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Abstract

When the temperature of a trapped Bose gas is below the Bose-Einstein transition
temperature and above absolute zero, the gas is composed of two distinct components:
the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of the
excitations can be described by quantum Boltzmann models. We establish a connection
between quantum Boltzmann models and chemical reaction networks. We prove that
the discrete differential equations for these quantum Boltzmann models converge to an
equilibrium point. Moreover, this point is unique for all initial conditions that satisfy
the same conservation laws. In the proof, we then employ a toric dynamical system
approach, similar to the one used to prove the global attractor conjecture, to study the
convergence to equilibrium of quantum kinetic equations, derived in [49, 50].
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1 Introduction

Several years after the invention of the Boltzmann–Nordheim equation, which is the quan-
tum version of the classical Boltzmann one, to describe the evolution of dilute quantum
gases (cf. [40, 51]), a renewal in the kinetic theory of bosons has started by the pioneering
work of Kirkpatrick and Dorfman [34, 35]. This work of Kirkpatrick and Dorfman was
later extended by Zaremba, Nikuni and Griffin [54], in which the full coupling system of
a quantum Boltzmann equation for the density function of the normal fluid/thermal cloud
and a Gross–Pitaevskii equation for the wavefunction of the BEC has been introduced. In
an independent work, the same model was derived by Pomeau, Brachet, Métens and Rica
in [52]. We prefer to [26, 41] for further discussions on the topic. In the models by Zaremba,
Nikuni and Griffin and Pomeau, Brachet, Métens and Rica , there are two type of collisional
processes.

• The 1 ↔ 2 interactions between the condensate and the excited atoms, described by
the C12 collision operator.

• The C22 collision operator describes The 2↔ 2 interactions between the excited atoms
themselves, described by the C22 collision operator.

A third collisional process, previously missing, was proposed by Reichl and Gust [28, 44].
This process takes into account 1↔3 type collisions between the excitations and is described
by the collision operator C31. However, the derivation of the new collision operator C31 was
very complicated, since it involves the computations of around 40000 individual terms. As a
result, a concise mathematical justification for the existence of the missing collision operator
C31 had been open for many years, and has been solved only until recently in [49].

The spatial homogeneous kinetic equation for the evolution of the density function f(t, p)
of the thermal cloud, derived in [49][Section I], takes the form
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∂tf(p) = C12[f ](p) + C22[f ](p) + C31[f ](p), (1.1)

in which the forms of C12, C22, C31 are given explicitly below

C12[f ](t, p) = 4π
g2n

V

∑
p1,p2,p3 6=0

(δ(p− p1)− δ(p− p2)

− δ(p− p3))

× δ(ω(p1)− ω(p2)− ω(p3))(K12
123)2δ(p1 − p2 − p3)

×
[
f(p2)f(p3)(f(p1) + 1)− f(p1)(f(p2) + 1)(f(p3) + 1)

]
,

(1.2)

C22[f ](t, p) =
g2π

V 2

∑
p1,p2,p3,p4 6=0

(δ(p− p1) + δ(p− p2)

− δ(p− p3)− δ(p− p4))(K22
1234)2

× δ(p1 + p2 − p3 − p4)δ(ω(p1) + ω(p2)− ω(p3)− ω(p4))

×
[
f(p3)f(p4)(f(p2) + 1)(f(p1) + 1)

− f(p1)f(p2)(f(p3) + 1)(f(p4) + 1)
]
,

(1.3)

and

C31[f ](t, p) =
3g2π

V

∑
p1,p2,p3,p4 6=0

(δ(p− p1)− δ(p− p2)

− δ(p− p3)− δ(p− p4))

× (K31
1234)2δ(p1 − p2 − p3 − p4)

× δ(ω(p1)− ω(p2)− ω(p3)− ω(p4))

×
[
f(p3)f(p4)f(p2)(f(p1) + 1)

− f(p1)(f(p2) + 1)(f(p3) + 1)(f(p4) + 1)
]
,

(1.4)

in which n is the density of the condensate, t ∈ R+ is the time variable, p ∈ (Z/L)d\{O}
is the d-dimensional non-zero momentum variable, V is proportional to the volume of the

periodic box
[
−L

2 ,
L
2

]d
, m is the particle mass, ω is the Bogoliubov dispersion relation

defined as

ωp =

[
gn

m
p2 +

(
p2

2m

)2
] 1

2

(1.5)

and g is the interacting constant. We have normalized the Plank constant to be 1. In the
above collision operators, the kernels are defined as follows

K1,2
1,2,3 = up1up2up3 − vp1vp2vp3 − up1up2vp3

+ vp1vp2up3 − up1vp2up3 + vp1up2vp3 ,
(1.6)
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K2,2
1,2,3,4 = up1up2up3up4 + up1vp2up3vp4 + up1vp2vp3up4

+ vp1up2vp3up4 + vp1up2up3vp4 + vp1vp2vp3vp4 ,
(1.7)

and
K3,1

1,2,3,4 = 2
[
up1up2vp3up4 + vp1vp2up3vp4

]
, (1.8)

with up and vp being defined as

up, vp =

(
εp + gn

2ωp
± 1

2

) 1
2

. (1.9)

In the setting of [49], we could fix n as a constant, under the assumption that the thermal
could fraction is quite small, in comparison to the condensate. Moreover, in the sum on
the momenta

∑
p 6=0, the origin is removed due to the fact that the condensate has been

factored out in the Bogoliubov diagonalization (cf. [49, 50]).

Remark 1.1 As it has been discussed in [49], the BEC is in a cubic box with periodic
boundary conditions, the quantum Boltzmann equation is then in the discrete form. In
order for the conservations of momentum and energy to be satisfied, the following system
needs to have solutions on the lattice

p1 = p2 + p3 + p4, ω(p1) = ω(p2) + ω(p3) + ω(p4),

p′1 + p′2 = p′3 + p′4, ω(p′1) + ω(p′2) = ω(p′3) + ω(p′4),

p′′1 = p′′2 + p′′3, ω(p′′1) = ω(p′′2) + ω(p′′3).

(1.10)

At the first sign, the system does have solutions due to the complicated form of the Bo-
goliubov dispersion relation (1.5). However, it has been pointed out in [49, 50] that when
the temperature of the system is lower but closed to the Bose-Einstein condensation tran-
sition temperature, the Bogoliubov dispersion relation can be replaced by the Hatree-Fock
energy (ω(p) ≈ c|p|2). In this regime, the two collision operators C12 and C22 dominate the
collisional processes. The contribution of third collision operator C31 becomes non-trivial
when both up and vp are large, corresponding to significantly low temperatures. In this low
temperature regime, the excitations are phonon-like and the Bogoliubov dispersion relation
(1.5) can be replaced by the phonon dispersion relation (1.16). The replacement of (1.5) by
(1.16) guarantees the existence of solutions to (1.10), and thus, the conservation laws are
satisfied.

