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Abstract. Starting with an N body system describing a Bose gas
at finite temperatures, we derive a new model that contains a Gross-
Pitaevskii equation of motion for the condensate wave function and
a quantum Boltzmann equation for the excitations. The model
is valid for a wide range of finite temperatures and approaches the
standard ZNG model when the temperature of the system T is close
to the Bose-Einstein Condensate (BEC) transition temperature Tc.

1. Introduction

The realization of Bose-Einstein condensation (BEC) in trapped atomic
vapors of 23Na [5], 87Rb [2] and 7Li [3] has initiated a period of in-
tense theoretical and experimental research. The experimental results
need a theoretical support which takes into account the coupled non-
equilibrium dynamics of both the BEC and the thermal cloud of the
Bose gas under investigation. In the pioneering work [10, 12, 11], Kirk-
patrick and Dorfman (KD) started to develop such a theory, based on
the Bogoliubov mean field approach. Their theory includes a mean field
kinetic equation for the thermal cloud that describes the relaxation in
terms of “collisions” between excitations. This theory was then extended
by Zaremba, Nikuni and Griffin [23], in which the full coupling system
of a quantum Boltzmann equation for the density function of the normal
fluid/thermal cloud and a Gross–Pitaevskii equation for the wavefunc-
tion of the BEC has been introduced. The model is named ZNG, after
the authors. Independently, the same mean field model was also de-
rived by Pomeau, Brachet, Métens and Rica [22] (PBMR) by a different
method. Since our work is mainly focused on the mean field approach,
we refer the readers to the book [15] for further discussions on the other
theories.

The ZNG model has been remarkably successful in describing a wide
range of BEC phenomena [6]. In the ZNG theory, there are two types
of collisional processes: the 1 ↔ 2 interactions between the condensate
and the excited atoms and the 2 ↔ 2 interactions between the excited
atoms themselves. A third, previously missing, collisional process, which
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takes into account 1↔3 type collisions between the excitations, has been
suggested by Reichl and Gust [7, 19].

In the previous work [21], we have provided a mathematical justifi-
cation of the new collisional process as well as a unified framework to
explain the origins of all the three collision operators. The mathematical
justification of [21] is based on a precise calculation of all of commuta-
tors for the Bogoliubov excitations in the system, without dropping any
terms. In [21], it has also been shown that the 1↔3 collision opera-
tor indeed becomes important at lower temperature ranges, while being
negligible when T is closed to Tc. Experimental evidence for this new
collision operator has also been provided in [14, 8, 18].

The goal of our work is to mathematically derive a new mean field
coupling system, with all the three collision operators, at all finite tem-
perature ranges, based on the framework provided in [21]. This model
becomes the standard ZNG model when the temperature of the system
is high enough. In our derivation, we have tried to rely on exact mathe-
matical computations, in which, most of the terms are kept and only a
few approximations are employed. Before our work, another lower tem-
perature system, in which only the 1↔ 2 collision is included, was also
derived by Imamovic-Tomasovic and Griffin (IG) [9], motivated by the
reason that the ZNG model is based on particle-like Hatree-Fock exci-
tations and ultimately breaks down at low temperatures as its thermal
excitations do not include the phonon part of the Bogoliubov spectrum.
Since in [9], the two collisional processes 2 ↔ 2 and 1 ↔ 3 are both
missing, the IG model does not approach the ZNG model when T ≈ Tc.

The coupling system.
We will now write our final system, that couples the generalized Gross-

Pitaevski and the quantum Boltzmann equations, in the local rest frame.
The derivation of this system will be given in the next sections.

