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The system that describes the dynamics of a Bose—Einstein
Condensate (BEC) and the thermal cloud at finite tempera-
ture consists of a nonlinear Schrodinger (NLS) and a quantum
Boltzmann (QB) equations. In such a system of trapped Bose
gases at finite temperature, the QB equation corresponds to
the evolution of the density distribution function of the ther-
mal cloud and the NLS is the equation of the condensate.
The quantum Boltzmann collision operator in this tempera-
ture regime is the sum of two operators C12 and Ca2, which
describe collisions of the condensate and the non-condensate
atoms and collisions between non-condensate atoms. Above
the BEC critical temperature, the system is reduced to an
equation containing only a collision operator similar to Caa,
which possesses a blow-up positive radial solution with respect
to the L norm (cf. [29]). On the other hand, at the very low
temperature regime (only a portion of the transition temper-
ature Tgc), the system can be simplified into an equation of
C12, with a different (much higher order) transition probabil-
ity, which has a unique global classical positive radial solution
with weighted L' norm (cf. [3]). In our model, we first decou-
ple the QB, which contains C12 4 Ca2, and the NLS equations,
then show a global existence and uniqueness result for classical
positive radial solutions to the spatially homogeneous kinetic
system. Different from the case considered in [29], due to the
presence of the BEC, the collision integrals are associated to
sophisticated energy manifolds rather than spheres, since the
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particle energy is approximated by the Bogoliubov dispersion
law. Moreover, the mass of the full system is not conserved
while it is conserved for the case considered in [29]. A new
theory is then supplied.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The study of kinetic equations has a very long history, starting with the classical Boltz-
mann equation, which provides a description of the dynamics of dilute monoatomic gases
(cf. [21-23,42,84]). As an attempt to extend the Boltzmann equation to deal with quan-
tum gases, the Boltzmann—Nordheim (Uehling—Uhlenbeck) equation was introduced [69,
83]. However, the Boltzmann—Nordheim (Uehling—Uhlenbeck) equation fails to describe
a Bose gas at temperatures which are close to and below the Bose-Einstein Condensate
(BEC) critical temperature, due to the fact that its steady-state solution is a Bose-
Einstein distribution in particle energies. Below the critical temperature, many-body
effects modify the equilibrium distribution so that this distribution depends on quasi-
particle energies. These are accounted for by mean fields which break the unperturbed
Hamiltonian U(1) gauge symmetry. Therefore, a new description in terms of quasiparti-
cles is required. Such a quantum kinetic theory was initiated by Kirkpatrick and Dorfman
[56,57], based on the rich body of research carried out in the period 1940-67 by Bogoli-
ubov, Lee and Yang, Beliaev, Pitaevskii, Hugenholtz and Pines, Hohenberg and Martin,
Gavoret and Nozi‘eres, Kane and Kadanoff and many others. After the production of
the first BECs, that later led Cornell, Wieman, and Ketterle to the 2001 Nobel Prize of
Physics [4,5,12], there has been an explosion of research on the kinetic theory associated
to BECs. Based on Kirkpatrick—Dorfman’s works, Zaremba, Nikuni and Griffin success-
fully formulated a self-consistent Gross—Pitaevskii-Boltzmann model, which is nowadays
known as the ‘ZNG’ theory (cf. [15,89]). Independent of the mentioned authors, Pomeau
et al. [70] also proposed a similar model for the kinetics of BECs. Later, Gardinier, Zoller
and collaborators derived a Master Quantum Kinetic Equation (MQKE) for BECs, which
returns to the ZNG model at the limits, and introduced the terminology “Quantum Ki-
netic Theory” in the series of papers [33-37,52,53]. The ZNG theory also gave the first
quantitative predictions of vortex nucleation at finite temperatures [86]. Many other ex-
periments have also confirmed the validity of the model (cf. [73]). We refer to the review
paper [6] for discussions on the condensate growth problem concerning the MQKE model
and the books [43,51,72] for more theoretical and experimental justifications of the ZNG
model, as well as the tutorial article [73] for an easy introduction. Let us mention that
besides the ZNG theory, there have been other works describing the kinetics of BECs as
well (see [1,50,55,77,78,80,82], and references therein).

Let us first recall the ZNG model for finite temperature trapped Bose gases, i.e. the
temperature T of the gas is below the transition temperature Tppc but above absolute
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zero. Denote f(¢,7,p) to be the density function of the Bose gas at time ¢, position r
and momentum p and ®(¢,r) to be the wave function of the BEC. Employing the short-
handed notation f; = f(t,r,p;), i = 1,2,3,4. The Schrédinger (or the Gross—Pitaevski)
equation for the condensates reads (cf. [15]):

h;ir + g[Ne(t, ) + 2n,(t, 7)) — iA2[f](t,7) + V(r))

x ®(t,r), (t,r) € Ry x R3,

ih0D(t,r) = (—

A[f](t,r) = 2]73/- Lio[f](t,7),
Culfl(tr) = [ Culll(trp) o, =

R3

maltr) = [ fe.r.pip
R3
®(0,7) = Po(r),Vr € R?,
where N.(t,r) = |®|%(t,r) is the condensate density, h is the Planck constant, g is the
interaction coupling constant proportional to the s-wave scattering length a, V(r) is the

confinement potential, and the operator Ci5 can be found in the quantum Boltzmann
equation for the non-condensate atoms (cf. [15]), written below:

atf(tvrap) + % : vT‘f(tvrap) - VTU(t7T> ' V;Df(t7rap) (12)
= Q[f](t,r,p) := Cra[f](t,r, p) + Coa[f](t,7,p), (t,7,p) € Ry x R? x R3,

Cha[f](t,r,p1) := A Nc(t,r) // K (p1, pa, p3)d(mue + p1 — p2 — p3)
R3 xR3

><5(5C + 5;01 - gpz - 5103)
X[(1+ f1)fafs — fr(1+ f2)(1 + f3)]dp2dps (1.3)

—2)\1nc(t,7“) // 6(mvc +p2—p1— p3>6(56 + gpz - gpl - gpz)
R3xR3

X[(1+ f2) fifs — f2(1 + f1)(1 + f3)]dpadps,

Co[fI(t,m,p1) == A2 /// K*(p1,p2,p3,4)8(p1 + p2 — p3 — pa) (1.4)
R3 xR3 xR3
X6(Epy + Epy — Epy — Epy) X
X[(L+ f1)(X+ fa) fafa — fifa(1 + f3)(1 + fa)ldp2dpsdpa,
f(0,7,p) = fo(r,p), (r,p) € R® x R?,
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where A\ = %, Ay = (23)#:,17, m is the mass of the particles, and &, is the Hartree—
Fock energy [43]

_ P

Ep 2m

+U(t,r). (1.5)

Notice that Cog is the Boltzmann-Nordheim (Uehling—Ulenbeck) quantum Boltzmann
collision operator. If one writes

D = [B(t,r)]e ), (1.6)
the condensate velocity can be defined as
ve(t, 1) = EV¢(t T) (1.7)
(& b - m 9 ) *

and the condensate chemical potential is then

1 m2A,
He = -

/e 2m

The potential U and the condensate energy &, are written as follows

+V 4 g[2nn, + Nc]) VN, (1.8)

U(t,r) = V(r)+2g[Ne(t,r) +nn(t,7)], (1.9)
and

mu2(t,r)

Ect,r) = pe(t,r) + (1.10)

Notice that (1.15) describes collisions of the condensate and the non-condensate atoms
(condensate growth term), (1.16) describes collisions between non-condensate atoms, and

(1.1) is the defocusing nonlinear Schrodinger equation of the condensate (see Fig. 1). For

2 2
the sake of simplicity, we denote A\; = % and Ay = (2720#5,‘17.

The transition probability kernel

K12(p17p2ap3) = ‘A12(|p1|a |p2|7 |p3|)|2
of C15 is given by the scattering amplitude (cf. [26,47,48,56,57,74])
A2 (|1l 2], Ipal) =

= (ups - UPS)(upl Up, + Upy Upz) + (upz - Upz)(upl Ups + Up, U;US) (1'11)

- (upl - UP1)(UP2UP3 + Up2up3)a

where
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Fig. 1. The Bose—Einstein Condensate (BEC) and the excited atoms.
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The transition probability kernel
K*(p1,p2,p3,p4) = |A*(p1, 2, p3, pa)|*
of Cas is given by the scattering amplitude (cf. (cf. [26,47,48,56,57,74]))
A% (|pal, Ip2l, Ipsl, [pal) =

= Up,y Upy Upy Upy + Upy Upy Ups Vpy T+ Upy Upy Upy Upy + Vpy Up, Ups Up,y (1.12)

+ vPl upz vPs um + vpl U;DQ UPS vp4 .

When the temperature of the system is very low T' < 0.5Tpgc (cf. [43]), the Hartree—
Fock energy is no longer valid. A more general energy is used instead: the Bogoliubov
dispersion law (cf. [26,56,57])

N, 1
& =E(p) = Vrlpl? +r2lplt, k1= gm >0, #r=—5>0. (1.13)

Notice that the first rigorous proof of BEC in a physically realistic, continuum model

was given in 2002 by Lieb and Seiringer (cf. [58]). Besides the kinetic theory point of view,
there are other approaches, valid with different physical assumptions, of understanding
the dynamics of BECs and their thermal clouds, for instance, the works [11,13,25,44-46,
64,76], and cited references.

The toy model

Since the system (1.1)—(1.2) is too complicated, it is impossible to study all its prop-
erties in one single paper. As the first step to understand (1.1)—(1.2), we impose a few
simplifications. We suppose that the equation (1.2) is homogeneous in space and the
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condensate density distribution function N, = |®|? can be considered as a constant 7.
The system is then reduced to the following toy model:

OF — QU = Cualf] + Omlf]. (1.p) € By xR, (1.14)

f(07p) = fO(p)ap € R37

in which we rewrite C2 and Cas following the KD style [56,57], since it is simpler

Caalf](t, 7, p1) = neAs / / K" (p1, 92, 03)5(01 — 2 — p)3(Epy — Ep — E5)  (1.15)
R3 xR3

X[(L+ f1)fafs = fr(1+ f2)(1 + f3)]dp2dps

—2nc.M // K" (p1,p2,03)8(p2 — p1 — 3)6(Epy — Epy — Eps)
R3 xR3

X[(L+ f2)fifs — f2(1+ f1)(1 + f3)]dp2dps,

Coa[f](t,7,p1) := A2 /// K**(p1,p2,p3,pa)d(p1 + po — p3 — pa) (1.16)
R3 RS X RS
XO(Epy + Epy — Epy — Epy) X

X[+ f1) (L + fa) fafa — frfa(1 + f3)(1 + fa)]dpadpsdpa,

where &, is the Bogoliubov dispersion relation (1.13) and is valid when T < 0.5Tsgc
(cf. [26]). The form of the Bogoliubov dispersion relation makes the study of (1.14) much
more difficult than the classical Boltzmann equation and it is the goal of our paper to
develop techniques that can resolve this difficulty.

Let us mention that in real physical situations, the system of bosons is normally not
spacial dependent. Moreover, the toy model (1.14) does not really describe the full dy-
namics of the thermal cloud-condensate system since the equation does not conserve the
total number of atoms. However, it is interesting to begin studying the ZNG model by
understanding the spatially homogeneous kinetic equation with the Bogoliubov disper-
sion relation, in order to gain some insights into the full model. Such toy models are
indeed useful and have been used in the physics community (cf. [27,47-49]), under the
assumption that the temperature of the system is very low T' < 0.0175g¢. In such a low
temperature system, the portion of excited atoms outside the condensate is very small,
in comparison with the number of condensed atoms; and therefore N, can be regarded as
a constant. For instance, in [48], the authors consider only the kinetic part of the system,
which is spatially homogeneous, as what we are assuming in our paper (equation (10) in

[48])

O f = Cia[f] + Ca[f] + Cis[f].
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Indeed, the contribution of [48] is that they could derive a new collision operator C3[f]
which complements the ZNG theory in some cases. We refer to [47-49] for the discussion
about the reason why the number of the excitations (bogolon number) is not conserved.
In those works, the solutions of the kinetic equations are shown to converge to equilibrium
and explicit convergence rates are computed. The theoretical findings are shown to be
in perfect agreements with experimental results and with the famous Lee—Yang theory.
A similar model has also been used in [27]. We refer to the physics paper [75] for more
theoretical and experimental discussions on spacial homogeneous models describing the
dynamics of low temperature dilute Bose gases.