Simplified Quantum Boltzmann model of the thermal cloud. In our work, we try
to provide a deeper understanding of the property of the system derived in [49] by studying
a simplified version of it. If we denote

f1 = f(t, p1), f2 = f(t, p2), f3 = f(t, p3), f4 = f(t, p4),

then our simplified system for f1 writes

∂f1

∂t
= C12[f1] + C22[f1] + C13[f1], (1.11)
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where

C22[f1] :=

∫
R9

K22
p1,p2,p3,p4δ(p1 + p2 − p3 − p4)δ(Ep1 + Ep2 − Ep3 − Ep4) (1.12)

×[(1 + f1)(1 + f2)f3f4 − f1f2(1 + f3)(1 + f4)]dp2dp3dp4, (1.13)

C12[f1] :=

∫
R6

K12
p1,p2,p3δ(p1 − p2 − p3)δ(Ep1 − Ep2 − Ep3)

×[(1 + f1)f2f3 − f1(1 + f2)(1 + f3)]dp2dp3 (1.14)

−2

∫
R6

K12
p1,p2,p3δ(p2 − p1 − p3)δ(Ep2 − Ep1 − Ep3)

×[(1 + f2)f1f3 − f2(1 + f1)(1 + f3)]dp2dp3,

and

C13[f1] =

∫
R3×3

K13
p1,p2,p3,p4δ(p1 − p2 − p3 − p4)δ(Ep1 − Ep2 − Ep3 − Ep4)

× [(1 + f1)f2f3f4 − f1(1 + f2)(1 + f3)(1 + f4)]dp2dp3dp4

− 3

∫
R3×3

K13
p1,p2,p3,p4δ(p2 − p1 − p3 − p4)δ(Ep2 − Ep1 − Ep3 − Ep4)

× [(1 + f2)f1f3f4 − f2(1 + f1)(1 + f3)(1 + f4)]dp2dp3dp4,

(1.15)

The quantities K22
p1,p2,p3,p4 ,K

12
p1,p2,p3 ≥ 0 are the collision kernels, which are radially sym-

metric, and symmetric with respect to the permutation of p1, p2, p3, and p4:

K22
p1,p2,p3,p4 = K22

|p1|,|p2|,|p3|,|p4| = K22
|p2|,|p1|,|p3|,|p4| = K22

|p3|,|p2|,|p1|,|p4|

= K22
|p4|,|p2|,|p3|,|p1| = K22

|p1|,|p3|,|p2|,|p4| = K
22
|p1|,|p4|,|p3|,|p2| = K22

|p1|,|p2|,|p4|,|p3|,

and

K12
p1,p2,p3 = K12

|p1|,|p2|,|p3| = K12
|p2|,|p1|,|p3| = K12

|p3|,|p2|,|p1| = K12
|p1|,|p3|,|p2|,

where |p| denotes the length of the vector p. and K13
p1,p2,p3,p4 is positive, radially symmetric,

and symmetric with respect to the permutation of p1, p2, p3, p4

K13
p1,p2,p3,p4 = K13

|p1|,|p2|,|p3|,|p4| = K13
|p2|,|p1|,|p3|,|p4| = K13

|p3|,|p2|,|p1|,|p4|

= K13
|p4|,|p2|,|p3|,|p1| = K13

|p1|,|p3|,|p2|,|p4| = K
13
|p1|,|p4|,|p3|,|p2| = K13

|p1|,|p2|,|p4|,|p3|.

We make a further simplification by supposing that the temperature is very low compared
to the Bose-Einstein critical temperature. As a result, the energy Ep = E(p) is given by the
phonon dispersion law (cf. [42]):

E(p) = c|p|, c =

√
gnc
m
. (1.16)
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Reaction networks and a toric dynamical system approach for the relaxation
to equilibrium problem. The study of the relaxation of BECs to thermodynamic equi-
librium has played very important role in the theory of Bose gases [43, 29, 28, 25, 54]. Our
main tool is to convert these equations into chemical reaction systems and use an extension
of the theory of toric dynamical systems (cf. [15]).

In general, there is great interest in understanding the qualitative behavior of determin-
istically modeled chemical reaction systems, including the existence of positive equilibria,
stability properties of equilibria, and the non-extinction, or persistence, of species, which
are the constituents of these systems [13, 53, 21, 22, 31, 2, 4, 24, 8, 3, 15]. Toric dynam-
ical systems – originally called complex-balanced systems (cf. [15, 32]) – are models used
to describe an important class of chemical kinetics. The complex-balanced condition was
first introduced by Boltzmann [11] for modeling collisions in kinetic gas theory. Based on
this condition, it was shown by Horn and Jackson [32, 30, 20, 27] that a complex-balanced
system has a unique locally stable equilibrium within each linear invariant subspace. To
underline the tight connection to the algebraic study of toric varieties, the name “toric
dynamical system” was proposed in [15]. The most important problem in the theory of
toric dynamical systems is the Global Attractor Conjecture, which says that the complex
balanced equilibrium of a toric dynamical system is a globally attracting point within each
linear invariant subspace. This global attractor question is strongly related to the con-
vergence to equilibrium problem in the study of kinetic equations. A proof to the Global
Attractor Conjecture for small dimensional systems has been supplied in [17], for strongly
connected networks in [2], and a complete proof has been proposed in [14].

Our goal is to use the tools developed in [17, 14] to prove the relaxation to equilibrium of Dis-
crete Velocity Models of a model of (1.11), whose collision operator is C12. Similarly, we will
prove the relaxation to equilibrium of another model of (1.11), whose collision operator is
C12 +C22, and modified quantum Boltzmann model of the thermal cloud (1.11), whose colli-
sion operator is C12+C22+C13. A related approach for the study of acoustic wave turbulence
has been used in [48]. Let us also mention that some mathematical results of similar kinetic
models have been obtained in [1, 6, 7, 5, 9, 10, 12, 19, 33, 36, 37, 38, 18, 47, 23, 39, 46, 45].