Denote by nc(x, t) and φ(x, t), the local density of particles in the
condensate and the condensate phase, and set

Υ = n1/2c exp(iφ). (1)

The generalized Gross-Pitaevski equation.
The generalized Gross-Pitaevski equation reads

i~∂tΥ(x, t) =
[
− ~2∇2

2m
+ g[nc(x, t) + 2ñ(x, t)]

+U(x)− i~
2nc

∫ ′
dpC12[f ](x, p, t)

]
Υ(x, t), (2)

where

ñ(x, t) =

∫ ′
dpf(x, p, t). (3)

In the above equations, f(x, p, t) is the solution of the quantum Boltz-
mann equation (5), the operator C12 can be found in (5), ~ is the reduced
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Planck constant, g is the interaction coupling constant, U(x) is the con-

finement potential,
∫ ′

stands for
∫
R3\{O}, m is the mass of the particles.

The velocity of the condensate is

v(x, t) =
~
m
∇φ(x, t). (4)

The quantum Boltzmann equation.
The quantum Boltzmann equation for the density f(x, p, t) of the

non-condensate atoms reads(
∂

∂t
+

1

~
∇p(ωp + ~p · v) · ∇x −

1

~
∇x(ωp + ~p · v) · ∇p

)
f

= C12[f ] + C22[f ] + C31[f ], (5)

where ωp is the Bogoliubov dispersion relation defined in (18) and the
forms of C12, C22, C31 are given explicitly below

C12[f ](p) =
4πg2nc
~(2π)3

∫ ′ ∫ ′ ∫ ′
dp1dp2dp3δ(p1 − p2 − p3)

×(δ(p− p1)− δ(p− p2)− δ(p− p3))δ(ω1 − ω2 − ω3)

×(K1,2
1,2,3)

2
[
f2f3(f1 + 1)− f1(f2 + 1)(f3 + 1)

]
, (6)

C22[f ](p) =
πg2

~(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4

×(δ(p− p1) + δ(p− p2)− δ(p− p3)− δ(p− p4))
×δ(ω1 + ω2 − ω3 − ω4)δ(p1 + p2 − p3 − p4)(K2,2

1,2,3,4)
2

×
[
f3f4(f2 + 1)(f1 + 1)− f1f2(f3 + 1)(f4 + 1)

]
, (7)

and

C31[f ](t, p) =
3πg2

~(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4 (8)

×(δ(p− p1)− δ(p− p2)− δ(p− p3)− δ(p− p4))
×δ(p1 − p2 − p3 − p4)δ(ω1 − ω2 − ω3 − ω4)(K

3,1
1,2,3,4)

2

×
[
f3f4f2(f1 + 1)− f1(f2 + 1)(f3 + 1)(f4 + 1)

]
,

in which ωi, fi stand for ω(pi), f(pi), p ∈ R3\{O} is the 3-dimensional
non-zero momentum variable. In the above collision operators, the ker-
nels are defined as follows

K1,2
1,2,3 = up1up2up3 − vp1vp2vp3 − up1up2vp3

+vp1vp2up3 − up1vp2up3 + vp1up2vp3 , (9)

K2,2
1,2,3,4 = up1up2up3up4 + up1vp2up3vp4 + up1vp2vp3up4

+vp1up2vp3up4 + vp1up2up3vp4 + vp1vp2vp3vp4 , (10)
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and

K3,1
1,2,3,4 = 2

[
up1up2vp3up4 + vp1vp2up3vp4

]
, (11)

with up and vp being defined in (19).
When T ≈ Tc, the Bogoliubov dispersion relation can be approxi-

mated by the Hatree-Fock energy. In this regime, up v 1 and vp v 0.

Therefore, K1,2
1,2,3 v 1, K2,2

1,2,3,4 v 1, while K3,1
1,2,3,4 v 0. As a result, when

T ≈ Tc, C31 is negligible while the two collision operators C12 and C22

dominate the collisional processes. In lower temperature regimes, both
up and vp are large, making all quantities K1,2

1,2,3, K
2,2
1,2,3,4, K

3,1
1,2,3,4 large.