Notice that the two ways of writing (1.3)—(1.4) and (1.15)—(1.16) are equivalent as
explained in [89]. Indeed, in (1.15)—(1.16), p; represent the quasiparticle momentum in
the local rest frame.

Let us mention a difficulty, pointed out by Eckern (cf. [26]), that arises from the
form of the transition probability A%2. Define the characteristic momentum for the
crossover between the linear and the quadratic part of the spectrum to be pyg = 2mn.g,
in which ¢ is the repulsive point interaction. If all momenta are much smaller than pg i.e.
Ip1l, [p2], P3| << po, we obtain the following unphysical asymptotic behavior (cf. [26])

| A% (Ip1], Ip2l, Ipsl, Ipal)|* = [p1] ™ Ip2| = Ipsl~ [pal =

This question is still open in the physics community, as discussed in [14,26,66,71]. In
a mathematical point of view, there are many kinetic equations with singular kernels
for which it is possible to prove existence of solutions. However, such singularities in
our case lead to the loss in moments of the solutions of the equation. An investigation
of this sophisticated question will be the scope of our forthcoming paper. As a conse-
quence, to avoid this singular behavior, the following transition probability is chosen for
mathematical convenience

K?*(p1,p2,p3,pa) = |A%2(Ip1l; |p2l, D3], [P4]) P X{1p1 1. 1ps L lps ] s | > po} (1.17)

Where X{|p,|.|ps|.|ps|.lps|>po} 18 the characteristic function of the set {Ip1l, Ip2|; Ip3l, |p4| >

»1P2
po}: namel)‘f,‘it turns out that the dominant collision process of non-condensate atoms
in the low temperature region with small momenta is the interactions between non-
condensate atoms and the condensate; in this region, we there suppose that the effect
of Cas is much smaller than C1s. In other words, we assume that when p is small Cy5 is
dominant and when p is large Cso is dominant, since C'1o describes the collisions between
excited atoms at low quantum levels and atoms in the ground state, and Cyo describes
collisions between excited atoms at high quantum levels. As a consequence, it is rea-
sonable to impose a cut-off on the kernel of Css and not on Ci5. With this truncated
transition probability, there exists a positive constant I' depending on pg, such that

K*(p1,pa,ps,ps) <T. (1.18)
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Note that some other mathematical results for quantum kinetic equations have been
obtained in [3,24,28,32,40,54,67,68,75,79]. Quantum kinetic equations have very similar
formulations with the so-called wave turbulence kinetic equations. We refer to [18,19,30,
31,38,39,41,62,65,81,87,88] for more recent advances on the theory.

In the current work, we restrict our attention to spatial homogeneous and radial
solutions of (1.14)

f(0,p) = fo(lpl), f(t,p) = f( |p])-

Note that in [29], the authors consider the Boltzmann—-Nordheim (Uehling—Uhlenbeck)
equation

Orfr = /// 5o+ p2 — ps — pa)(1? + Ip2f? — [pal® — [pal?) %
R3xR3xR3
X[(L4+ f1)(X+ f2) fafa — fifo(1+ f3)(1 + fa)ldp2dpsdpa,

which, by the radially symmetry assumption of f, can be reduced to the equivalent form

_ min{|p1|, [pzl, |p3|, [pal}|p1lp2||p3||p4l
Of1=

[p1?
R+ XR+ XR+

X 8(|p1l* + Ipa2l® — Ips|® — |pal®)[ffa(1+ f1 + f2)
— fifo(1 + f3 + fa)]d|p2|d|p3|d|pa|.

By the same argument as in [29], Ca2 also has the following form

mindg |p1], [p2|, |P3, |4l tP1l|D2]|P3] P
Ol = 55 [ 5on. .oy skl sb s el

R p1?
X X
T (1.19)
X 0(Epy + Epy — Epy — Epy)
X [fafa(L+ fr + f2) = fifo(L + f5 + fa)ld|pz|d|ps|d|p4l,
where k3 is some positive constant.
Equation (1.14) can be simplified as follows
0
= QUI=Culfl+ Cals). 70.9) = follp) e RS (120)

We are interested in the existence and uniqueness of strong, classical and radial solu-
tions of (1.20).

Definition 1.1. A function f is defined to be a strong radial solution in C([0,7),X) N
CY((0,T),Y), for some function spaces X, Y, to (1.20), where Cay is of the form (1.19),



A. Soffer, M.-B. Tran / Advances in Mathematics 325 (2018) 533—-607 541

K> is of the form (1.18), &, is the Bogoliubov dispersion law and V. is assume to the
constant n., if and only if f satisfies

of _

5 Qlf] = Ci2[f]+ Ca2[f],  f(0,p) = fo(lp|), for a.e. p € R®.

Moreover f(t,p) = f(t, |p|) for all (¢,p) € [0,T) x R3.

Bosons are sensitive to temperature. When the temperature is below the transition
temperature T < Tggc, the BEC is formed. When we lower the temperature T, the
behavior of the quasi-particles change. This can be seen clearly through the Bogoliubov
dispersion relation, which depends on the density of the condensate and the temperature
since g depends on T'. In the lower temperature range when T is only a portion of Tggc,
sometimes, we can suppose (cf. [26,27]) that the interaction between bosons, i.e. the Cao
collision operator, is negligible, and the BEC is very stable. In this case, the system can
be reduced to a kinetic equation involving the Ci5 collision operator only:

A —Culil. £0.0) = folp). ¥p € B, (1.21)

In this regime, the transition probability takes the form Ck|pi||p2||ps|, which is un-
bounded, while (1.11) is bounded. In the series of beautiful works [8-10], the study of
(1.21) has been done for the first time. In [3] it has been proved that (1.21) has a unique
positive radial solution, based on an argument of propagation of polynomial and ex-
ponential moments. We will see later that, unlike (1.21), polynomial and exponential
moments of solutions of (1.14) are not propagating on the time interval [0, c0), due to
the presence of the collision operator Cay. In [67], it is prove that the solution of (1.21)
is bounded from below by a Gaussian. In other words, the operator Cio is “strongly”
positive.

Above the BEC critical temperature, the density of the condensate n. is 0, then
C12 = 0. Equation (1.20) is reduced to the Boltzmann—Nordheim (Uehling—Uhlenbeck)
equation

W —calfl, £0.0) = follpl).vp < B, (1.2)

which has a blow-up positive radial solution in the L> norm if the mass of the initial data
is too concentrated around the origin (cf. [29]). Note that in this temperature regime, the
transition probability is K22 = 1 (cf. [47,49]), which is different from the regime consid-
ered in this paper. The existence of a global weak and measure solution for the equation
was treated in [59-61]. In [17], local existence and uniqueness results, with respect to
the L® norm, were obtained for the Boltzmann—Nordheim (Uehling—Uhlenbeck) equa-
tion. Let us mention that when the temperature is above the BEC critical temperature,
the energy is of the form 2° The collision of two microscopic boxes of particles with

2m
momenta p; and py changes the momenta into p3 and py; and the conservation laws read:
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Ip11> + |p2|?> = |ps|® + [pa]®, D1+ p2=ps+Dpa

: + : g 1P1i=p2l
Since p1, p2, p3, pa belong to the sphere centered at ®3P2 with radius 5%, the

collision operator Cas can be expressed as a integration on a sphere, following the strategy
represented in [20,84] for the classical Boltzmann operator.

In our case &, is approximated by the Bogoliubov dispersion law (1.13), the colli-
sion operators are integrals on much more complicated manifolds. Classical techniques
used for the classical Boltzmann equation cannot be applied. New estimates on energy
manifolds, such as

51”1 = gpz +gp37 p1 = p2 + p3,

are then required.

Moreover, (1.22) conserves the mass of the solution, while the full equation (1.20) does
not. As a consequence, estimating the mass of the solution to (1.20) is a crucial task.

Let us emphasize that due to the presence of the Ci5 term, which is much more
complicated than the classical Boltzmann collision operators due to its non-symmetry
structure, (1.20) is much more complicated than the Boltzmann—Nordheim (Uehling—
Uhlenbeck) equation, as it has already been noticed in a series of beautiful works [8—10],
where the study of Ci2 has been done for the first time. In order to study Cis, the
authors of [3] have developed special techniques, based on the ideas of propagation and
creation of exponential and polynomial moments for only the collision operator C1s. In
our case, as it is shown later, the mass of the solution of (1.20) is not conserve and the
presence of C1o + Ca makes the problem different from the case considered in [3]. In-
deed, in the works [8-10], the authors impose a cut-off on C;5 for small momentums. As a
consequence, the authors approximate the Bogoliubov dispersion relation by a simplified
one, which significantly simplifies the analysis. However, we do not need to impose this
cut-off on Cy5. Since C5 is used in its most general form in our case, it is very important
that the Bogoliubov dispersion relation is kept.

Moreover, we tried the strategy of [7] used to prove the existence and uniqueness of
classical solutions to the classical Boltzmann equation, but it does not seem applicable.
The main reason is that for (1.20), we can only establish bounds on weighted L! norms of
the solution. Bounds on weighted LP norms is still an open question and the H-theorem
is not useful in this case. As a consequence, the Dunford—Pettis theorem cannot be used
and the strategy of [7], even though very powerful, cannot be directly applied. We then
have to develop new ideas to show that (1.20) indeed has a global and classical solution
in weighted L! spaces. Our result is different from the results considered in [59-61]
about the existence and uniqueness of global weak solution for the Boltzmann—Nordheim
(Uehling—Uhlenbeck) equation. Note that our method also works for the collision kernel
K'? of the more complicated form C|p1|2|p2|¢|ps|¢, (0 > 0).
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Let us define

LL®) =3 7 | flly = [ W1 @ldy < oo p (1.23
R3

CLE) =1 f | Ul = /v )Eg2dp < o0y (1.24)

L. (R?) = wmh:/u (14 dp<ooy. (129

Our main result is the following theorem.

Theorem 1.1. Suppose that fo(p) = fo(lp|) > 0, and

Ja+ et < .

R3

For any time interval [0,T], let n, n* be two positive integers, n > 1, n, is an odd
number, n* > n+4. For any positive number R, there exists ¢,,, depending on R and T
satisfying ¢, (R, T) tends to infinity as T or R tends to infinity, such that if

& 5w < 0. R0, [ o) < ®
R3 R3

then there exists a unique classical positive radial solution
f(t.p) = f(t,|p]) € C°([0,T], L3, (R*)) N CH((0, T), Ly, (R?))

of (1.20) where Cag is of the form (1.19), Koo is of the form (1.18), &, is the Bogoliubov
dispersion law and N, is assume to the constant n..

One of the key ingredients of the proof of Theorem 1.1 is the following theorem about
the existence and unique of solutions to ODEs on Banach spaces. The theorem has an
inspiration from [2,3,16,63]. Notice that different from the previous cases considered in
[2,3], we do not have the propagation of polynomial and exponential moments of the
solution, as a consequence, we introduce new ideas to deal with this difficulty. Those
ideas are discussed in Remarks 1.1, 1.2 and 1.3.