The plan of our paper is the following:

• In section 2, we show that the discrete version of a simplified version of (1.11), that
contains only C12, could be rewritten as a chemical reaction network. By using an
approach inspired by the theory of toric dynamical system, we prove in Theorem 2.1.
that the solution of the discrete version of a simplified version of (1.11), that contains
only C12, converges to the equilibrium exponentially in time.

• In section 3, we generalize Theorem 2.1 to collision operators of the forms C13 and C22.
We prove that the solutions of the discrete versions of these equations, associated with
the collision operators C13 and C22 converge to equilibria exponentially in Theorems
3.1 and 3.2. In the case of C22, we consider a one-dimensional version of the model.
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• In Theorem 4.1 of Section 4, we extend Theorem 3.2 to a simplified version of (1.11),
that contains only C12 + C22, and the modified quantum Boltzmann model of the
thermal cloud (1.11), that contains only C12 + C22 + C31.

2 A reaction network approach for the case of C12

2.1 The dynamical system associated to C12

As mentioned in the introduction, the model derived from physics to describe the system
that couples BEC-excitations at very low temperature is the discrete version of a simplified
version of (1.11), that contains only C12, described below.

Let LR denote the lattice of integer points

LR = {p ∈ Z3, |p| < R}.

The discrete version of the simplified version of (1.11), that contains only C12, reads

ḟp1 =
∑

p2,p3∈LR,
p1−p2−p3=0,

E(p1)−E(p2)−E(p3)=0

K12
p1,p2,p3 {(fp1 + 1)fp2fp3 − fp1(fp2 + 1)(fp3 + 1)}

− 2
∑

p2,p3∈LR,
p1+p2−p3=0,

E(p1)+E(p2)−E(p3)=0

K12
p1,p2,p3 {(fp3 + 1)fp1fp2 − fp3(fp1 + 1)(fp2 + 1)} ,

(2.1)

for all p1 in LR, where E(p) is defined in (1.16).

2.2 Decoupling the quantum Boltzmann equation associated to C12

Note that when p1 = 0, K12
p1,p2,p3 is also 0, and therefore, we get

ḟ0 = 0, (2.2)

which says that f0(t) is a constant for all time t. Moreover, fp1 does not depend on f0 for
all p1 6= 0. Therefore, without loss of generality, we can suppose that f0(0) = 0, which leads
to f0(t) = 0 for all t.
Taking into account the fact E(p) = c|p|, note that if p1, p2, p3 ∈ LR are different from 0 and
p3 = p1 + p2 and |p3| = |p1|+ |p2| (like in the second sum of (2.1)), then p1, p2, p3 must be
collinear and on the same side of the origin. Therefore, we infer that there exists a vector
P and k1, k2, k3 > 0, k1, k2, k3 ∈ Z such that

p1 = k1P ; p2 = k2P ; p3 = k3P, k1 + k2 = k3.

7



Since LR is bounded, it follows that k1, k2, k3 belong to a finite set of integer indices I =
{1, . . . , I}. Arguing similarly for the first sum in (2.1), we deduce that (2.1) is equivalent
with the following system for k1 ∈ I

ḟPk1 =
∑

k2,k3∈I,
k1−k2−k3=0

K12
Pk1,Pk2,Pk3 {(fPk1 + 1)fPk2fPk3 − fPk1(fPk2 + 1)(fPk3 + 1)}

− 2
∑

k2,k3∈I,
k1+k2−k3=0

K12
Pk1,Pk2,Pk3 {(fPk3 + 1)fPk1fPk2 − fPk3(fPk1 + 1)(fPk2 + 1)} .

(2.3)
Note that the system of equations (2.3) shows a decoupling of the system of equations (2.1)
along a ray {kP0} with k > 0 (see Figure 1). As a consequence, it is sufficient to study the
system of equations (2.3) for a fixed value of P0, instead of the system of equations (2.1).

If we denote fk1P0 by f̄k1 (with k1 ∈ I) and K12
k1P0,k2P0,k3P0

by K12
k1,k2,k3

, we obtain the
following new system for the ray {k1P0|k1 > 0}:

˙̄fk1 =
∑

k2,k3∈I,
k1=k2+k3

K12
k1,k2,k3{(f̄k1 + 1)f̄k2 f̄k3 − f̄k1(f̄k2 + 1)(f̄k3 + 1)}

− 2
∑

k2,k3∈I,
k1+k2=k3

K12
k1,k2,k3{(f̄k3 + 1)f̄k1 f̄k2 − f̄k3(f̄k1 + 1)(f̄k2 + 1)}, ∀k1 ∈ I.

(2.4)

A simple calculation leads to the following conservation of energy

I∑
k=1

k ˙̄fk = 0, (2.5)

or equivalently
I∑

k=1

kf̄k = const. (2.6)

We denote this discrete version of C12 by

C12[f̄k1 ] :=
∑

k2+k3=k1

K12
k1,k2,k3 [(f̄k1 + 1)f̄k2 f̄k3 − f̄k1(f̄k2 + 1)(f̄k3 + 1)]

− 2
∑

k1+k3=k2

K12
k2,k1,k3 [(f̄k2 + 1)f̄k1 f̄k3 − f̄k2(f̄k1 + 1)(f̄k3 + 1)].

(2.7)

2.3 The chemical reaction network associated to C12

For x ∈ Rn>0 and α ∈ Rn≥0, we denote by xα the monomial Πn
i=1x

αi
i .
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Figure 1: We decouple the system (2.1) into rays
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Definition 2.1 Consider a chemical reaction of the form

α1X1 + α2X2 + ...+ αnXn
K−→ β1X1 + β2X2 + ...+ βnXn,

where K is a positive parameter, called reaction rate constant. Then the mass-action dy-
namical system generated by this reaction is

ẋ = Kxα(β − α), (2.8)

where α = (α1, · · · , αn)T , β = (β1, · · · , βn)T , αi, βi ≥ 0 and x = (x1, · · · , xn)T , in which
xi is the concentration of the chemical species Xi. For the case of a network that contains
several reactions

αj1Xj
1 + αj2Xj

2 + ...+ αjnXj
n

Kj−→ β1Xj
1 + βj2Xj

2 + ...+ βjnXj
n,

for 1 ≤ j ≤ m, its associated mass-action dynamical system is given by

ẋ =
m∑
j=1

Kjxα
j
(βj − αj). (2.9)

In this section, we will show that the system (2.4) has the form (2.9) for a well-chosen
set of reactions.

If y → y′ and y′ → y are reactions, we combine them together into a “reversible” reaction
y ↔ y′.