Thus, the contribution of all collision operators C12, C22 and C31 needs
to be taken into account. It is discussed in [14][Section 8.2.3] that using
all the three collision operators C12, C22 and C31, the speed of both the
fast mode and the slow mode can be computed and they turn out to
approach finite values in the limit T → 0 K. using all the three collision
operators C12, C22 and C31, the speed of both the fast mode and the
slow mode can be computed and they turn out to approach finite values
in the limit T → 0 K. This computation is consistent with the findings
of Lee and Yang [13] using a very different approach. Moreover, it is also
discussed in [14] that the value of the sound mode lifetime, computed
by using all the three collision operators C12, C22 and C31, is consistent
with that reported in the Steinhauer experiment [20].

In the integral on the momenta
∫
R3\{O} dp, the origin is removed due

to the fact that the condensate has been factored out in the Bogoliubov
diagonalization. In a mathematical point of view, if the origin is not
removed from the domain of integration, the solution can develop a
singular part supported at {O}.

2. The quantum system and the three unitary
transformations

To derive the coupling system (1)-(11), we consider a system of weakly
interacting, spinless bosons at finite temperatures. We introduce the
boson field operator Ψ̂(x), and its conjugate Ψ̂†(x). These operators

satisfy the the commutation relation [Ψ̂(x), Ψ̂(x′)] = [Ψ̂†(x), Ψ̂†(x′)] =

0; [Ψ̂(x), Ψ̂†(x′)] = δ(x − x′). The Hamiltonian of the system is now
written

Ĥ =

∫
Td
L

dxΨ̂†(x)
[
− ~2

2m
∇2 + U(x) +

1

2
Ψ̂†(x)V(x, x′)Ψ̂(x′)

]
Ψ̂(x),

(12)

where T3
L is the 3-dimensional periodic torus

[
−L

2 ,
L
2

]3
; V(x, x′) is the

interaction potential between two particles at locations x, x′. We also
take V(x, x′) = gδ(x − x′). Inserting these two forms for the external
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and interaction potentials into (12), we find

Ĥ = Ĥ ′ + V̂ , (13)

where

Ĥ ′ =
~2

2m

∫
dx∇̂Ψ†(x) · ∇Ψ̂(x), (14)

and

V̂ =
g

2

∫
dxΨ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x), (15)

with the shorthand notations
∫
Td
L

=
∫
.

We introduce the non-equilibrium statistical density operator ρ̂(t) of
the spatially inhomogeneous Bose gas at time t. This density operator
then satisfies the quantum Liouville equation

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂].

We follow the approach of Kirkpatrick and Dorfman [10, 12]. First,
we introduce the following local unitary transformations to the quantum
Liouville equation. The first unitary operator changes the reference
frame of the system to one in which the superfluid velocity is zero

Ô1[φ] = exp

[
−i
∫

dx′φ(x′, t)Ψ̂†(x′, t)Ψ̂(x′, t)

]
.

The second unitary transformation replaces the boson field operators in
the Hamiltonians by new ones without the contribution of the conden-
sate

Ô2[nc] = exp

[∫
dx′[Ψ̂(x′, t)− Ψ̂†(x′, t)]n

1
2
c (x′, t)

]
.

Now, we write the time-dependent field operator Ψ̂ as the sum of a
condensate part Φ and a non-condensate part ψ̂

Ψ̂(x, t) = ψ̂(x, t) + Φ(x, t). (16)

Under the assumption that the difference between the condensate field
operator and the average value are approximately the same in the ther-

modynamics limit, we replace Φ(x, t) by the c-number n
1/2
c (x, t) exp(iφ(x, t)).

Thus, ψ̂(x, t) can be expressed as follows

Ô†1Ô
†
2Ψ̂Ô2Ô1 = Ψ̂ exp[−iφ]− n1/2c = ψ̂ exp[−iφ].

Using the above two unitary transformations, we obtain the Liouville
equation for the density operator ρ̂′ of the non-condensate part in the
superfluid rest-frame

∂ρ̂′

∂t
= − i

~
[Ĥ ′′, ρ̂′].