Theorem 1.2. Let [0,T] be a time interval, E := (E,|| - ||) be a Banach space, St be a
bounded, convexr and closed subset of E, and Q : St — E be an operator satisfying the
following properties:
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(A) Let || - ||« be a different norm of E, satisfying || - ||« < Cgl| - || for some universal
constant Cg, and the function

[ |+: E—R

u — U,
satisfying
lu 4+ v]e < |uls + [v]«, and  |oul, = alul.

for allu, v in E and oo € Ry
Moreover,

ule = [lull«,Vu € Sr,  |ul < lull« < Cgllull,Vu € E,
Q(u)]+ < Cu(1 + [uls), Vu € Sr,

and

Sr C B, (0, (2R, + 1)e(c*+1)T) = {u e E‘||u||* < (2R, + l)e(c*+1)T},

for some positive constant R, > 1.
(B) Sub-tangent condition

lihrg(i)rif h~tdist(u + hQ[u], St) =0, Yu e SrN B, (O, (2R, + 1)6(C*+1)T) ,
() Hdolder continuity condition
|Qlul = Q|| < Cllu—vl®, B€(0,1), YuveSr,
(D) one-side Lipschitz condition
[Q[u] = Qv],u —v] < Cllu— ], Yu,v € Sr,
where
;0] == lim A7 ([l + hell = [l¢l])-
Then the equation
Ou = Qu] on [0,T] x E,  u(0) =up € ST N B.(0, R,) (1.26)

has a unique solution in C*((0,T), E) N C([0,T)],Sr).
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Remark 1.1. Note that for (1.20), the mass is not conserved. We indeed prove that it
grows exponentially in Section 2.1.3. As a consequence, in Theorem 1.2, besides the norm
|| - || of the Banach space F, we also need the second norm || - ||« and the ball

B, (0, (2R, + 1)e<C*+1>T),

which take the crucial role in controlling the mass of the solution on the time interval
[0,T].

Thanks to the control on the mass, we can later prove that the collision operator
Q in (1.20) is indeed Holder continuous, which means Condition (€) of Theorem 1.2 is
satisfied.

Remark 1.2. In Theorem 1.2, |- |, is a function from E to R, that coincides with the
second norm in || - ||« in the set Sp. This is due to the fact that, we will choose St to be
a subset of the positive cone of E = L1 (R?).

Remark 1.3. In Condition (8) of Theorem 1.2, we do not consider the boundary case
where

lull = (2R, + 1)el @ +DT.

Our idea of the proof is to start with an initial condition %(0) in the intersection of St
and the ball B, (O, R.), and make u(t) evolve as long as

lu(®)|l« < (2R, + 1)elC=TVT,
This idea is realized, in a discrete way, in Part 2 of the proof of Theorem 1.2.

The plan of the paper is as follows:

e Section 2 is devoted to the proof of Theorem 1.1. This proof is divided into several
steps:

— In Section 2.1, basic properties of Equation (1.20) are presented. We prove that
solutions of (1.20) conserve momentum and energy in Section 2.1.1. However,
different from the Boltzmann—-Nordheim (Uehling-Uhlenbeck) equation (1.22), the
mass is not conserved for the full equation. Therefore, estimating the mass is a
crucial task. Notice that different from previous studies (cf. [29]), where the energy
is

p2

P om’

in our case, due to the presence of the condensate, the energy is approximated by
the Bogoliubov dispersion law (1.13). This requires new estimates on the energy
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surfaces. Section 2.1.2 is devoted to such estimates. Based on these estimates, in
Section 2.1.3, we provide a bound of the mass of solutions to Equation (1.20) on
a finite time interval [0, T.

As a key ingredient of the proof of Theorem 1.1, we show in Section 2.2 that
polynomial moments with arbitrary high orders of solutions of (1.20) are bounded
on a finite time interval [0, 7], which is the content of Proposition 2.4. Note that
different from the very low temperature regimes considered in [3], in our regimes,
polynomial moments are not propagating an created on [0, c0). The strategy of the
proof of the proposition is to estimate moments of the collision operators C12 and
Cos, which are done in Sections 2.2.1 and 2.2.2 using results on energy surfaces
of Section 2.1.2. Based on these estimates, we obtain a differential inequality for
finite time moments of high orders in Section 2.2.3, which leads to the desired
results of Proposition 2.4.

In Section 2.3, we prove that the collision operators Cio and Csy are Holder con-
tinuous, thanks to Proposition 2.4. In order to do this, we decompose Cos as the
sum of two operators C3, and C3,, where the first one is of second order and
the second one is of third order. The operators C12, Ciy and C3, are proven to
be Holder continuous in Sections 2.3.1, 2.3.2 and 2.3.3, respectively, on any time
interval [0, T1.

Using Theorem 1.2, we prove in Section 2.4 that Equation (1.20) has a unique
positive, radial solution on any time interval [0, T].

e The proof of Theorem 1.2 is given in Section 3.

2. The quantum Boltzmann equation

2.1. Mass, momentum and energy of solutions of the kinetic equation

We will make use of the following notation
milf) = [ & o0 )i (21)
R3
For convenience, we introduce
Cr2[f] = Cis[f] + Ca[f] (2.2)

with

C

C

LU= [ [0 pa.0) [0 £05) = S0 1 02) + T + 1) dpadpy

R3 xR3

Balf] =2 // K'*(p2,p1,p3) [f(pl)f(pg) — fp2)(f(p1) + f(ps) + 1)}dpzdp3,

R3 xR3
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where the collision kernel is defined by
K*(p1,p2,p3) = MineK (1, pa2, p3) (5(5(]91) — &(p2) — E(p3))d(p1 — p2 —ps))-
We also define the energy surfaces/resonance manifolds
SS i= {p* ER® : E(p—pi) +Eps) = E(p)}
Shi={p. B> Ep+p.) =€) +E.) ) (23)

$2:={p. €R® : £(p.) =E() +E(p )}

=

for all p € R?\ {0} and the functions
£

HY(z):=E(p+z)—E(p) — E(), (2.4)
&

Set

R12(p17p23p3) = AlncK12(p17p27p3)a

by the nature of the Dirac delta function, the collision operators can be expressed under
the form of the following surface integrals

Clalf]

= / K32 (p1,p1 — p3.p3) [f(pl —p3)f(p3) — f(p1)(f(p1 — p3) + f(p3) + 1)} do(ps)

S0

Cholf]

=2 / K%Q(M + p3,P1,03) [f(p1 +p3)(f(p1) + f(ps) +1) — f(p1)f(p3)] do(ps),

sk
where
12 _ _ 12

Ko*(p1,p1—p3,ps) = s (f)vlﬁ(l)(m};r’ps), Ki*(p1+p3,p1,p3) = K (fvl;l_lzz;j)ji’p?))
p p

We also split Ci2[f] as the sum of gain and loss terms:

Ciz[f] = O™ /] = C13° 1] (2.5)
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with

CEn ] = / B2 (p1,p1 — pa,pa) f(pr — p3) f(pa) dor(ps)

SO
+2 / K1*(p1 + p3, p1,p3) f (1 +ps)(f(p1) + f(ps) + 1) do(ps),
S’l

CI5°1f] = fORIf,

Cplfl = / K% (p1,p1 —p3,p3)<f(p1 —p3) + f(ps) + 1) do(ps)

0
S;Ul

+2 / K{%(p1 + p3,p1,p3) f(p3) do(ps).

51
Similar as for C2, we also split Cy2 into gain and loss operators, as follows
Coa[f] = O™ (1] - 53”1, (2.6)

where

CEM(f] = X /// K?(p1,p2,p3,pa) (1 + f(p1)) (1 + f(p2))f (p3) f (pa)dp2dpsdpa,

R3X3
CIge (] = FClf),
Coalf] = As / / / K22 (p1, 2. ps. pa) f(p2) (1 + £ (ps) (1 + F(pa))dpadpsdps,

R3x3
and
/C22(1017P2,P3,P4) = >\2K22(P17P27P3,P4)5(P1 +p2—p3— p4)5(5p1 + gpz - 5p3 - 5p4)~

We also split @) into the sum of a gain and a loss operators

Qlf] = Q=[] — Q"*If], (2.7)

where

Q=™ [f] = CH™([f] + C5 ™[],
QU= [f] = CI3=[f] + Cx=[f],

and
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Q">[f] = fQ™ 11,
with
Q f] = Cpnlfl+ Cxlfl

2.1.1. Conservation of momentum and energy and the H-Theorem
In this section, we obtain the basic properties of smooth solutions of (1.20).

Lemma 2.1. There holds

/ QU1 e(pr)dp:
]R3

= /// ng[f](pl,pz,ps)(so(pl) —¢(p2) - <P(p3)) dp1dp2dps

R3 xXR3 xR3

1
+3 /// Rao[f](p1, 2,3, P4) (so(pl) + ¢(p2) — ¢(ps) — <P(P4)) dpyrdpadpsdpy,
R3 xR3xR3 xR3

for any smooth test function ¢, where
Rio[f](p1,p2,p3) = MneK 2 (p1, p2, ps)d(p1 — p2 — p3)d(Ep, — Epy — Epy)
x[(1+ f(p1))f(p2) f(p3) — f(p1)(L+ f(p2)) (1 + f(p3))],
Roa[f](p1, p2, p3, pa) = MoK (p1, p2, p3, p1)0(p1 + p2 — p3 — P1)0(Epy + Epy — Epy — Epy)

X[(1+ f(p1)) (1 + f(p2))f (P3) f(pa)
—f(p1) f(p2) (1 + f(p3)) (1 + f(pa))]-

Proof. By a view of (1.20), we have

[ Calfieeeian + [ Calieeedn =1+ b,

R3 R3
where
I = /// <R12[f](]917p27173) — Ria[f](p2, p1,13) *Rlz[ﬂ(m,m,pl))@(m) dp1dpadps,
R3 xR3 xR3
I := /// Ras[f](p1,p2, 3, pa)p(p1) dpidpadpsdpy.
R3xR3 xR3 xR3

By switching the variables p; > pa, p1 > ps3 in the integrals of I1 and (p1,p2) < (p2,p1),
(p1,p2) ¢ (p3,p4) in the integrals of I, respectively, as in [3,29,67], the lemma follows

at once. 0O
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As a consequence, we obtain the following two corollaries.

Corollary 2.1 (Conservation of momentum and energy). Smooth solutions f(t,p) of
(1.20) satisfy

/ f(t,p)pdp = / fo(p)pdp (2.8)
R3 R3
/ £t p)EW)dp = / fo(@)E)dp (2.9)
R3 R3

forallt > 0.
Proof. This follows from Lemma 2.1 by taking ¢(p) =por E(p). O

Corollary 2.2 (H-Theorem). Smooth solutions f(t,p) of (1.20) satisfy

4
dt
R3

[£(t,p)log f(t,p) — (1 + f(£,p))log(1 + f(t,p))]dp <0

A radial symmetric equilibrium of the equation has the following form

1
ecg(p) —1

foolp) = (2.10)

where ¢ is some positive constant.

Proof. Observe that

o / F(t.p)log F(t.p) — (1 + f(t.p)) log(1 + f(t.p))] dp
]R3

Rlatf(t,p) log (M) dp,

and
/ QUL p)e(t, p)dp

- / / / K™ (o1, p2s p)0 (01 — p2 — p)0(Epy — vy — En2)
R3xR3xR3

><(1+f(t7p1))(1+f(t,pz))(1+f(t,p3))( f(tpa) _ f(t ps) [t p1) )

Ftp2) +1 f(t,ps) +1  f(t,p1) +1
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x [p(p1) — ¢(p2) — ¢(p3)]dp1dpadps

A
+ 2 [ K050+ = = )6 + 60— 6 — )

R3 xXR3 xXR3 xR3

><< ftps)  fltpa)  fltp1)  f(tp2) >
ft,ps) + 1 f(t,pa)+1  f(t,p1)+1 f(t,p2) +1

x [p(p1) + @(p2) — w(p3) — @(pa)]dp1dpadpzdps.

Notice that

(o — B)log (%) > 0.