We will derive the system (2.4) from the network of chemical reactions of the form:

Xk2
+ Xk3

←→ Xk1
(2.10)

Xk2
+ Xk1

−−→ 2 Xk2
+ Xk3

, (2.11)

for all k1, k2, k3 in I such that k2 + k3 = k1. If we denote by Fk the concentration of the
species Xk, we will show that, for appropriate choices of the reaction rate constants in (2.10)
and (2.11), the differential equations satisfied by Fk according the mass-action kinetics are
exactly the same as (2.4).

In order to describe the connection between the mass-action system given by reactions
of the form (2.10)-(2.11) and our system (2.4), we need to consider several cases.

Case 1: For k2 + k3 = k1, k2 6= k3, k1, k2, k3 ∈ I, we consider

Xk2
+ Xk3

2K12
k1,k2,k3←−−−−−→ Xk1

(2.12)

Xk2
+ Xk1

2K12
k1,k2,k3−−−−−−→ 2 Xk2

+ Xk3
, (2.13)

and for the reversible reaction (2.12) the forward and backward rate constants are the
same, i.e., we choose the reaction rate constants of the three reactions Xk2 + Xk3 → Xk1 ,
Xk1 → Xk2 +Xk3 , Xk2 +Xk1 → 2Xk2 +Xk3 to be 2K12

k1,k2,k3
.
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For example, consider the reversible reaction (2.12): in this reaction, Xk1 is created from
Xk2 +Xk3 with the rate 2K12

k1,k2,k3
Fk2Fk3 and Xk1 is decomposed into Xk2 +Xk3 with the

rate −2K12
k1,k2,k3

Fk1 . Therefore, the rate of change of the species Xk1 due to this reaction is

2K12
k1,k2,k3

[Fk2Fk3 − Fk1 ].

For the irreversible reaction (2.13), Xk1 is lost with the rate −2K12
k1,k2,k3

Fk2Fk1 to cre-
ate 2Xk2 + Xk3 . Therefore the rate of change of the species Xk1 due to this reaction is
−2K12

k1,k2,k3
Fk2Fk1 . By exchanging the roles of Xk2 and Xk3 in (2.13), we obtain the rate

−2K12
k1,k2,k3

[Fk2Fk1 + Fk3Fk1 ].
Therefore, the total rate of change of Xk1 due to the reactions in (2.12)-(2.13) is

2K12
k1,k2,k3 [Fk2Fk3 − Fk1 − Fk2Fk1 − Fk3Fk1 ]. (2.14)

Case 2: For 2k2 = k1, k1, k2 ∈ I, we consider

2 Xk2

K12
k1,k2,k3←−−−−−→ Xk1

(2.15)

Xk2
+ Xk1

2K12
k1,k2,k3−−−−−−→ 3 Xk2

. (2.16)

We choose the reaction rate constant of 2Xk2 → Xk1 and the reaction rate constant of
Xk1 → 2Xk2 to be K12

k1,k2,k3
. Also, we choose the reaction rate constant of Xk2 +Xk1 → 3Xk2

to be 2K12
k1,k2,k3

.
Consider the first reaction (2.15): In this reaction, Xk1 is created from 2Xk2 with the

rate Kk1,k2,k2F 2
k2

and Xk1 is decomposed into 2Xk2 with the rate −K12
k1,k2,k2

Fk1 . The rate

of change of the species Xk1 is K12
k1,k2,k2

[F 2
k2
− Fk1 ].

For the second reaction (2.16): Xk1 is lost with the rate −2K12
k1,k2,k2

Fk2Fk1 to create
3Xk2 .

As a result, the rate of change of Xk1 due to the reactions (2.15)-(2.16) is

K12
k1,k2,k3 [F 2

k2 − Fk1 − 2Fk2Fk1 ]. (2.17)

Case 3: Next, for k2 = k3 + k1, k1 6= k3, k1, k2, k3 ∈ I, let us look at the rate of change
of Xk1 in

Xk1
+ Xk3

2K12
k2,k1,k3←−−−−−→ Xk2

(2.18)

Xk2
+ Xk1

2K12
k2,k1,k3−−−−−−→ 2 Xk1

+ Xk3
(2.19)

Xk2
+ Xk3

2K12
k2,k1,k3−−−−−−→ Xk1

+ 2 Xk3
, (2.20)

For (2.18), the rate of change of Xk1 is 2K12
k2,k1,k3

[Fk2 − Fk1Fk3 ]. For (2.19), the rate of

change of Xk1 is 2K12
k2,k1,k3

Fk1Fk2 . By exchanging the roles of X1 and X3, we obtain the
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rate 2K12(k2, k1, k3)[Fk1Fk2 + Fk2Fk3 ].
Therefore, the rate of change of Xk1 due to reactions in (2.18)-(2.20) is

− 2K12
k2,k1,k3 [Fk1Fk3 − Fk2 − Fk2Fk3 − Fk1Fk2 ]. (2.21)

Case 4: Now, for k2 = 2k1, k1, k2 ∈ I, let us look at the rate of change of Xk1 in

2 Xk1

K12
k2,k1,k1←−−−−−→ Xk2

(2.22)

Xk2
+ Xk1

2K12
k2,k1,k3−−−−−−→ 3 Xk1

, (2.23)

For (2.22), the rate of change of Xk1 is 2K12
k2,k1,k3

[Fk2 − F 2
k1

]. For (2.23), the rate of change

of Xk1 is 4K12
k2,k1,k3

Fk1Fk2 . Therefore, the rate of change of Xk1 due to the reactions (2.22)-
(2.23) is

− 2K12
k2,k1,k3 [F 2

k1 − Fk2 − 2Fk1Fk2 ]. (2.24)

From (2.14), (2.17), (2.21), (2.24), the total rate of change of Xk1 is∑
k2+k3=k1,k2<k3

2K12
k1,k2,k3 [(Fk1 + 1)Fk2Fk3 − Fk1(Fk2 + 1)(Fk3 + 1)]

+
∑

2k2=k1

K12
k1,k2,k2 [(Fk1 + 1)Fk2Fk2 − Fk1(Fk2 + 1)(Fk2 + 1)]

−
∑

k1+k3=k2

2K12
k2,k1,k3 [(Fk2 + 1)Fk1Fk3 − Fk2(Fk1 + 1)(Fk3 + 1)],

(2.25)

which can be written as

Ḟk1 =
∑

k2+k3=k1

K12
k1,k2,k3 [(Fk1 + 1)Fk2Fk3 − Fk1(Fk2 + 1)(Fk3 + 1)]

− 2
∑

k1+k3=k2

K12
k2,k1,k3 [(Fk2 + 1)Fk1Fk3 − Fk2(Fk1 + 1)(Fk3 + 1)],

(2.26)

which shows that the system of differential equations satisfied by the concentrations Fk is
exactly the same as the system of differential equations (2.4) satisfied by the densities fk.