We introduce the last unitary transformation - the local Bogoliubov
transformation, which changes the field operators from those for particles
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to those for Bogoliubov excitations. To this end, we define the Wigner
operator

f̂(x, p) =

∫
dx′[exp(ip · x′)]ψ̂†(x+ x′/2)ψ̂(x− x′/2). (17)

Since ρ̂′ is defined in the superfluid rest-frame, we can define the Fourier
series of the fields operators, under the assumption that the gas is slightly
inhomogeneous in space

ψ̂(x) =
1√
Ω

∑̃
p

exp(ikp · x)âp,

where we employ the shorthand notation
∑̃

p =
∑

p∈Zd
L,p 6=0, with Z3

L =

(Z/L)3 and Ω is the volume of the box under consideration.
We now define the Bogoliubov unitary transformation operator

Ô3(x, t) = exp

[
1

2

∑̃
p

ϑp(x, t)
(
âpâ−p − â†pâ

†
−p

)]
.

In the above formulation, ϑp(x, t) depends on ω̃p, which, by neglecting
completely the quantum pressure, can be approximated by the Bogoli-
ubov dispersion relation

ω̃p ≈ ωp = [
gnc~2

m
p2 + (

~2p2

2m
)2]

1
2 . (18)

This is often referred to as Thomas-Fermi approximation [4, 6]. We
now write down the Bogoliubov excitation annihilation and creation
operators

âp = upb̂p − vpb̂
†
−p, â†p = upb̂

†
p − vpb̂−p, (19)

with

up, vp =

(
εp + gnc

2ωp
± 1

2

) 1
2

,

up = coshϑp, vp = − sinhϑp.

We also define the new statistical density operator ρ̂b(x, t) for the Bo-
goliubov excitations

ρ̂b(x, t) = Ô3(x, t)ρ̂
′(t)Ô†3(x, t). (20)

We arrive at a new quantum Liouville equation for the Bogoliubov ex-
citations

∂ρ̂b
∂t

= − i
~

[Ĥb, ρ̂b]. (21)

The operator Ĥb takes the form

Ĥb = ĤT,1 + ĤT,2 + Ĥ2 + Ĥ3 + Ĥ4, (22)
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in which ĤT,1, ĤT,2 will contribute to the transport part of the kinetic
equation

ĤT,1 =
∑̃
p

ωpb̂
†b̂p + ~

∑
p

(v · p)b̂†pb̂p, (23)

ĤT,2 =
3∑

j,l=1

∑̃
p1,p2

∂vj
∂xl

~
2V

∫
dx′(x′l − xl) exp[ix′ · (p2 − p1)]

×(p1j + p2j)[(up1up2 − vp1vp2)b̂†p1 b̂p2 − up2vp1 b̂−p1 b̂p2

−up1vp2 b̂†p1 b̂−p2 ] +
3∑

j,l=1

∑̃
p1,p2

∂nc
∂xj

g

2V

∫
dx′(x′j − xj)

× exp[ix′ · (p2 − p1)][2(up1up2 − up2vp1 − up1vp2
+vp1vp2)b̂†p1 b̂p2 + (up1up2 + vp1vp2 − 2up1vp2)b̂†p1 b̂

†
−p2

+(up1up2 + vp1vp2 − 2up2vp1)b̂−p1 b̂p2 ]

− i~
2

∂(ncvj)

∂xj

∑̃
p

∂ϑp
∂nc

(b̂pb̂−p − b̂†pb̂
†
−p).

Define the distribution function for the Bogoliubov excitations by

f(x, p, t) = Tr[ρ̂b(x, t)f̂(x, t)] = 〈f̂(x, t)〉,

it follows from the quantum Liouville equation (21) that

∂f(x, p, t)

∂t
= − i

~
∑

q 6=±2p
exp(iq · x)〈[b̂†p−q/2b̂p+q/2, Ĥb]〉. (24)

The three Hamiltonians Ĥ2, Ĥ3, Ĥ4 will only contribute to the collisional
processes, similar to the spatial homogeneous case [21]. As a result, the
techniques introduced in [21] can be reused to derive the collision oper-

ators. The explicit forms of Ĥ2, Ĥ3, Ĥ4 will be given in the Appendix.
Notice that in the superfluid rest frame, the condensate wave function