In the above inequality, the equality holds if and only if & = 8. Now suppose that foo(p)

foo (P)
foo (P)+1

is a radial symmetric equilibrium. By Lemma 2.1 with ¢(p) = log ( ), we obtain

/ QU] (P)e(p)dp < 0.
R3

This yields the inequalities in the H-theorem:

fOO(p2> f00<p3) fOO(pl)

fo2) + 1 foo(pa) +1  fulp) +1

foopd)  fooP) — foolPh)  foo(ps)
foo(Ph) +1 foo(P) +1  foo(Py) +1 foo(ph) +1

Setting h(p) = log (ff"fp()le, with the notice that h is radial symmetric, we get the

following set of equations

h(p2) + h(ps) = h(p1), (2.11)

and
h(ps) + h(py) = h(pz) + h(p)). (2.12)
Let us consider (2.11). In particular, by the conservation law

p1 =p2+Dps3,

the function h(p) possesses the following property

h(p2 + p3) = h(p2) + h(ps3),
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for all (p2, p3) € R® satisfying

E(p2 +p3) = E(p2) + E(p3)-

As a consequence, since h is radial symmetric,
hof Ha+pB)=ho& Ha)+hoE R,

where py = £71(a) and p3; = £71(B). Notice that a, 3 can take arbitrary values in R,
which implies h o £71(a) = —ca for some positive constant ¢ and for all « > 0. Hence
h(p) = —c€(p), for all p € R3. Identity (2.10) is proved. O

2.1.2. Resonance manifolds/energy surfaces
We establish the following estimates on the energy surface integrals on S; and Sg
following the strategy proposed in [67].

Lemma 2.2. Let Sz? be defined as in (2.3). The following estimate holds

K" (p,w,p — w)|w|* |p — w|*> .
/ : |VHg>(|w)| P o) > ealplB T ming, ply, (2.13)
S’O

where k1, ko is are non-negative constants.
Moreover, for any function F(-) : R3 — R which is radial and positive

F(u) = F(|ul),
we have
|
J vz ()] 2 < 20/ | (Jul) dlul, (2.14)

P

for some positive constant co independent of p.

Proof. By definition Sg is the surface containing all w satisfying
E(p—w) +E(w) = E(p).

For w = 0 and p, the above identity is automatically satisfied, hence {0,p} C SS. If we
consider £(p) as a function of |o|: £(0) = £(|g|), then

K1 + 2K2|0|?

V k1 + Kelol?

&'(lel) = >0,
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which means that £(|g|) is strictly increasing. Since for all w € SH\{0, p}, E(|p — w|) <
E(lp|) and E(Jw|) < &(|p|), by the monotonicity of &£(|o|), we have |w| < |p| and |p —
w| < |p|, for all w € S,\{0,p}. As a consequence, the energy surface S) is a subset of
B(0, |p|]) N B(p, |p|). Now, recall

Hg(w) := E(p —w) + E(w) — E(p).
The directional derivative of HY in the direction of w can be computed as

E'(Ip — w]) + —&'(|w]). (2.15)

Vo HE = — L
|w|

lp — wl

For w of the form w = vp + qep,7v,q € Ry, ep - p = 0, the derivative of H with respect
to q is

p-w)  Ew)

&
O HY = 0w -V HE = eo - Vo H = qleo]? >0, (2.16)
e ’ p — wl |w]
which means that H(w) is strictly increasing with respect to g.
For ¢ = 0 and v € (0, 1), we will show that
HE(w) = Hg(vp) < 0. (2.17)

Let us start by the following true fact

V(K1 + £292IpP?) (k1 4 k2 (1 = 7)2[p|?) < k1 + ko (v* =y + 2)[p|*  for p # 0.

Multiplying both sides of the above inequality with 2v(1 —v)|p|? yields

2/ (k172 + k274 Ipl?) (k1 (1 — 7)2 + K2 (1 — )4 |p[?)[p|?
< 2k17(1 — ) |p[* + 2627(1 — 7) (v — v + 2)|p|*.

Adding k192[p|? + kav*|p|* + £1(1 — 7)2|p|? + K2(1 — v)*|p|* to both sides of the above
inequality, we obtain
k172 [pl? + kot + w1 (1= )2 [pl* + K2 (1 = 7)*|pl*
+2y/(r17? + k2 tpf?) (k1 (1 = 7)2 + Ka(1 —7) [pI?)|pl®
< ralpl* + ralpl*.

Rearranging the terms in the above inequality and taking the square root gives

VEp + w2y pl* + V1 (1= 7)2[p + k2 (1 = 7)4pl* < Vkilp]? + kalpl?,

and (2.17) is proved.
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As a consequence, for a unit vector ey which is orthogonal to p, the surface S, and
the set P, = {yp + geo,q € R, } intersect at only one point, for each v € (0,1). Define
the intersection by W, = vp + ¢yeo. Since

Ep = Wy) +EW,) = E(p),
then £(W,) < £(p); there holds

(Wol = \22Ip1? + gy > <Ipl, W5 —pl = \/(1 =P + e * < lpl

which implies

lg5| < Ipl; (2.18)

and

vlpl < WL < pl, (1 =)lpl < |p—W,| < |pl. (2.19)

Taking the derivative with respect to v of the identity

H{(W,) =0
yields:
W, —p Ww.
0=0,W, -V,HE =0, W, - <77€’(|p—w )+ —LE&'(|W. |)>
Yy 0 Y |p_ W’y| Y |ny| R
1 Elp =Wy , €W, E(lp = W)
——8W2[ eilAN W pp e ol 2.20
P N T R A P 220
1 Elp =Wy | €W, 2 (W) 2 (Ip =W, )
= 50lq |2[ =+ | Al = (L=l
27 lp—W,| W5 W5 lp—W,|
where the identities 0, W, = p, |W,|? = ¥%|p|* + |¢,|* have been used.
With the notice that £'(|W,|) > 0, the above identity yields
Loe P < 2 2.21
3914, 1" = @ =7)lp] (2.21)

for all p and all v € (0,1).
We now provide an estimate on ¢,. In order to do this, let us consider two cases |p| > 1
and [p| < 1.
o Case 1: [p| > 1. Observe that at v = 3, due to the symmetry of the geometry

|W1/2| = |W1/2 -l
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which implies
26(W1j2) = E(p).

Noting that [Wy/a[*> = X|p|* + |q1/2/?, yields

1 1 2
1 l (510 + o) + 2 (G108 + b 2P ] = malpl? + ol
then
1 2 Ko
K2 <—|P‘2 + \CI1/2|2) + k1l 2)* = ==Ip|*,
4 4
which implies
colpl? = colpl? min {1,1p2} < lg12l? < Colpl? min {1, I} = Colpl®  (222)

for some constants ¢y, C, independent of |p|.
Combining (2.21), (2.22) and the fact that

1

3
|qV|2 = ‘QI/2|2 - /&y"qV’F d’)’l
v
yields

1 1
gy |* = colp* — 2 ’7 - 5‘ Ip|* > §CO|p|2 (2.23)

for all v satisfying |'y - %| < 2.
o Case 2: |p| is small. Recall that

() + £ - )~ £
= k1 (lp — w* + [wl* — [p|*) + r2(lp — wl* + |w|* = [p|*) + 26 (w)E(p — w)
= 2K1w - (w — p) + 2kow - (w — p)(lwl2 +|w —pf* + Ip\2)
— 2k0|w|?p — w|* 4 2 (w)E(p — w), (2.24)

which leads to
—w-(w=p) (K1 + A w2+ 12w —pl2 + Ralpl? ) = E(w)E(p—w)—ralw p—w]? (2.25)

for all w € S, in which the right hand side can be computed explicitly as
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E(w)E(p — w) = rz|wf*|p — w|?

= [wllp — wlv/ (51 + rafwl?) (k1 + Kofw — pI?) = kalw]*p — w]?

K1 (/ﬁ + m2|w|2 + Kolw — p|2)

= [wl[p —wl|

V(K1 + Ka|w[?) (k1 + Kalw — p|?) + Ko|wl||p — w|

We will develop an asymptotic expansion of the above expression in term of |p|. In
order to do this, we observe that

\/<1+ |w|2> (1+:—flw—pl2) = 1+ (Iw\2+ w —pl*) + O(lpl*),

which leads to
E(W)E(p — w) = ralwp — w]?
= wllp = w| (k1 + rolw]? + kol — pf?)

1k K
(1f 5—2(|w|2+|w pl*) — *QIWIIM*pHO(IpI“))
R1

(2.26)
= Jullp — wl (5 + gralul? + ok — pi? — mouwllew — p| + O(p1*))
= Juwllp = w] (51 + Kalwl® + malw — pI2 + sl ) -
K2
— S wllew = pl(Jwf? + w = pf? + 2fwflw = pl +21pl?) (1+ O(p])).

Define p, be the angle between W, and W, — p, then W, - (W, — p) =
|W,||W, — p| cos p., which, together with (2.25)—(2.26), leads to

ey (137 + W5 = pf? + 21W5 W, — | + 20pl2) (14 O(1p?))
K1+ K2 Wo 2 + Ko Wy — p|? + ka|p|?

1+cosp, =
= O(Ip).

Hence sin p, = O(|p|). The area of the parallelogram formed by W, and W, — p can
be computed as

2pllg,| = |Wy x (W, —p)| = [W,||W, — p|sin p,,

which, together with (2.19), implies that there exist universal constants cq, c3 satis-

fying
esv(1=7)pl* < lgy| < calpf® (2.27)

for all v € (0,1).
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The two inequalities (2.23) and (2.27) are the two estimates we need to obtain (2.13).
To continue, we parametrize the surface Sg as follows: We choose p to be a vector in
Po = {p-q =0} and ey to be the unit vector in Py so that the angle between p* and ey
is 6. The surface S, can be represented as

Sy = {W(’y,@) =9p+|gyles : 6 €[0,27], v € [0,1]}.

Notice that the vector dyeq is orthogonal to both vectors p and ey, the surface area can
be computed as

do(w) = 0, W, x D W, |dydd = ‘(p + 8, gy es) x |qv\8969’d7d9

1
= |Uay p + 504 1a,12€0) x peq|dvat (2.28)

1
= \/IPIQI%2 + 1104 (ly[?)[*dvdb.

It is straightforward from the identity (2.20) that

(W, £ (lp-W,
0,l,12= 2lpf* W01 e (2.20)
V= 2P Elp- W) | £W,) '
[p—W,| [Wy]
Now, let us compute |VH}| under the new parametrization
E(IW4) E'(lp—W,D 1
vagE = [y + - p D
0 (W, | lp — W,
Elp—W. E(w,N1?
+|q72[ (I ), € 7|)] 7
lp— W, W5
which, in companion with (2.29), implies
2 2
pz _ 0GP TE(p—W,]) | E(W,))
A e e A A
7 K , (2.30)
A L RE AT
|p—W7| ‘W“/|

Using the fact that £&'(z) > cx for all x € Ry, we get the following lower bound on
[VHE|

181451212
oy = V2 [Pl O] o
° 7 p- Wl W]
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With (2.23) and (2.27), we are now able to estimate the integral

7= / K22 (p,w,p — w)w]* p — wl*do(w).

Notice that
K'2(p,w,p —w) > C(|p| A po)(|p — w| A po)(|w]| A po),

where C is some positive constant varying from line to line. As a result, Z can be bounded
from below by CZ’, where Z’ is defined as

2= [ (1ol A o)l A o)l = w] A o)l — wl*dow).
Sp

By (2.28), Z' can be rewritten as

Ipl Ip A po)(Jw] A po)(Ip — w| A po)|w|* |p — wl’”d "
Ellp—u] | (] :
Tp—w] Tl

Due to (225) for |p| large and v e [2 co 2+c0:|’

1
|W’Y|2 > |q7\2 > 500|p|2
and

2 o1 2

lp = W5[" 2 g5 |" 2 Seolpl”.
We therefore can bound
Ip| Pl colpl®
glp—w)) | &(uwl) = 9 (colp]) 9 K1+2kalcop|?
[p—w] [w] colp] VE1+r2[cop|?

where we have use the fact that % is decreasing with respect to |g|. Since |p| is large,

Ip|
£ p—w) , €(wl
p—wl T Tl

> Clpl,

for some positive constant C' > 0.
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Therefore, Z' can be estimated as follows

27 +260 2
Z'>C A “ A
> (Ipl A po) 5 Ipl| A po
0 1=cq

2

> C(lpl A1) [p| et

> Clp|frHh=tt,

1

k1i+ko
|pld~ydo

D
2]?

where C is some positive constant varying from line to line.
Thanks to (2.27), for p small, on the interval v € [l l],

372
‘W"/|2 > ‘Q'y|2 > Cl|p|4
and

lp— Wv|2 = |q7|2 2 Cl|p|4~

We therefore can bound

3

|p| s _ Il o alpl
Elp—w]) | E(u) = ) = 5ritonacipl ’
Ip—w] [l e lpl? VR +rac? Pt

where we have use the fact that % is decreasing with respect to |g|. Since |p| is small,

| 3
=, &0 2 Ol

[p—w] [w]

for some positive constant C' > 0.
Therefore, Z’ can be estimated as follows

1
2

2w 35
2
7' > / / (bl A po) (|Va o] A po)? e ol Clpfdrds
0o 1
3

> C(|p| A 1)%|p|*FrH2kets
> C|p|2k‘1+2k‘2+8.

