)(t,x,r,v,s, r̃, ṽ)ds ,

which leads to the mean-field equation

∂tg(t,x,r,v) + v∂rg(t,x,r,v)

+ cβ ,d ∂v

(∫
R2

dr̃ dṽ(r̃− r)
∫
Td

ds
|s− x|d+2α−2 (∆sg̃)(t,x,s,r,v, r̃, ṽ)

)
= 0.

(3.15)

If, in addition, we make the molecular chaos assumption

g̃(t,x,s,r,v, r̃, ṽ) = g(t,x,r,v)g(t,s, r̃, ṽ), (3.16)

then,

cβ ,d

∫
R2

dr̃ dṽ(r̃− r)
∫
Td

ds
|s− x|d+2α−2 (∆sg̃)(t,x,s,r,v, r̃, ṽ)

= cβ ,d g(t,x,r,v)
∫
R2

dr̃ dṽ(r̃− r)
∫
Td

ds
|s− x|d+2α−2 (∆sg)(t,s, r̃, ṽ)

=C−1
d,α g(t,x,r,v)

∫
R2

dr̃ dṽ(r− r̃)(−∆x)
α g(t,x, r̃, ṽ)

=: C−1
d,α Σg(t,x,r)g(t,x,r,v) ,

and deduce from (3.15) the Vlasov-type equation

∂tg(t,x,r,v) + v∂rg(t,x,r,v) + C1[g,g](t,x,r,v) = 0, (3.17)
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with

C1[g,g] : =C−1
d,α Σg(t,x,r)∂vg(t,x,r,v)

Σg(t,x,r) = (−∆x)
α

∫
R2

dr̃ dṽ(r− r̃)g(t,x, r̃, ṽ).

Here (−∆x)
α is the fractional Laplacian in the torus. When the wave equation is set in the whole space we obtain,

by an identical formal argument, the fractional Laplacian in Rd .
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[21] M. Caponigro, M. Fornasier, B. Piccoli, and E. Trélat. Sparse stabilization and control of alignment models.
Mathematical Models and Methods in Applied Sciences, 25(03):521–564, 2015.

[22] J. A. Carrillo, Y.-P. Choi, and M. Hauray. The derivation of swarming models: mean-field limit and wasser-
stein distances. In Collective dynamics from bacteria to crowds, pages 1–46. Springer, 2014.

[23] H. Christodoulidi, T. Bountis, C. Tsallis, and L. Drossos. Dynamics and statistics of the fermi–pasta–ulam β -
model with different ranges of particle interactions. Journal of Statistical Mechanics: Theory and Experiment,
2016(12):123206, 2016.

[24] H. Christodoulidi, C. Tsallis, and T. Bountis. Fermi-pasta-ulam model with long-range interactions: Dynam-
ics and thermostatistics. EPL (Europhysics Letters), 108(4):40006, 2014.

[25] C. Collot and P. Germain. On the derivation of the homogeneous kinetic wave equation. arXiv preprint
arXiv:1912.10368, 2019.

[26] C. Collot and P. Germain. Derivation of the homogeneous kinetic wave equation: longer time scales. arXiv
preprint arXiv:2007.03508, 2020.

[27] I. D. Couzin, J. Krause, N. R. Franks, and S. A. Levin. Effective leadership and decision-making in animal
groups on the move. Nature, 433(7025):513–516, 2005.

[28] F. Cucker and S. Smale. Emergent behavior in flocks. IEEE Transactions on automatic control, 52(5):852–
862, 2007.

[29] F. Cucker and S. Smale. On the mathematics of emergence. Japanese Journal of Mathematics, 2(1):197–227,
2007.

[30] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn, and W. Ketterle.
Bose-Einstein condensation in a gas of sodium atoms. Physical review letters, 75(22):3969, 1995.

[31] S. De Bièvre, T. Goudon, and A. Vavasseur, Particles interacting with a vibrating medium: existence of
solutions and convergence to the Vlasov- Poisson system. SIAM J. Math. Anal., 48(6), 3984–4020, 2016.
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