2.4 A change of variables

In this section, we introduce a change of variables that will help us to investigate the
dynamics of the system (2.26).

Define

Gk =
Fk

Fk + 1
,

then

Fk =
Gk

1−Gk
,
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and

Fk3 + Fk1Fk3 + Fk2Fk3 − Fk1Fk2 =
Gk3 −Gk1Gk2

(1−Gk1)(1−Gk2)(1−Gk3)
,

Fk1 + Fk1Fk2 + Fk1Fk3 − Fk3Fk2 =
Gk1 −Gk2Gk3

(1−Gk1)(1−Gk2)(1−Gk3)
.

Notice that 0 < Fk <∞ and 0 < Gk < 1.
The system (2.26) is converted into

Ġk1
(1−Gk1)2

= C̃12[G](k1) := 2
∑

k1+k2=k3

K12
k1,k2,k3

Gk3 −Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)

+
∑

k1=k2+k3

K12
k1,k2,k3

−Gk1 +Gk2Gk3
(1−Gk1)(1−Gk2)(1−Gk3)

, ∀k1 ∈ I. (2.27)

Suppose that G represents the column vector (G1, . . . , GI)
T . Let us also denote by X̄k, the

vector 
0
· · ·
1
· · ·
0

 ,

in which the only element that different from 0 is the k-th one.
Also, for k1 6= k2, we denote

KX̄k1+X̄k2→X̄k3
(G) := 2K12

k1,k2,k3

Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)

,

KX̄k3→Xk1+X̄k2
(G) := 2K12

k1,k2,k3

Gk3
(1−Gk1)(1−Gk2)(1−Gk3)

,

KX̄k1+X̄k2↔X̄k3
:= 2K12

k1,k2,k3 .

Otherwise, if k1 = k2 , we denote

K2X̄k1→Xk3
(G) := K12

k1,k1,k3

Gk1Gk2
(1−Gk1)2(1−Gk3)

,

KX̄k3→2X̄k1
(G) := K12

k1,k1,k3

Gk3
(1−Gk1)2(1−Gk3)

,

K2X̄k1↔X̄k3
:= 2K12

k1,k1,k3 .

Using these notations, the system (2.27) could be rewritten as:

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

× (2.28)
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×
∑

k1+k2=k3

[
KX̄k1+X̄k2→X̄k3

(G)−KX̄k3→X̄k1+X̄k2
(G)
]

(X̄k3 − X̄k1 − X̄k2).

Equivalently, we can also write

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[
Ky→y′(G)−Ky′→y(G)

]
(y′ − y), (2.29)

where y ↔ y′ belongs to the set of reversible reactions

X̄k1 + X̄k2 ←→ X̄k3 , (2.30)

with k1 + k2 = k3.

2.5 Convergence to equilibrium

Theorem 2.1 For any positive initial condition, the solution

f(t) = (fp(t))p∈LR

of the discrete quantum Boltzmann equation (2.1) converges to an equilibrium state f∗ =
(f∗p )p∈LR . For each ray {kP0}k≥1 there exists a positive constant ρ(P0) such that if p = kP0

then

f∗p =
1

ekρ(P0) − 1
.

Moreover, the solution f(t) of (2.1) converges to f∗ exponentially fast in the following sense:
there exist positive constants C1, C2 such that

max
p∈LR

|fp(t)− f∗p | < C1e
−C2t.

Proof By using the decoupling and the change of variables discussed in the previous
sections, for each ray {kP0}k≥1, we can reduce the study of f to F , which satisfies (2.26).
From F , we can switch to study G, which is the solution of (2.29).

Step 1: The Lyapunov function. We recall that (2.27) could be rewritten under the form

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[
Ky→y′(G)−Ky′→y(G)

]
(y′ − y). (2.31)

We define the function

L(G) =

I∑
k=1

(
log(1−Gk) +

Gk logGk
1−Gk

−
logG∗k
1−Gk

)
, (2.32)
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where G∗k = 1
ekρ

, for some ρ > 0, and we will show that L is a Lyapunov function for the
system (2.27).

We have

∇L =


1

(1−G1)2
log G1

G∗1
· · ·

1
(1−GI)2

log GI
G∗I

 , (2.33)

which implies that

diag

 (1−G1)2

· · ·
(1−GI)2

 · (y′ − y) · ∇L = log

(
G

G∗

)y′−y
(2.34)

= log

(
G

G∗

)y′
− log

(
G

G∗

)y
.

If we define

Hy,y′(G) =
Ky→y′(G)

Ky↔y′Gy
,

then Hy,y′ = Hy′,y for y and y′ as in (2.30). Moreover, we have

Ky→y′(G)−Ky′→y(G) =

=Ky↔y′GyHy,y′(G)−Ky↔y′Gy
′Hy,y′(G)

=Ky↔y′Hy,y′(G)[Gy −Gy′ ]

=Ky↔y′(G∗)yHy,y′(G)

[
Gy

(G∗)y
− Gy

′

(G∗)y′

]
,

(2.35)

since (G∗)y = (G∗)y
′
.

Combining (2.31), (2.34) and (2.35), we obtain

Ġ · ∇L =

=
∑
y↔y′

[
log

(
G

G∗

)y′
− log

(
G

G∗

)y]
Ky↔y′(G∗)yHy,y′(G)

[
Gy

(G∗)y
− Gy

′

(G∗)y′

]
≤ 0,

(2.36)

since log is an increasing function. Also, note that the above inequality is strict unless

Gy

(G∗)y
=

Gy
′

(G∗)y′
, (2.37)

for all reactions y ↔ y′.
Since (G∗)y = (G∗)y

′
for all reactions y ↔ y′, this implies G∗k1 · G

∗
k2

= G∗k1+k2
for all k1
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and k2 such that k1 + k2 ≤ I. As a consequence G∗k = e−ρk, for some positive constant ρ.
Moreover, (2.37) implies that at equilibrium (G)y = (G)y

′
for all reactions y ↔ y′, which

leads to Gk = e−ρ
′k, for some positive constant ρ′.

By the conservation relation

I∑
k=1

k
Gk

1−Gk
=

I∑
k=1

k
G∗k

1−G∗k
,

we deduce that
I∑

k=1

k
e−ρk

1− e−ρk
=

I∑
k=1

k
e−ρ

′k

1− e−ρ′k
.