The above shows that (2.13) holds true.
As for the surface integral of a radial function G(Jw|), we introduce the radial variable

u=|Ws| = /a2|p|2 + |¢a|?. We compute 2udu = 9, |W,|*da and hence
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1 Ip|

———do(w) = udud®.
P E(lp—Wy E(|Wy
[V HT] 2 [Elil o SN o, [,
Using (2.20), we compute
|p| B 1 __ 1
£ (lp—W. (W. o Elp=WH]) = 4&! ’
2 [Hlegh 4 SR o waf2 Al St 4 (RD

where we have used the fact that & &p Wo)) > /‘(ZL") D This, together with the bound

w\
g(lph) = €
for some positive constant C', proves that
do(w) < Cudud®, (2.32)
for some positive constants C'. This yields the upper bound on the surface integral. O

Lemma 2.3. Let S, be defined as in (2.3) and F be an arbitrary function in Li(Ry).
There is a positive constant Cy so that

|w] Co
< — . 1
/wmww () < POl e,y

uniformly in p € R3.
Proof. Let us recall that Szl) is the surface consisting of w satisfying
E(p+w) =E(w) + E(p).
First, we compute
£+ ) — () + Ew))”

= k1lp + w* + kalp + w|* — k1 (Ip]* + [w]?) — K2(Ip* + [w]*) — 2E(p)E(w)
=2k1w - p+ 260w - p(|p|* + [w|* + |p + w|*) + 2k2|p|*|w]* — 2E(p)E (w).

(2.33)

Now, since r1 # 0, it follows that ra|p|?|w|?> < E(p)&(w). This, in combination with
(2.33), proves that if w € S} \ {0}, then w-p > 0. Let us calculate the derivative of H}*

ptw

V., HY =
Ip + wl

E'(lp + wl) = =€ (Jwl),

w
|wl
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where

~ 2m1+ 4k2|0|?

E'(lol) = —F———=.
V k1 + Kalo|?

The derivative at w = yp with v € R, can be determined using the previous formulation
Oy HY = 05w - Vo HY [w=rp = [PIE"((1 +7)p) — [PIE’ (D).

By the monotonicity of £(p) with respect to the length |p|, it follows that £'((1+v)p) >
&' (yp), and hence 0, HY > 0 for all v > 0. Since H7 (0) = 0, HY (yp) > 0 for all positive 7.

Now, let us consider all the points W, = vyp + ¢, with ¢ - p = 0, for each fixed v > 0.
The directional derivative of H} at W, = vp + ¢ in the direction of ¢ # 0 satisfies

/ !
B B CUTS SN US) B

|P+Wv| |W'v‘

in which the fact that &'(p)/|p| is strictly decreasing in |p| has been used. By a view of
(2.33), the sign of HY(w), with W, = vp + ¢, is the same with the quantity

vlp\Q(m + ra([pl* + W4 > + |p + WW\Q)) + ko |p?|W, |2 = E(p)E(W)

= Alpf2 (11 + 262l + 1ol + W5 1%))
(bl + il ) (s W 2+ oW ) — il W
VPP + Ralp[y/m WA P+ Rl WA TF + ralpl2| W 2

= 7lp|? (m + 202 (|p[* + yIp[* + \Ww|2)>

. H%|WW\2|p|2+/$1112|W7|2|p|4+ﬁ152\p|2|Wv\4
VELP + Ralpl /KW, 2 + Ko W |2 + kg |p[2| W, |2

This yields that HY (yp + ¢) < 0 as long as

k1 (k1 + Kalpl?) + K1ko| W, 2 1

7 < .
VPP Ralp]" 1 R+ malpl (1 + 22+ lpl2 + W5 2))

Since HY (yp) > 0 and ¢V, HY <0, for a given direction ¢, there exists g, such that

¢ -q > 0 and g, is parallel with g, if an only if
lim HY(yp+q) <0 (2.34)
q o0

Taking ¢ — oo (and so |W,| — 00), we obtain (2.34) if and only if

1 K1
v< Y i=2 . (2.35)
P 2 kalpl? + 2Rz /K p? + Kalp]?
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In particular, we note that
Wlpl(L+[p]) < Co,  VpeR’ (2.36)

for some positive constant Cjy.
Hence, for positive values of v satisfying (2.35), there is a unique |g,| so that G(yp +
q) = 0, for all |g| = |gy|. Moreover, from the continuity of H}(W,), |g,| is continuously
differentiable with respect to 7. For v > v,, HY (yp + ¢) > 0, for all ¢ so that ¢ - p = 0.
Now, we can parametrize the surface S’Zl, as follows:

St ={w(1,0) =+ larles = v €[0,%), 0 € [0,27]}, (2.37)

in which v, and |¢,| are defined as above and ey is the unit vector rotating around p and
on the orthogonal plane to p. As in (2.28), we have

1
do(w) = \/P|2%|2 + Z|a’y(|qV|2)|2d7d9

and hence, the surface integral is estimated by

() // Flyr+ a1 \/ 20012 + 2)|2
q q dryd®b.
/WH% S Il 110, ()
Sk [0,27] % [0,7p]
Let us introduce the variable u = |W,| = \/72%|p|? + |¢y|?. We compute

2udu = 0.,|W,|*dy

and hence

V1Pl 12 + 210 (g, )12

F(lwl) /
————— do(w) <27 [ F(u 2.38
| gt 7 =27 ) P a0 RN 39
We recall that H} (W,) = 0 and hence
1 E'p+w,) EW,) E'(p+ wy)
0=0,W, -V, H = =0, |W,|? Y 26 WP Wy)
WVl = 50 (G Tt | P
which leads to
Ep+w,) 1 EW,) Ep+W,)
2T g W, SEA 7 2.39
P s =22 T T e (2:39)
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and
g (|W.

[5%”@)475%p+wwq
|W'7 ‘ |P+Ww |

2 E (lp+ W4 1)

—lp P+ W,

0slgy|* =2

We deduce from (2.40) that

e E'(lp+ W,
VHY? = |p|? {— 2+ (v+1 0
IVHY|” = [pI” | = W (v+1) FESTA
il [EAID 5'<Wv|>r
K Ip+ W, W,
2
_ 104lgyP?] [5’(IP+WWI) B r‘?’(lVVw)}2
Alp|? lp+ W, W]
il [EAID 5'<Wv|>r
K lp+ W, W, 7
which implies
F F
IVIfr';l(]D)I o(w) Sﬂ/ 8'(|v§u\)>|p| Eprwn] L
w ol al
S1 1 0 87|ny‘2[ WLl ptW,]

P

The above and (2.39) yield

Flu) o [ Fw
/|VHf<w)| do(w) < 0/2|p|w du.

ptw
s2 \ [

Using the fact that

E'(Ip + w|)
Ip + wl

for some positive constant C', we obtain

563

(2.40)

Lemma 2.4. Let S? be defined as in (2.3) and F be an arbitrary function in Li(Ry).

There are positive constants Cy so that
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E(Jwl)
[VH (Jw])]
5'2

P

Co

do(w) < 1

lwF ()l Lt (ryy

uniformly in p € R3.
Proof. We observe that

Sy =A{p« | E(p.) =Ep) +E(p« — )}
={p«+p | Elp«+p)=EpP) +E(p.)}
=p+35,.

The above identity means that the same argument of Lemma 2.3 could be applied and
the conclusion of the lemma follows. O

2.1.83. Boundedness of the total mass for the kinetic equation

Proposition 2.1. Suppose that the positive radial initial condition fo(p) = fo(|p|) satisfies
[ fator)dor < o<, [ fatonndn < oc.
R3 R3

There exist universal positive constants C1, Co such that the mass of the positive radial
solution f(t,p) = f(t,|p|) of (1.20) could be bounded as

/f(tvpl)dpl < Cre®t.
R3

Proof. First, observe that the constant function 1 can be used as the test function for
(1.20), to get

%/f(pl)dpl = /Clz[f](]?1)dp1Jr/Csz(Pl)dpl, (2.41)

with the notice that
/C2z[f}(p1)dp1 =0,
RS

and

/ Caalf|(p1)dps = Mne / / / K12(p1, 2, p3)0(p1 — P2 — p3)0(Eps — Epn — Epy)
R3 R3xR3xR3

x[f(p1) +2f(p1) f(p2) — f(p2) f(p3)|dp1dpadps.
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From the above computations, we can see that the control of the total mass really comes
from estimating the collision operator C1a, since the integral of Cos is already 0. Set

Ji = Aine /// K'(p1,p2,3)8(p1 — p2 — p3)8(Epy — Epy — Epy) f (p1)dprdpadps
R3 xR3 xR3
and
Jo = 2Ain, /// K" (p1,p2,p3)8(p1 — p2 — p3)6(Epy — Epy — Epy) f(p1) f(p2)dp1dpadps,
R3 xR3 xRR3

to get
G [ Ho0an = [ @lnide < 9+ (242)
R3 R3

note that in the above inequality, we have dropped the negative term containing

f(p2) f(p3)-
Now, J; can be estimated the following way, by using the definition of the Dirac

functions §(p1 — p2 — p3), 6(Ep, — Ep, — Epy) and the boundedness of K'2(p1, pa, p1 — p2)

S A7 // K" (p1,p2,p1 — p2)8(Epy — Epy — Epy—py) [ (P1)dp1dps

R3 xRR3

1
C/f(pl) /Wda(m) dp1,
B\

IN

which, by Lemma 2.2, can be bounded as
no< ¢ [ P,
R3
Using the fact that |p;|? is dominated by Ep, up to a constant, yields
Ji < C’/f(pl)gpld}h < C, (2.43)
R3

where C' is a constant varying from line to line and the last inequality follows from the
conservation of energy (2.9).

It remains to estimate Jo. By a straightforward use of the definition of the Dirac
functions d(p1 — p2 — ps) and (&, — Ep, — Eps)
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Jy = 2hun, / / K2 (py, pa. p1 — p2)0(Epy — Epy — Epy—pa) F (1) F (p2)dprdps
R3 xR3

~ 2w, / F(p2) / K22 (p1,p2sp1 — p2) f (p1)do(p1) | dpo,
5'2

which, by Lemma 2.4, can be bounded as

Jo < C/f (p2) /Kz p1,P2,p1 — p2) f(p1)do(p1) | dp2
S2
K12 , ,
< C/f P2) / (Prp2:p1 — pz)f(m)d]h dps.
|p1||p2

K'(p1,p2,p1—p2)

s is bounded by |p; — p2|, up to a constant, Js is dominated by

Since

b < C / F(p2) / Fu)lpr — paldps | dps
R3 3
< /fpz /fp1 (Ip1] + [p2|)dp1 | dp2
<

(‘R/fpz (p2)dp2 (m/fpldpl )

notice that C is a positive constant varying from line to line and we have just used the

fact that |p| is bounded by &(p) up to a constant, which by the conservation of energy

(2.9), implies
Combining (2.42), (2.43) and (2.44) leads to

& [t = [Qneodn <o (14 [ ). @)
R3 R3 R3

for some positive constant C*, which implies the conclusion of the Proposition. O
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2.2. Finite time moment estimates of the solution to the kinetic equation

2.2.1. Estimating C12

Proposition 2.2. For any positive, radial function f(p) = f(|p|), for any n € N, there
exists a universal positive constant C depending on n, such that the following bound on
the collision operator C1o holds true

/ Coslf)(p1)E™ (1)

® (2.46)

n—1

< D Clmilf] + mu—s[f)) (mn—ra[f] + mn—k[f]) = Crn g [f] + Cra [ f].

b
Il

Proof. For the sake of simplicity, we denote my[f] by my. By a view of Lemma 2.1,

/ CrslF)(pr)E" (1)l =
R3

= e / / K" (p1,p2, p3)8(p1 — p2 = p3)0(Epy — Epy — Epy) X (2.47)

R3X3
x [f(p2)f(p3) — f(p1) — 2f (p1) f (P&, — Ep, — Epyldp1dp2dps.