Φ(x, t) becomes nc(x, t)
1/2, and the phase φ(x, t) is removed. As a result,

instead of writing the equation for the dynamics of Φ(x, t), we write the
equation for Υ = Φ exp(iφ)

i~
∂Υ(x, t)

∂t
=
(
− ~∇2

2m
+ gnc(x, t) + 2gñ(x, t) + U(x)

)
×Υ(x, t) + gm̃(x, t)Υ∗(x, t) + g〈ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)〉,

(25)

where ñ(x, t) = 〈ψ̂†(x, t)ψ̂(x, t)〉 is the non-equilibrium non-condensate

density, m̃(x, t) = 〈ψ̂(x, t)ψ̂(x, t)〉 is the off-diagonal non-condensate
density. All of the terms in (25) are non-zero due to the Bose broken
symmetry.
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3. The quantum Boltzmann equation

If we replace the right hand side of (24) by ĤT,1 and label this term
by A, we find

A =
i

~
∑

q 6=±2p
exp(iq · x)[ωp+q/2 − ωp−q/2 + ~q · v]〈b̂†p−q/2b̂p+q/2〉.

We now introduce the key approximation of our derivation. We suppose
that the hydrodynamic variables are slowly varying in space and time.
As a result, we will expand the microscopic quantities nc and v about
their values in x and the gradients |∇xnc(x, t)|k, |∇xv(x, t)|k become
the parameters describing the smallness in our asymptotic expansion.
We denote these smallness parameters by O(|∇|k), which are the only
smallness parameters being used. Now, in (26), expanding ωp+q/2 −
ωp−q/2 and v in powers of q, we obtain the approximation

A = −
3∑

j=1

1

~
∂

∂pj
(ωp + ~p · v)

∂f(x, p, t)

∂xj
+ O(|∇|). (26)

Similarly, if we replace the right hand side of (24) by ĤT,2 and label this
term by B, the same asymptotic expansion also gives

B =

3∑
j=1

1

~
∂

∂xj
(ωp + ~p · v)

∂f(x, p, t)

∂pj
+ O(|∇|). (27)

The above two approximations give the transport part of the kinetic
equation

T [f ] = (28)

=

(
∂

∂t
+

1

~
∇p(ωp + ~p · v) · ∇x −

1

~
∇x(ωp + ~p · v) · ∇p

)
f.

The derivation of the collision operators from Ĥ2, Ĥ3 and Ĥ4 fol-
lows verbatim the argument of the homogeneous case [21], based on the
method by Akhiezer and Peletminskii [1]. We note that Kirkpartrick-
Dorfman’s method [12] is also based on the same principles. Indeed,

the effects of Ĥ2 and Ĥ3 have already been studied in [21, Sections

IV, V]. On the other hand, the role of Ĥ4 is exactly the same as that

of Ĥ1,1, Ĥ
′
3,1 and, therefore, is negligible, following [21, Section IV].

As a consequence, we will not repeat the derivation of the collision
operators here, but rather recall the main ideas of the computations.
The key assumption of the Akhiezer-Peletminskii method is that in the
long time t >> t0 ≡ r0/v0, where r0 is the radius of the initial cor-
relations and v0 is the average quasi-particle velocity, the state of the
system of weakly interacting Bogoliubov quasiparticles is played by the
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single-particle density matrix. By applying twice the quantum Liou-
ville equation (24), we arrive at a new form of the type 〈[Ĥ2 + Ĥ3 +

Ĥ4, [b̂
†b̂, Ĥ2 + Ĥ3 + Ĥ4]]〉. We then compute all of the commutators,

without doing any approximations by dropping terms. Among all of
the possible combinations, there are only three that really contribute
into the collisional processes 〈[Ĥ1,2, [b̂

†b̂, Ĥ1,2]〉, 〈[Ĥ2,2, [b̂
†b̂, Ĥ2,2]〉 and

〈[Ĥ3,1, [b̂
†b̂, Ĥ3,1]〉, while the other terms can be proved to vanish due to

the violation of the conservation of energy. As a result, the C12 colli-
sion operator arises from commutators of the type [b̂†b̂†b̂, [b̂†b̂, b̂†b̂b̂]] and