By the monotonicity of the function ρ → e−ρk

1−e−ρk , we conclude that ρ = ρ′, i.e., G∗ is the
only equilibrium point that satisfies the same conservation relation as the initial condition.

Now, we will prove that there exists exactly one critical point of the Lyapunov function
L within each invariant set

Sc :=

{
I∑

k=1

k
Gk

1−Gk
= c

}
.

Since

∇L = diag


1

(1−G1)2

· · ·
1

(1−GI)2

 [logG− logG∗],

the projection of ∇L on the tangent space to the set Sc is 0 if and only if there exists a
constant % such that

∇L = % · ∇

(
I∑

k=1

k
Gk

1−Gk

)
,

which is equivalent with

diag


1

(1−G1)2

· · ·
1

(1−GI)2

 [logG− logG∗] = %


1

(1−G1)2

· · ·
I

(1−GI)2

 .

A direct consequence of the above is the following system of identities

logG1 − logG∗1 = %,

logG2 − logG∗2 = 2%,

· · ·
logGI − logG∗I = I%,
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yielding
Gk
G∗k

= ek%, ∀k ∈ {1, · · · , I}.

Moreover, since Gk and G∗k satisfy the same conservation law then it follows that G = G∗.
This implies that G∗ is the only critical point of L on the invariant set Sc.

Step 2: Differential inclusions and persistence. Now let us observe that (2.4) could be
regarded as a K-variable mass-action system for the reversible network (2.30). For this we
write

Fk′′ + FkFk′′ + Fk′Fk′′ = (1 + Fk + Fk′)Fk′′ ,

and note that 1 + Fk + Fk′ is bounded below by 1 and above by 1 + 2C, where

C =

I∑
k=1

kFk.

Therefore, the results of [14] about persistence of K-variable reversible mass-action sys-
tems can be applied and we conclude that the system is persistent. Alternatively, we can
also use the Petri net argument of [4], to prove that the system is persistent, as follows.
Note that Fk is the density function of the species Xk. It is straightforward that each siphon
is {X1, X2, · · · , XI}, which contains the support of the P -semiflow (see [4] for the definition
of siphons and P-semiflows) given by

I∑
k=1

kFk = constant.

As a result, the Petri net theory developed in [4] can be applied and it follows that the
system is persistent.

Therefore, by using the existence of the globally defined strict Lyapunov function L,
and the LaSalle invariance principle, it follows that all trajectories converge to the unique
positive equilibrium G∗ that we discussed in Step 1.

Step 3: Exponential rate of convergence. Define

R(G) =

= diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[
Ky→y′(G)−Ky′→y(G)

]
(y′ − y) (2.38)

= diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[Ky↔y′Gy −Ky↔y′Gy
′
]Hy,y′(G)(y′ − y),
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and define

S(G) =
∑
y↔y′

[Ky↔y′Gy −Ky↔y′Gy
′
]Hy,y′(G)(y′ − y).

Following [16], we compute the Jacobian of S at the equilibrium point G∗, applied to an
arbitrary vector δ 6= 0 that belongs to the span of the vectors y′ − y

Jac(S(G∗))δ =
∑
y↔y′

Ky↔y′(G∗)y((y − y′) ∗ δ)Hy,y′(G∗)(y − y′), (2.39)

in which the inner product ∗ is defined as

y ∗ δ =
I∑
1

ykδk
Gk

.

Therefore

[Jac(S(G∗))δ] ∗ δ = (2.40)

=
∑
y↔y′

Ky↔y′(G∗)yHy,y′(G∗)[(y − y′) ∗ δ][(y′ − y) ∗ δ] < 0.

Now, we compute the Jacobian of R at the equilibrium point G∗,

Jac(R(G∗))

= diag

∂G1(1−G∗1)2S(G∗)1

· · ·
∂GI (1−G∗I)2S(G∗)I

+ diag

(1−G∗1)2

· · ·
(1−G∗I)2

 Jac(S(G∗))

= diag

(1−G∗1)2

· · ·
(1−G∗I)2

 Jac(S(G∗)),

where the second equality is due to the fact that since G∗ is an equilibrium we have that
S(G∗) = 0.
Since

D := diag

(1−G∗1)2

· · ·
(1−G∗I)2


is a diagonal matrix and A := Jac(S(G∗)) is negative definite, then D1/2AD1/2 is also
negative definite with respect to this inner product. Since

det(DA− λId) = det(D1/2AD1/2 − λId), ∀λ ∈ R,
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it follows that D1/2AD1/2 and DA have the same eigenvectors, so DA is negative definite.
In other words, Jac(R(G∗)) is negative definite. The exponential rate of convergence

max{|G1(t)−G∗1|, · · · , |GI(t)−G∗I |} ≤ C1e
−C2t.

then follows from the fact that the Jacobian above is negative definite. This leads to the
conclusion of the theorem.

Remark 2.1 The Lyapunov function (2.32) in the variable F reads

L(F ) =

I∑
k=1

[Fk logFk − (1 + Fk) log(1 + Fk) + (log(F ∗k + 1)− logF ∗k )(Fk + 1)], (2.41)

and it is a strictly convex function.

Remark 2.2 If the intersection between the ray {kP0}k≥1 and LR contains a single point,
then the solution f(t) of (2.1) has fP0 ≡ 0, so fP0 ≡ constant.

3 A reaction network approach for the case of C13 and C22

3.1 The dynamical system associated to C13

As we discussed in the Introduction, we are also interested in the dynamics given by the
discrete model of the collision operator C13, described in (1.15).

Let LR denote the lattice of integer points

LR = {p ∈ Z3 | |p| < R}.

The discretized quantum Boltzmann equation for C13 reads

ḟp1 = CD13[fp1 ] :=

:=
∑

p2,p3,p4∈LR,
p1=p2+p3+p4,

E(p1)=E(p2)+E(p3)+E(p4)

K13
p1,p2,p3,p4{(fp1 + 1)fp2fp3fp4 − (fp2 + 1)(fp3 + 1)(fp4 + 1)fp1}

− 3
∑

p2,p3,p4∈LR,
p2=p1+p3+p4,

E(p2)=E(p1)+E(p3)+E(p4)

K13
p2,p1,p3,p4 {(fp2 + 1)fp1fp3fp4 − (fp1 + 1)(fp3 + 1)(fp4 + 1)fp2} ,

(3.1)
for all p1 in LR, where E(p) is defined in (1.16).
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Similar to the C12 case, when p = 0, K13
p1,p2,p3,p4 = 0, and we obtain

ḟ0 = 0,

which means f0(t) is a constant for all time t, and we can assume f0(t) = 0 for all t.
Since in the first sum of (3.1), we consider (p1, p2, p3, p4) satisfying

p1 = p2 + p3 + p4, E(p1) = E(p2) + E(p3) + E(p4), (3.2)

we infer that there exists a vector P and k1, k2, k3, k4 ≥ 0, k1, k2, k3, k4 ∈ Z such that

p1 = k1P ; p2 = k2P ; p3 = k3P ; p4 = k4P ; k1 = k2 + k3 + k4.