By the definition of 6(&,, — &, — &p,), the term &) — &) — £ could be rewritten as

n—1
n n n n n—
(SPQ +gp3) o gpz - 8103 = Z <k’> 5[1)925p3 k’

k=1

which yields

/ Coalf](p1)E™ (01 )dlpr =

RS
= NN /// K" (p1,p2,03)0(p1 — p2 — 3)8(Epy — Epy — Eps) X

R3x3

< F(22)(ps) — £ (1) — 20 (1) ()] [ij (7) s@e;%;k] dp1dpadps.

k=1

Dropping the term containing —2f(p1)f(p2), the above quantity could be bounded as

/ Cualf)(p1)E™ (p1)dpy < Ly + Lo, (2.48)

R3
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where

L= n.\ // K" (p1,p2,p3)3(p1 — p2 — p3)6(Epy — Epy — Epy) X

R3%3

n—1
x f(p2)f(ps) [Z ( )511525;3 k] dpidp2dps
k=1

Ly:= —nc)\ /// K" (p1,p2,p3)3(p1 — po — p3)6(Epy — Epy — Epy) X

R3%3
n—1

x f(p1) [Z ( )5;525;3 k] dpidpadps.
k=1

Let us first look at L;. By the definition of §(p; — p2 — p3),

Ly = nc)\l/ Ku(p2 +p37p2’p3)5(5172+p3 - gpz - gps)x

R3x2
n—1

x f(p2)f(ps) [Z <k> EmEp k] dpadps,
=1

which by the boundedness of K'2, could be bounded as

L,<C // 5(5P2+P3 - gpz - 5173)X
R3 xR3

n—1
x f(p2)f(ps) l (Z) Epnly k] dpadps
=1

< ZC/f (p2)€ /fp3 |VHp2|da(p3) dps.
=

Applying Lemma 2.3 to the above inequality leads to

L, < Zc/fpz /fp3 dp3 dpa,

where C is some constant varying from line to line.
Observe that

5nik k— 1 k gk k—1 k
‘p3| C(gn 5117137 )’ ‘p1)22| S C(Epzi —|—5 2)
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which implies

n

L <

M

=~
Il

1

c / Fp)EY dpy / Fp)ER " dpy + / Fp)ERdpy
boolks : RS (2.49)
1

3

IN

Clmy + mp—1][Mp—r—1 + Mp_g).
—1

=

Now, by the definition of 6(p1 — p2 — ps) and 0(E,, — Ep, — Epy—p, ), the second term Lo
can be rewritten as

Ly= —nohs / / K'2(p1, p2, p1 — 92)0(Eps — Epy — Eprps) X
R3x3
n—1
x f(p1) [Z <Z> 5;,625;_];2] dp1dps
k=1

IN

n—1
- Zc/f(pl) / Ko?(p1,p2,p1 — p2)EL,E % do(ps) | dpa.
k=1 g st

Since

852551:22 =>C [|p2|k|p1 _p2|nik + |p2‘2k|p1 _p2|2(n7k)} )

where C' is some positive constant varying from line to line, Lo can be estimated as
follows

Ly

IN

IN

n—1
- ZC/f(m) /K32(p1,p2,p1 —p2)
k=1 3 S0
X (Ipz\k\m — pa|"F + |pa|*F|p1 — p2|2("*k)) do(pz)] dp1,

which, due to Lemma 2.2, can be bounded by

Ly < — C/f(Pl) (([pr] A D)™ o™+ (o A 1P T py [P dpy.
R3
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Splitting the integral on R? into two integrals on [p1| > 1 and [p;| < 1 yields

Ly < —-C / F(o1) (Ip]" 2 + [po > ) dpy

|p1]>1

-C / F(or) (P + |po ") dpy
[p1|<1

< =0 [ 1) (nal ) di,
[p1|>1

where C' is some positive constant varying from line to line and we have used the in-
equality —|p1|"*! > —|p1|"*2 for |p1| > 1. Adding and subtracting the right hand side
of the above inequality with an integral on the domain |p;| < 1, we obtain

/ Fu) (I + [pa 242 dpy — / F@1) (12 + o [2742) dpy
RS

[p1]<1

Ly

IN
\
Q

/ F@1) (11 [pa 242 dpy — / D11 (p1)dpr |
R3

[p1]<1

IN
I
Q

where the last inequality is due to the fact that we are integrating on |p;| < 1. Bounding
the integral on |p1| < 1 by the integral on the full space R3, we get

L, < -C / 1) (12" [pa[2742) dpy + © / Ipa1£ (p1)dps.
R3 R3

By the inequality
[T [y P = CER
we obtain the following estimate on Lo
Ly < —Cmpy1 +Cmy. (2.50)
Combining (2.48), (2.49) and (2.50), we get the conclusion of the Proposition. O
2.2.2. Estimating Cao
Proposition 2.3. For any positive, radial function f(p) = f(|p|), for anyn e N, n > 2, n

is odd, there exists a universal positive constant C depending on n, such that the following
bound on the collision operator Coo holds true
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/022 [f1(p1)&y, dp1 <
R3

k+1

<C Z Zmz’+s (Myjh—s +Mytk_sy1/2) + (2.51)
0<i,j,k<n; i+j+k=n s=0

+C E m; (mj,1 + mj_l/g) (mk71 + mk_l/z) .
0<i,j,k<n; i+j+k=n: j,k>0

Proof. For the sake of simplicity, we denote mg[f] by mj. We first observe that, by a
spherical change of variables

/QANMMWM:C/CMNmMﬁ%MmL
R3 R4

where C' is some universal constant varying from line to line, and

/022 [f1(p1)Ey, dp1 =
R3

= K3/K22(p17p2,p3,p4)min{\p1|7 D2, |3 [pal 1| [p2llps|[pald (Epy + Epy — Eps — Epy)

7
X [f(p3)f(pa)(X + f(p1) + f(p2)) — f(p1) f(p2) (1 + f(p3) + f(pa))]

n

x & d|p1|d|pz|d|p3|d|pal.

By the classical change of variables (p1,p2) <> (p2,p01), (p1,p2) <> (p3,pa) (cf. [84]), the
above equation could be expressed in the following way

/%mmmmF
R3

= C/K”(pl,pz,ps,m)min{\pl|7Ip2|7Ipsla|p4\}|p1|Ip2||p3||p4|5(5p1 + &, = Epy = Epy)

R
x f(p) f(p2)(X + f(ps) + f(pa)) |Ep, + Epy — Epy — € | dI1ld|p2|d|ps|d|pal,
where C' is some universal constant varying from line to line.

Taking into account the fact that p3 and ps are symmetric, and using the definition
of the Dirac function to get &,, = &,, + &p, — &4, One obtains
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n —
/sz[f](pl)gpldm =
R3

= C/K22(p13p2ap3,p4)min{|p1|a |p2|’ |p3|7 |p4|}|p1Hp2||p3||p4|5(€z71 + gpz - Sps - 5P4)

7
X F(p0) S (o) (L4 20 (09)) [ (Eps + Eps — Epu)" + Epy — 3, — €3 | dlpaldipaldlpsldlpal.
(2.52)
Notice that for
E(Ipl) = V/r1lpl® + K2lp|*,
its derivative is bounded from below as
£(lph = T2 g (259

VE1+ Relp?

where C is some universal constant varying from line to line, which means C|p4|d|p4| can
be bounded by d&,,. As a consequence, the following estimate on the right hand side of
(2.52) follows

/ Caa[f](p1)€p, dp1 =
RS

< C/Kﬂ(pl,pz,p3,p4)min{|p1|, Ip2|, P3| Hpillp2||p3|d(Epy + Eps — Eps — Epy)
RY
X f(p1)f(p2)(1+2f(p3)) |:<gp1 +Epy — Ep)" + & — &y — & | dIprld|pz|d|p3|dEy,

(2.54)

where, we have used the fact that

min{[ps |, [p2, ps, [pal} < min{[pal, [p2], |ps|}-

Since n is an odd number, applying Newton formula to the term (&,, + &y, — Ep, )" +
Epy — Epy — &y, yields

1

(Epl + 5:02 - gps)n + 517:3 - 552 - ggl = Z Ci»jvkvngi 5.5, (2.55)

P17 pP27P3"
0<i,5,k<n; i+j+k=n

Plugging (2.55) into (2.54), integrating with respect to d€4 and using the bound (1.18)
leads to
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/ Cao[f](p1)E), dp1 <
]RIS

< C / min{[p1], [p2l, [p3|}|p1l|p2lp3l f(p1) f(p2) (1 + 2f(p3))
{Epl +£P2 25173 }
o (2.56)
x > |yl €L EL ER | d|p1|d|pa|dips)|
0<i,j5,k<n; i+j+k=n
<c 3 [ mindioa el sl el

0<4,5,k<n; i+j+k:n{gp1+gp >gp3}
x f(p1)f(p2)(1+ 2f(p3))5;15325§3d|171|d|p2\d|p3|-

In order to estimate the right hand side of (2.56), we estimate each term containing

f(p1)f(p2) and 2f(p1)f(p2) f(ps) separately.
Let us first look at the term containing f(p1)f(p2)

L=c¢ Y [ mindipillpel, lal} s el
0Sighan SHith=nie, 16,6,
X f(Pl)f(P2)5i &lEY dlp1|d|p2|d|ps|
P17P27P3 (2.57)
X > [ itk el
0<4,j,k<n; i+j+k=n{£pl +Ep, 25?3}
X f(p1)f(p2)5£15£25§3d|p1Idez\dé’pg,
where we have used (2.53) to get |ps|dps < CdE,, and the fact that
min{|p1[, [p2l, [ps|} < min{[pi], [p2[}-
In (2.57), integrating with respect to d&,, leads to
< C > /min{|P1|a|P2|}\P1||P2\f(P1)f(P2)
0<4,5,k<n; i+j+k=
= TTTRY (2.58)

% gl gj (gpl +5P2)k+1

p1<p2 k+1 d|p1|d‘p2|7

where C is some universal constant varying from line to line.
Again, by Newton formula

S

k+1 k +1
Ep + &)= ( >8;15§j1‘3, (2.59)
0
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which, together with (2.57) leads to

L, <
k+1
<c S il el Hpllpe £ £ )€l e
0<4,5,k<n; i+j+k=n s= OR+
k+1
< C Z Z 1P a2 f (p1) f (p2) €5 €312 d|p |d|pa- (2.60)

0<4,5,k<n; i+j+k=n s= OR
T

Note that integrals of d|p1| and d|ps| in (2.60) are separated and it is straightforward
that the integral of d|p;| can be computed, by a spherical coordinate change of variables,
as

[mPr0ednl = [ seogt o = m. (2.61)
]R?)

Now, for the second integral concerning d|ps|, by the inequality

Epy < Cllpa| + Ip2),

for some positive constant C, one gets

IN

/Ipzlf(pz)%jk“’sdlpzl C/(Ipz\2 + [p2f*) f(p2) 31> d|p2|

Ry

c / (1+ [pal) F(p2) €275 dpa,

IN

which, by the inequality
5;2/2 > C|p2|a

implies that

/ P2 f(p2) €3 rdlpa| < © / (14 €312) Fp2)€04+dps
R (2.62)
S C (ijrkfs + mj+k—s+1/2) .