[b̂†b̂b̂, [b̂†b̂, b̂†b̂†b̂]], coming from 〈[Ĥ1,2, [b̂
†b̂, Ĥ1,2]〉. The C22 collision op-

erator arises from commutators of the type [b̂†b̂†b̂b̂, [b̂†b̂, b̂†b̂†b̂b̂]], coming

from 〈[Ĥ2,2, [b̂
†b̂, Ĥ2,2]〉. The C31 collision operator arises from commu-

tators of the types [b̂†b̂†b̂†b̂, [b̂†b̂, b̂†b̂b̂b̂]] and [b̂†b̂b̂b̂, [b̂†b̂, b̂†b̂†b̂†b̂]], coming

from 〈[Ĥ3,1, [b̂
†b̂, Ĥ3,1]〉. Collecting (29) and the three collision operators

C12, C22, C31, we finally obtain the quantum Boltzmann equation

T [f ] = =
4πg2nc
~(2π)3

∫ ′ ∫ ′ ∫ ′
dp1dp2dp3δ(p1 − p2 − p3) (29)

×(δ(p− p1)− δ(p− p2)− δ(p− p3))δ(ω1 − ω2 − ω3)

×(K1,2
1,2,3)

2
[
f2f3(f1 + 1)− f1(f2 + 1)(f3 + 1)

]
+

πg2

~(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4

×(δ(p− p1) + δ(p− p2)− δ(p− p3)− δ(p− p4))
×δ(ω1 + ω2 − ω3 − ω4)δ(p1 + p2 − p3 − p4)(K2,2

1,2,3,4)
2

×
[
f3f4(f2 + 1)(f1 + 1)− f1f2(f3 + 1)(f4 + 1)

]
+

3πg2

~(2π)6

∫ ′ ∫ ′ ∫ ′ ∫ ′
dp1dp2dp3dp4

×(δ(p− p1)− δ(p− p2)− δ(p− p3)− δ(p− p4))
×δ(p1 − p2 − p3 − p4)δ(ω1 − ω2 − ω3 − ω4)(K

3,1
1,2,3,4)

2

×
[
f3f4f2(f1 + 1)− f1(f2 + 1)(f3 + 1)(f4 + 1)

]
,

in which, the quantities K1,2
1,2,3, K

2,2
1,2,3,4 and K3,1

1,2,3,4 are defined in (9)-

(11). The quantity nc can be deduced from the solution of the Gross-
Pitaevskii equation by (1).
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4. The Gross-Pitaevskii equation

Similar with [6, 14], we also limit our analysis to the Popov approxi-
mation by setting m̃ = 0. From (25), we obtain

i~
∂Υ(x, t)

∂t
=
(
− ~∇2

2m
+ gnc(x, t) + 2gñ(x, t) + U(x)

)
×Υ(x, t) + g〈ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)〉.

(30)

To derive the generalized Gross-Pitaevskii equation, we only need to
compute g〈ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)〉 in (30). This quantity can be com-
puted by exactly the same strategy used to compute C12 (see also
[16, 17]). As a consequence, we skip the details of this calculation and
display only the final result, which also involves C12 in its expression

g〈ψ̂†(x, t)ψ̂(x, t)ψ̂(x, t)〉 = − i~Υ

2nc

∫ ′
dpC12[f ]. (31)

Plugging (31) into (30) yields

i~
∂Υ(x, t)

∂t
=
(
− ~∇2

2m
+ gnc(x, t) + 2gñ(x, t) + U(x)

)
×Υ(x, t)− i~Υ

2nc

∫ ′
dpC12[f ],

(32)

which is the same with (2). This is our Gross-Pitaevskii equation, in
which, ñ is computed using the solution of the quantum Boltzmann
equation via (3) and nc is determined by (1). The form of C12 is given
in (6).