Using the same arguments as the case of C12, we can deduce that Equation (3.1) for C13 is
equivalent with the following family of decoupled systems for k1 ∈ I = {1, 2, . . . , I} where
P is the closest point to the origin among the lattice points on its ray:

ḟk1P =

=
∑

k2,k3,k4∈I,
k1=k2+k3+k4

K13
k1P,k2P,k3P,k4P {(fk1P + 1)fk2P fk3P fk4P

− fk1P (fk2P + 1)(fk3P + 1)(fk4P + 1)}

− 3
∑

k2,k3,k4∈I,
k2=k1+k3+k4

K13
k2P,k1P,k3P,k4P {(fk2P + 1)fk1P fk3P fk4P

− fk2P (fk1P + 1)(fk3P + 1)(fk4P + 1)}.

(3.3)

Denoting fkP by Fk (with k ∈ I) and K12
k1P,k2P,k3P,k4P

by K12
k1,k2,k3,k4

, we obtain

Ḟk1 = C13[F ](k1) =
∑

k1=k2+k3+k4

K13
k1,k2,k3,k4{(Fk1 + 1)Fk2Fk3Fk4−

− Fk1(Fk2 + 1)(Fk3 + 1)(Fk4 + 1)}

− 3
∑

k1+k2+k3=k4

K13
k1,k2,k3,k4{(Fk4 + 1)Fk1Fk2Fk3−

− Fk4(Fk1 + 1)(Fk2 + 1)(Fk3 + 1)}, ∀k1 ∈ I.

(3.4)

In order to ensure that all the variables Fk are coupled with each other, let us assume that
I ≥ 4. We have the following conservation of energy for C13

I∑
k=1

kḞk = 0, (3.5)

or equivalently
I∑

k=1

kFk = const. (3.6)
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Similar to the case of C12, we define

Gk =
Fk

Fk + 1
,

and then we have

Fk =
Gk

1−Gk
.

Note that, similar to the previous section, 0 < Fk <∞ and 0 < Gk < 1.
The system (3.4) can be now written

Ġk1
(1−Gk1)2

= C13[G] :=

:= K13
k1,k2,k3,k4

∑
k1=k2+k3+k4,
|k1|=|k2|+|k3|+|k4|

Gk2Gk3Gk4 −Gk1
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

− 3K13
k2,k1,k3,k4

∑
k2=k1+k3+k4,
|k2|=|k1|+|k3|+|k4|

Gk1Gk3Gk4 −Gk2
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.

(3.7)

This system can also be rewritten as

Ġ =diag

 (1−G1)2

· · ·
(1−GI)2

×
×

∑
k1=k2+k3+k4,
|k1|=|k2|+|k3|+|k4|

[
KX̄k2+X̄k3+X̄k4→X̄k1

(G)−KX̄k1→X̄k2+X̄k3+X̄k4
(G)
]
(X̄k1 − X̄k2 − X̄k3 − X̄k4).

(3.8)
where X̄k is, as mentioned earlier, the vector

0
· · ·
1
· · ·
0

 ,

in which the only element that is 1 is the k-th one, and

KX̄k2+X̄k3+X̄k4→X̄k1
(G) := K13

k1,k2,k3,k4

Gk1
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

,

KX̄k1→X̄k2+X̄k3+X̄k4
(G) := K13

k1,k2,k3,k4

Gk2Gk3Gk4
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.
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We can also write

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[
Ky→y′(G)−Ky′→y(G)

]
(y′ − y),

where y ↔ y′ rang over the reversible reactions shown above.

Theorem 3.1 For any initial condition, the solution

f(t) = (fp(t))p∈LR

of the quantum Boltzmann equation (3.1) converges to an equilibrium state f∗ = (f∗p )p∈LR .
For each ray {kP0}k≥1 that intersects LR in at least 4 points there exists a constant ρP0

such that if p = kP0 then

f∗p =
1

ekρP0 − 1
.

Moreover, the solution f(t) of (3.1) converges to f∗ exponentially fast in the following sense:
there exists positive constants C1, C2 such that

max
p∈LR

|fp(t)− f∗p | < C1e
−C2t.

Proof The proof of Theorem 3.2 then follows exactly from the same Lyapunov function
(2.32) and arguments as in Theorem 2.1.

3.2 The dynamical system associated to C22

Let us consider a discretized version of the quantum Boltzmann model associated to the
collision operator given by C22:

Let LR denote the lattice of integer points

LR = {p | |p| ∈ Z3, |p| < R}.

The discretized quantum Boltzmann equation associated to C22 reads ∀p1 ∈ LR

ḟp1 = CD22[fp1 ] :=

:=
∑

p2,p3,p4∈LR,
p1+p2=p3+p4,

E(p1)+E(p2)=E(p3)+E(p4)

K13
p1,p2,p3,p4{(fp1 + 1)(fp2 + 1)fp3fp4 − fp1fp2(fp3 + 1)(fp4 + 1)},

(3.9)
where E(p) is defined in (1.16).

Similar to the C12 case, when p = 0, K22
p1,p2,p3,p4 = 0, and we obtain

ḟ0 = 0,
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which means f0(t) is a constant for all time t. As a consequence, we can suppose that
f0(0) = 0, which implies f0(t) = 0 for all t.
In (3.9), the sums for C22 are taken over (p1, p2, p3, p4) satisfying

p1 + p2 = p3 + p4, and E(p1) + E(p2) = E(p3) + E(p4). (3.10)

In this case, unlike in the case of C12 and C13, we cannot infer from (3.10) that there exists
a vector P and k1, k2, k3, k4 ≥ 0, k1, k2, k3, k4 ∈ Z such that

p1 = k1P ; p2 = k2P ; p3 = k3P ; p4 = k4P, k1 + k2 = k3 + k4.