Combining (2.60), (2.61) and (2.62) lead to

k+1

Ll < C Z Zmi+s (mj+k_s + mj+k78+1/2) . (263)
0<4,j,k<n; i+j+k=n s=0
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Now, for the term containing 2f(p1) f(p2) f (ps), by bounding the integral on {&,, +&,, >
&Ep, } by the integral on R3, we get

L=c Y / min{[p1, [pal, [ps]} 1o pellps]
OSiikans HIHR=N(E, 1€, >E,,)

x 2f (1) f (p2) f (03) €5, €5, €, dlp1|dlp2|d|ps]

¢ %[ windloillpel lal} o el
0iygh<ns i th=ngy

x f(p1)f (p2)f (p3)E}, €7, €y, dIprld|p:|d]ps],

where C is some universal constant varying from line to line.

(2.64)

IN

Notice that there are only two cases: i, j, k > 0 and one of i, j, k is 0. Indeed, due to
the condition that i +j + k = n and 0 < 7,5,k < n, the case where two of the index
1,7,k are 0 will not happen. Therefore, we can suppose without loss of generality that
i>0and 5,k > 0.

The terms on the right hand side of (2.64) can be estimated as

/miﬂ{|P1|» 2|, ps|}p1lIp2llps| £ (p1) f(p2) f (p3)EL EL,EL dlpi|d|ps|d]ps|

(2.65)
< / i PEL F(pr)dlpn) / Ip2l€2. £ (p2)dlpe] / Pl F(ps)dlps| -
Ry R, Ry

For each term on the right hand side of (2.65), one can write, by the spherical coordinate
change of variables

/|p1| f(p1)d|p:| —/ f(p1)dpy = my, (2.66)
/|P2| f(p2)dlp2] < C (mj—1 +mj_1)s), (2.67)
/Ip3| f(ps)dlps] < C (mp—1 +mp_1/2), (2.68)

where (2.67) and (2.68) are obtained by exactly the same manner as (2.62).
Combining (2.65), (2.66), (2.67) and (2.68) yields

/min{lpll’ [p2, 3l o1 P2l p3| £ (1) f (02) f (93)Ep, €5, dlpr|d|p2ld]ps|
R3 (2.69)

< Cmi (mj—1+mj_1/2) (mr—1 +mg_1,2)
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The two inequalities (2.64) and (2.69) yield

Ly < C > mi (mj—1+mjo1y2) Mk +mie12) s (270
0<i,j,k<n; i+j+k=n: j,k>0

where C' is some universal constant varying from line to line.
From (2.56), (2.63) and (2.70), we get

/@MMM%MS
RS

k+1
<C Z Zmi—i-s (Myjhms + Mjih—si1/2) +
0<i,j,k<n; i+j+k=n s=0
+C Z m; (mj—l + mj—1/2) (mk—l + mk—l/Z) . O

0<4,j,k<n; i+j+k=n; 5,k>0
2.2.8. Finite time moment estimates

Proposition 2.4. Suppose that fo(p) = fo(|p|) is a positive radial initial condition and
[ fowgdp<oe, [ fotwap <
R3 R3

then for any finite time interval [0,T], and for any n > 1, the positive radial solution

ft,p) = f(t,|p|) of (1.20) satisfies

sup /f(t,p)é?dp <C; YO<T<T,
1te[q-,T]R3

where C is a constant depending on T.

If

/ﬁ@%@<w
R3
then

sup /f(t,p)é';fdp< 0.
te[o,T]R3

In order to prove Proposition 2.4, we would need the following Holder inequality.
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Lemma 2.5. Let f be a function in L*(R?) N LL(R3), then
£y < CHfHLl,
where C is a constant depending on ||f||p1, k and n.

Proof. By Holder inequality, we have

/ PP £ dp<(m/ F)ldp ([R/ 1717 ldp

< C(Ifllz kom) / pI"fo)dp| . ©

n

Proof of Proposition 2.4. Fix a time interval [0,T]. It is sufficient to prove Proposi-
tion 2.4 for n € N, n odd. Using £ as a test function in (1.20), as a view of Lemma 2.1,
we get

& [o0gsin = [ culnioe,dn + / Culfip0Epdp. (271)
R3 R3

For the sake of simplicity, we denote my[f(t)] as my(t). First, let us consider the Cio
collision operator. By Proposition 2.2

/ Cusl)(p1)E™ (1) dps

3
|

< C(mk(t) + mk_l(t))(mn_k_l(t) + mn_k(t)) — Omn+1(t) + Cmy (t)

>
Il

Since, according to Proposition 2.1, mg(t) is bounded by a constant C' on [0,T], we
deduce from Lemma 2.5 that

k k—1 n—k—1
n

mi(t) < Cmy(t)n, me_1(t) <Cmp(t) » , Mmp_p—1(t) < Cmyu(t) =
Mn_k(t) < Cmp ()5, Cmngr(t) = ma(®)™ 7, Cmy(t) < ma(t),

where C' depends on n, k, and the bound of the mass on [0, 7] in Proposition 2.1. As a
consequence, we obtain the following estimate for Cis

/ Cralf)(p1)E" (p1)dp1

n+1

—Cm, (). (2.72)

3=

< Cmy(t) + Cma ()5 + Cmn ()5 + C (1)
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Now, for the Coy collision operator, according to Proposition 2.3,
[ Caslfeogdn <
R3

k+1
<C Z Z (mi+s(t) + mj+kfs(t) + mj+k—s+1/2(t)) +

0<4,j,k<n; i+j+k=n s=0

+C Z mi(t) (mj—1(t) +mj_1/2(t)) (mr—1(t) +me_1/2(t)) .

0<i,j,k<n; i+j+k=n: j,k>0

Again, by Proposition 2.1, and Lemma 2.5

Miss () < Cma(8) 5, myppeo(t) < Cmn ()0,
Mjin—sirjo(t) < Cma(®) 57 mi(t) < Cma ()7,

mya(t) < Oma()5, mya(t) < Omi()) 7,

mi—1(t) < Cmy,(t) k:»l, my_1/2(t) < Cmy(t) L

)

we obtain

/ ConlF)(p)E7 dpr <

R3
as it bk jth—st1/2
<> Y m® (ma® T ) ) ¢
0<i,j,k<n; i+j+k=n s=0 (2.73)
+C 2 ma(®) (ma(®)’F +ma(n)7) x
0<i,j,k<n; i+j+k=n: j,k>0
x (mn(t)% + mn(t)k’i“) .
Combining (2.71), (2.72) and (2.73) yields
d
— o, (t
7" ()
n—1 n—2 1 ntl
< Cmp(t) + Cmy(t) = +Cmyp(t) = +Cmy(t)» — Cmp™
ktl its j+k—s jtk—s+1/2
LCANEED DD DU Ol G R N0 R RO 1
0<4,j,k<n; i+j+k=n s=0

+C 3 ma(t) % ()5 4 ma(®) ) x

0<4,j,k<n; i+j+k=n; 7,k>0

x (mn(t)kn;l n mn(t)’“’i”) ,
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where C' depends on n, k, and the bound of the mass on [0, 7] in Proposition 2.1. Notice
that —C’mn(t)"%rl has the highest order on the right hand side of (2.74). By the same
argument as in [85], the conclusion of the theorem then follows. O

2.83. Holder estimates for the collision operators

In this section, we will provide Holder estimates for the two collision operators C1a
and Chs. For Cas, we split it into two operators

min{|p1|, |p2l, |psl, |p4| }p1]p2]|Ps] P4
Conlfl(p1) = s /// K*(p1,p2,p3,p1) pil-Ipal.| L;1||2|}| [1p2]pslp4|

R+ XR+ XR+

X 0(Epy + Epy — Epy — Epa)[f (03) f(pa) — f(p1) f (p2)]dIp2|d|ps|d|pal,

(2.75)
and
min ) ) ’
CZ,[f1(p2) = K3 // K22 (py. pa. s, pa) 2P P2 Ip321|7324|}|p1|p2||p3|p4l
]R+><]R+><R+
(2.76)

X 0(Epy + Epy — Epy — Epu)[f (03) f(pa) (f (1) + f(p2))—
= f(p1)f(p2)(f(p3) + f(pa))ld|p2|d|ps|d|pal.

We will show in Proposition 2.2, Proposition 2.6 and Proposition 2.7 that Cya, C3, and
C32, are Holder continuous.

2.8.1. Holder estimates for Cia

Proposition 2.5. Let f and g be two functions in L}, 5(R*)NLY(R?), n € Ry, n can be 0;
then there exists a constant C depending on ||f||L1+3, Az, lgllzs, ;o lgllze such that

n

ICa2f] = Calolllzy, <€ (I = glla,, + 1 = gllnr). (2.77)

A, lglley,, <Co, then

|C12[f] — Ch2g]|

1
w6 (I =l 17 = ol ) (2.78)
where Cy is a constant depending on Cqy, C.

Proof. First, let us consider the L norm of the difference C13[f] — Ci2[g]. As a view of
Lemma 2.1
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[C12[f] — Cr2lglllLy = /|p1\"|C12[f] — Ci2[g]|dp
3

R
< noh / / / K" (pr, po. p3)(p1 — p2 — p)3(Ep, — Epn — 1)

R3%3

x |f(p2) f(p3) —2f(p3) f(p1) — f(p1) — 9(p2)g(p3)

+2g(p3)g(p1) + g(po)| [Ip1[" + Ip2|™ + |ps|™] dp1dp2dps.
(2.79)

The above identity implies that |[Ci2[f] — Ci2[g]|z1 can be bounded by the sum of the
following three terms

N1 = n.\ ///K”(pupz,ps)d(pl —p2 —p3)0(Ep, — Epy — Eps)

R3x3

x| f(p2) f(p3) — g(p2)g(p3)| [lp1|" + [p2]™ + [ps|"] dp1dpadps,

No = 2noh / / K" (pr, p2, p3)(p1 — p2 — p3)3(Ep, — Epn — En)

R3X3
X |f(ps)f(p1) — g(p3)g(p1)| [|p1]™ + [p2|™ + |p3|™] dpidp2dps,

and

N3 = n\ /// K" (p1,p2,p3)0(p1 — p2 — p3)8(Epy — Epy — Epy)

R3%3

x [f(p1) = g(p)| [lp1|" + [p2]™ + |ps|"] dp1dpadps.

In the sequel, we will estimate N1, N3, N3 in three steps.

Step 1: Estimating NV;.
By the definition of §(p; — p2 — p3), N1 can be rewritten as:

N1y = nc\ // KlQ(pQ +P37p2’P3)5(5p2+p3 - EPQ - gps)

R3X2

x| f(p2) f(p3) — g(p2)g(p3)| [Ip2 + p3|™ + [p2|™ + |ps|"] dpadps.

By the triangle inequality,

|f(p2)f(p3) — g(p2)g(p3)| < |f(p2) — g(p2)I|f(p3)| + [f(p3) — g(p3)llg(p2)l,

the term N7 can be bounded as



A. Soffer, M.-B. Tran / Advances in Mathematics 325 (2018) 533—-607

Nl S nc)\l // Klz(p2 +p3ap2ap3)6(5p2+p3 - gpz - gps)

R3%2

X | f(p2) — g2)I|f (p3)] [Ip2 + ps|™ + [p2|™ + |p3|™] dp2dps

+ nc)\l // KlZ(pQ +p37p2ap3)5(5P2+P3 - 5[’2 - gps)

R3%2

X |f(ps) — g(3)llg(p2)| [Ip2 + ps|™ + [p2|™ + |p3|™] dpadps.

Again, by the triangle inequality

Ip2 + pa|™ < (Ip2| + |ps))™ < 2" (Ipa2|™ + |p3|™),

one can estimate Ny as

Ny < C//5(5p2+p3 _5192 _EPB)KIQ(pQ +p37p2’p3)><

R3X2

x| f(p2) — g(p2)I1f (p3)| [[p2|" + p3|™] dp2dps3

JrC// P2+Ps - P2 5?3)K12(p2 +P3ap2,103)><

R3%2

x | f(p3) — g(p3)llg(p2)| [Ip2]" + [ps]"] dp2dps,

581

where C' is a constant varying from line to line. The above estimate can be rewritten,

taking into account the definition of 6(Ep,4p, — Epy — Eps), a8

N < C//Kfz(pz + p3,p2,p3) | f(p2) — g(p2)I1f (p3)| [Ip2]™ + |p3|"] do(p3)dpa
R3 S;g

e / / K12 (pa + p3. p2,p3) | (p3) — 9(03)l9(p2)] [[pal” + ps|"] dor(p2)dps.