5. Conclusion

In this work, we have derived a coupling system that includes a Gross-
Pitaevskii equation of motion for the condensate wave function and a
quantum Boltzmann equation for the excitations. The model approaches
the standard ZNG model when the temperature of the system T is close
to the Bose-Einstein Condensate (BEC) transition temperature Tc.
Acknowledgements. M.-B. Tran is partially supported by NSF Grant
DMS-1814149, NSF Grant DMS-1854453, NSF CAREER DMS-2044626,
SMU URC Grant 2020, Dedman College of Humanities and Sciences
Linking Fellowship, and Alexander von Humboldt Fellowship. The au-
thors would like to thank Prof. Kirkpatrick and Prof. Dorfman for
discussions on the topic.

6. Appendix 1

We present below the explicit forms of Ĥ2, Ĥ3 and Ĥ4, which can be
computed following the same argument with [21]

Ĥ2 = Ĥ1,2 + Ĥ3,0, (33)
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Ĥ1,2 = g

√
nc
V

∑
p1,p2,p3 6=0

δ(p1 − p2 − p3)K1,2
1,2,3

×(b̂†p1 b̂p2 b̂p3 + b̂†p3 b̂
†
p2 b̂p1),

Ĥ3,0 = g

√
nc
V

∑
p1,p2,p3 6=0

δ(p1 + p2 + p3)

×
[
K3,0

1,2,3(b̂
†
p3 b̂
†
p2 b̂
†
p1 + b̂p1 b̂p2 b̂p3)

]
,

K3,0
1,2,3 = up1vp2vp3 − vp1up2up3 ;

And

Ĥ3 = Ĥ2,2 + Ĥ1,1 + Ĥ3,1 + Ĥ ′3,1 + Ĥ4,0, (34)

Ĥ2,2 =
g

2V

∑
p1,p2,p3,p4 6=0

δ(p1 + p2 − p3 − p4)K2,2
1,2,3,4

×b̂†p1 b̂
†
p2 b̂p3 b̂p4 ,

Ĥ1,1 =
g

2V

∑
p1,p2 6=0

K1,1
1,2 b̂
†
p1 b̂p1 ,

K1,1
1,2 = 4v2p1v

2
p2 + 4u2p1v

2
p2 + 4up1vp1up2vp2 ,

Ĥ3,1 =
g

2V

∑
p1,p2,p3,p4 6=0

δ(p1 − p2 − p3 − p4)

×K3,1
1,2,3,4

[
b̂†p1 b̂p2 b̂p3 b̂p4 + b̂†p4 b̂

†
p3 b̂
†
p2 b̂p1

]
,

Ĥ ′3,1 =
g

2V

∑
p1,p2 6=0

[
b̂p1 b̂−p1K

2,0
1,2 + b̂†p1 b̂

†
−p1K

2,0
1,2

]
,

K2,0
1,2 = u2p1up2vp2 + v2p1up2vp2 + 4up1vp1v

2
p2 ,

Ĥ4,0 =
g

2V

∑
p1,p2,p3,p4 6=0

δ(p1 + p2 + p3 + p4)

×K4,0
1,2,3,4

[
b̂†p1 b̂

†
p2 b̂
†
p3 b̂
†
p4 + b̂p1 b̂p2 b̂p3 b̂p4

]
,

K4,0
1,2,3,4 = up1up2vp3vp4 ;

Finally

Ĥ4 = i~n1/2c Lnc

∑
p6=0

∂ϑp
∂nc

(b̂pb̂−p − b̂†pb̂
†
−p) (35)

−
∑
p 6=0

m%[u2p + v2p]b̂†pb̂p +
∑
p 6=0

m%upvp[b̂pb̂−p + b̂†pb̂
†
−p]

% = −v
2

2
− ~
m

∂φ

∂t
− gnc, Lnc = ~−1ImS,
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S = gTr
[
ρ̂bψ̂

†ψ̂ψ̂
]

+ 2n1/2c gTr
[
ρ̂bψ̂

†ψ̂
]

+ n1/2c gTr
[
ρ̂bψ̂ψ̂

]
.
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