However, let us consider the following simplified version of (3.9) for C22

Ḟk1 = C22[F ](k1) :=
∑

k1+k2=k3+k4
k2,k3,k4∈I

K13
k1,k2,k3,k4{(Fk1 + 1)(Fk2 + 1)Fk3Fk4−

− Fk1Fk2(Fk3 + 1)(Fk4 + 1)}, ∀k1 ∈ I.

(3.11)

Recall that I = {1, · · · , I}. We also suppose that I ≥ 3. We have the following conservation
of energy

I∑
k=1

kḞk = 0, (3.12)

or equivalently
I∑

k=1

kFk = const. (3.13)

For C22, the following “conservation of mass” also holds

I∑
k=1

Ḟk = 0, (3.14)

or equivalently
I∑

k=1

Fk = const. (3.15)

Similar to the case of C12, define

Gk =
Fk

Fk + 1
,

then

Fk =
Gk

1−Gk
,
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and the system (3.9) can be now written

Ġk1
(1−Gk1)2

= C22[G] :=

:= K13
k1,k2,k3,k4

∑
k1+k2=k3+k4,
|k1|+|k2|=|k3|+|k4|

Gk3Gk4 −Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.
(3.16)

This system can be rewritten as

Ġ =diag

 (1−G1)2

· · ·
(1−GI)2

×
×

∑
k1+k2=k3+k4,
|k1|+|k2|=|k3|+|k4|

[
KX̄k3+X̄k4→X̄k2+X̄k1

(G)

−KX̄k2+X̄k1→X̄k3+X̄k4
(G)
]
(X̄k1 + X̄k2 − X̄k3 − X̄k4).

(3.17)

where X̄k is, the vector 
0
· · ·
1
· · ·
0

 ,

in which the only element that is 1 is the k-th one, and

KX̄k3+X̄k4→X̄k2+X̄k1
(G) = K13

k1,k2,k3,k4

Gk1Gk2
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

,

KX̄k2+X̄k1→X̄k3+X̄k4
(G) = K13

k1,k2,k3,k4

Gk3Gk4
(1−Gk1)(1−Gk2)(1−Gk3)(1−Gk4)

.

We can also write

Ġ = diag

 (1−G1)2

· · ·
(1−GI)2

 ∑
y↔y′

[
Ky→y′(G)−Ky′→y(G)

]
(y′ − y),

where y ↔ y′ range over the reversible reactions shown above.

Theorem 3.2 For any initial condition, the solution

F (t) = (Fk(t))k∈I

of the quantum Boltzmann equation (3.11) converges to an equilibrium state F ∗ = (F ∗k )k∈I,
where

F ∗k =
1

eρ2(k−1)−ρ1(k−2) − 1
.
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Moreover, the solution F (t) of (3.11) converges to F ∗ exponentially fast in the following
sense: there exist positive constants C1, C2 such that

max
k∈I
|Fk(t)− F ∗k | < C1e

−C2t.

Proof We set

G∗k =
F ∗k

F ∗k + 1
.

By the same argument used to obtain (2.37), we deduce that

Gy

(G∗)y
=

Gy
′

(G∗)y′
(3.18)

holds true for all reactions y ↔ y′, which implies Gy = Gy
′

since (G∗)y = (G∗)y
′

for all
reactions y ↔ y′. In the case of C22, we obtain the relation G∗k1 ·G

∗
k2

= G∗k3 ·G
∗
k4

for all k1,
k2, k3, k4 such that k1 + k2 = k3 + k4 ≤ I. From the relation Gk1 ·Gk2 = Gk3 ·Gk4 and the
fact that k + (k − 2) = 2(k − 1), the following identity holds true

Gk(G1)k−2 = (G2)k−1.

We then obtain Gk = (G2)k−1/(G1)k−2, which leads to Gk = eρ
′
2(k−1)−ρ′1(k−2) for some

numbers ρ′1, ρ
′
2.

Since
I∑

k=1

kGk
1−Gk

=
I∑

k=1

kG∗k
1−G∗k

,

we then have
I∑

k=1

keρ
′
2(k−1)−ρ′1(k−2)

1− eρ′2(k−1)−ρ′1(k−2)
=

I∑
k=1

keρ2(k−1)−ρ1(k−2)

1− eρ2(k−1)−ρ1(k−2)
.

We can proceed like in [32] to obtain ρ̃′ = ρ̃ and ρ̄ = ρ̄′, yielding ρ1 = ρ′1 and ρ2 = ρ′2.
We can still use the Petri net argument of [4] or the result in [14], to prove that the

system is persistent. For example, to use the method from [4], we note that we have two
siphons {X1, X2, · · · , XI}, {X2, · · · , XI}. However, we also have the conservations of mass
and energy ∑

k=1

Fk = constant,

∑
k=1

kFk = constant,

that leads to the P -semiflow ∑
k=2

(k − 1)Fk = constant.
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Therefore, similar to the case of C12, it follows that the system is persistent, and we can
use the same Lyapunov function as in the proof of Theorem 2.1 to obtain the desired
convergence result.

Remark 3.1 If I < 3 then F ∗k ≡ 0. If I = 3 then F ∗2 ≡ 0 and F ∗1 = 1
eρ−1 , F ∗3 = 1

e3ρ−1
for

some ρ = ρ(P0).

4 A reaction network approach for the sum of C12, C22, C13

Let us consider the following equations

Ḟk1 = C12[F ](k1) + C22[F ](k1), (4.1)

and
Ḟk1 = C12[F ](k1) + C22[F ](k1) + C13[F ](k1), (4.2)

where C12, C22, C13 are the operators defined in (2.7), (3.4), (3.11).
The following theorem then follows by exactly the same argument as in Theorem 3.2

Theorem 4.1 For any initial condition, the solution

F (t) = (Fk(t))k∈I

of the quantum Boltzmann equation (4.1) or (4.2) converges to an equilibrium state F ∗ =
(F ∗k )k∈I, where F ∗k = 1

eρk−1
for some constant ρ. Moreover, the solution F (t) of (3.4)

converges to F ∗ exponentially fast in the following sense: there exists positive constants C1,
C2 such that

max
k∈I
|Fk(t)− F ∗k | < C1e

−C2t.

5 Conclusion

In this work, we point out a connection between quantum Boltzmann models derived in [49]
and chemical reaction network models. We prove that the discrete, simplified versions of
some differential equations for these quantum Boltzmann models relax to an equilibrium
point, by a toric dynamical system approach, similar to the one used in a recently proposed
proof of the global attractor conjecture [14].
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