R3 S,

By Lemma 2.3, one can estimate N7 as follows

K'2(py + p3,p2,p3)
|p2\|]03|

e / / 1F(02) — g(p2) || £ (ps)]

R3%2

(2™ + |ps|"] dpsdp:

K'2(py + p3,p2,p3)
|p2|\p3|

e / / 1£(03) — g(ps)l19(p2)]

R3%2

[[p2]™ + |ps|"] dp2dps.
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K'(p2+ps,p2,p3)
[p2]lps|

K'?(p2+ps,p2,p3)

and
[p2][ps]

Since are bounded, N; is bounded as

N, < C / / 1F(02) — g2)I1£ w3)] [Ipa]" -+ [ps]"] dpsdps

R3X2

+0//|f p3) — 9(p3)llg(p2)| [[p2]™ + |p3|"] dp2dps,

R3X2

which leads to the following straightforward estimates on Ny
N < C/|f p2) — g(p2)lp2|" dp2/|f p3)|dps
+C / 1£02) — pa)ldpe [ 110s)al"dos
R3
+C/|f p3) — g(p3)llpal” dp3/|f p2)|dp2
+€ [ 1102) = g(pldps [ 172 lpal"dpe
R3 R3

< C/Ifm oo ||p1|”dp1+0/\fp1 o(p2)ldpr.

Step 2: Estimating V5.
By the definition of §(p; — p2 — p3), N2 can be rewritten as:

Ny = 2n.\ // K12(P1apl _p37p3)5(5171 - gplfps - gps)

R3%2

X |f(p3)f(p1) — g(p3)g(p1)| [|p1]™ + [pr — p3|™ + [p3|"] dp1dps,

which, by the inequality,

p1 = ps" < (Ipa] + [ps))™ < 2" (Ipa]™ + [ps[™),

can be bounded as

(2.80)
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N2 S C//K12(pl7pl _p37p3)6(gp1 _gpl—PS _5173)

R3X2

x |f(ps) = g@3)IIf ()| [Ipa[™ + |ps|™] dp1dps

+O// KIQ(phpl _p3ap3)6(5p1 - 5])1—193 - 5[73)

R3X2

x [f(p1) — g(p)llg(p3)| [lp1|" + [ps]"] dp1dps.
Employing the definition of 0(&,, — Ep,—ps — Eps ), One can estimate Ny as
N < [ [ KR0nn - p)l 00 - g0 F0] U1 + sl do o)
9 2,

e / / K22 (p1, p1 — ps.pa) £ (p1) — 9(o0)l9(ps)] [[p|" + ps|"] dddo(ps)dpr,
R3 521

which, by Lemma 2.2, yields

[p1]

Ny < / / K" (p1,p1 — ps,p3)| f(p1) — g(p1)|lg(p3)| [lp1|™ + |ps|™] ps|dlps|dp
R3 0

[p1]

4 / / K12(py, p1 — ps, ps)| £ (ps) — 9(0s)||F (1) lpa|™ + [ps["] [psldlps|dps.
R3 O

Bounding the integral from 0 to |p1| by an integral from 0 to oo implies

Ny < / / K"(p1,p1 — ps, p3)| £ (p1) — 9(p)lg(03)] [[pa]™ + ps|™] |psldlps|dps

R3 0
+ / / KY(py, p1 — ps, ps)| £ (9s) — 9(s)|| £ (01)] [[pa|™ + |ps|"] [psldlps|dp.-
R3 0

We now switch the integral from d|ps| to dps from the above inequality to obtain

K2 (p1,p1 — p3,p3)

Ny < o £ (p1) — g(p)llg(s)] [[p1]™ + |ps|™] dpsdpy
R3%2
K12 _
+ / (1+ 1)) (p“f;' P3:P3)) 0y — g(p)l1£(p1) [Ipa]” + Ips|”] dpsdps.

R3X2
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Applying the inequality

1™ + [ps|™ < C(1+ |pa|™ + |ps|™)

to the above bound on N, we get

Ny <
< C/ K'2(p1,p1 — p3,p3)

Dal |f(p3) — g(p3)|[f(p1)] [1 + |p1]™ + [ps]"] dpsdp1

R3%2

KlQ(p17p1 _p3ap3) |f(

+C
3]

R3x2

p1) — g(P)llg(pa)| [1 + |p1|™ + |ps|"] dpadp.

The same argument as for (2.80) yields
Na < € [ 150 = gl o+ C [ 1760 - ge0ldn. s
R3 R3

Step 3: Estimating N3.
By the definition of §(p; — p2 — p3), N3 can be rewritten as:

N3 = n.\ // Km(phpz,pl —P2)5(5p1 - 5p2 _5171*192)

R3%2

x| f(pr) = g(pO)l {Ip2]"™ + Ip2]" + |p1 — p2l"] dp1dp2,
which, by the inequality,
Ip1 = p2|™ < (Ipa] + [p2))™ < 2" (|Ip1]™ + |p2|™),

can be bounded as

Ny, < C / / K™ (p1, 92,91 — 2|7 (01) — 9(01)] [Ip1]" + Ipa|™] dor(p2)dpr.
R3 Spy

Now, as an application of Lemma 2.2,

[l +lpliotee) < €|+ [ lpaldotee)
Spq Spy
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\Pl\

< |+ / [p2 " dlps|
0

< C (1 + |p1|n+3) )

which together with the fact that K'?(p1,pa, p1 — p2) is bounded, implies

Ns < C/Wﬂm)—g@nHWHM3+1PWL (2.82)
R3

Combining (2.80), (2.81), and (2.82) yields

[Ci2lf] = Cralgllly < C/ |£(p1) — gD [Ip1]" "2 + I " + |pa|™ + 1] dps.
]R3

(2.83)

Since
™ < C (]p|™ ™ + 1), [p|"** < C (]p|" ™ +1).

Inequality (2.77) follows from (2.83). Inequality (2.78) is a consequence of Inequality
(2.77), Lemma 2.5 and

n+3

_1 n
1 = gllea, <15 =gl 7 (10, +lglley,,) ™ O

2.8.2. Holder estimates for Cay
Proposition 2.6. Let f and g be two functions in LL(R3) N LY (R3), n € N, n/2 is an odd

number, or n = 0, then there exists a constant C depending on ||fHL;’+1, If L, ||g||L3L+1 ,
llgllLr such that

ICha 1) — Chalalley, <€ (I = gy, + 1 —glus) (2:84)

Iz, gl

L, < Co, then

1
1011 Chllley <1 (1F - glFF* 417 =gl ). (2.85)
where Cy is a constant depending on Cy, C.

Proof. Let us consider the L. norm of the difference C[f] — Ciylg]. As a view of
Lemma 2.1
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[ 1C815101) = Chlalton) il

R3

< C/KZZ(p17P27p3,p4)min{|p1\7 D2, |3 [pal 1| [p2|Ps| [pald(Epy + Epy — Eps —

RY
x| f(p1)f(p2) — g(p1)g(p2)]|Ipal™ + |p3|™ + [p2|™ + |p1l”}d|p1|d|p2\d|p3|dlp4l.
By the inequality
n n/2
lp|" < CEM2,
one gets
pal™ + |ps|™ + [p2|™ + |p1|™ < CEXZ + CER? + CEX? + CEN/2,

which implies

[ e 1710 - Chlgitpo)| Il
RB

< C/K22(p17pz7p3,p4)min{lp1\7IpzlvIp3|,|p4\}|p1||p2|\p3||p4\5(5p1 + &y — Eps — Epy)

4
R+

< | f(p1) f(p2) — 9(p1)g(p2)| | €/ + €0/ + E€1/2 + €7/2 | d|p1|d|p2|dlps|d|pal.

Now, thanks to the Dirac function §(&p, + &p, — Epy, — Ep,), One can write &, as &,, +

&p, — Eps, Which implies

[ 1€k ~ )|l

< C/K”(phpzypa,m)minﬂpl\7Ip2|7|p3|,Ip4\}|p1||p2|\p3||p4\5(5p1 + Eps — Eps — Epy)

RY
x| f(p1)f(p2) — g(p1)g(p2)|

X (€ Epa = Ep)" "+ E32 + E102 + E1%) dIprldlp2dlps dpal.

Similar as for (2.56), |pa|d|pa| can be bounded by Cd€,, and min{|p1|, |p2], |3, |p4]} can
be bounded by min{|p1|, |p2], |p3|}. Moreover, K?2(py, p2,p3,ps) is bounded by I' due to

(1.18). As a consequence,
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[ 1110 - Chlslp)] i "o

R3
C/min{\plh Ip2|, [Pl }p1llp2l|p3|0(Epy + Epy — Eps — Epu)|f (p1) f(P2)—
R4

— g(p1)g(p2)| [(5}71 &y — Ep)V P EME 1 EM + 51?1/2} d|p1|d|pz|d|ps|dE,,

IA

IN

c / min{|pa], |psl, sl M1 [pl [pall £ (91) £ (p2)—
5p3§€p1+5p2

— 900)9(p2)|| (€01 + Em — )" + 6/ + €317 + E3% | dlp|dipaldlpal,

where in the last inequality, we have taken the integration with respect to d&,,.
Since n/2 is an odd number, by Newton formula

(Epy + Epy — Eps) >+ EM2 4 EV? 1 E1/2 = > Bi i€ €y
0<i,j,k ; i+j+k=n/2 ; k#n/2
we obtain
J168111) - Chlolon] Inl"d < x. 2.5
]R3
where

X= 0 / min{lpllaIpzhIp3|}|p1\|p2||p3|’f(pl)f(pz)—g(pl)g(pz) x
gPSSEPIJ’_gPZ

X > |Bi | E,E8 | dlp1d]ps|d]ps).
0<i,5,k ; t+j+k=n/2 ; k#n/2

The rest of the proof is devoted to estimates of X.
Similar as for (2.56), |ps|d|ps| can be bounded by CdE&,, and min{|p1|, |p2|, |ps|} can
be bounded by min{|p1|, |p2|}:

i< [ mingloil bl el | £ 7 ()~
Epg <Epy +Epy

— 9(p1)9(p2)| > EnELED, | dpildlp2|Ep,.
0<ij,k ; i+j+k=n/2 ; k#n/2
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Integrating with respect to d&,, the above integral and using Newton formula yields

X< C / min{|pa], |p2|}p1[lpz|| £ (pr) f (p2)—

72
k+1 k 1
~ 4(o)g(p)] ) S (" )esreesre | dinlain
0<i,5,k 5 i+j+k=n/2 ; k#n/2 s=0
k+1

< ) S [ win{lpl lpalHpalpel| o) £ 22) -

0<i,j,k 5 i+j+k=n/2 ; k#n/2 s=0 R2

— g(p1)g(p2)|Eg T ERT I~ d|pr | d]pa|

k+1

< 3 S [ windlonl el ol o) 02)-

0<i,5,k 5 i+j+k=n/2 ; k#n/2 s=0;i+s#0 RZ
— 9(p1)g(p2)E; T~ d|py|dlpa |+

+C / min{|p1l, [p2[}p1lp2||f (1) f(p2) — 9(?1)9(P2)|5;2/2+1d|p1|d|272|-
3
By the inequalities
|2

min{|p1], [p2|}p1llp2| < |p1llp2

and

min{|p1|, [p2|Hp1lp2| < |p1l*|p2l,

one deduce that
X < X;+ Xo, (287)

where

k+1

P ) >, [InlipaP|ron -

0<i,j,k ; i+j+k=n/2 ; k#n/2 s=0;i4+s#0 R2
1

—g(p1)g(p2)|ESTENTT 2 d|py |d|ps;

Xo = C [ IoaPloal| £01)F02) = gor)atn) |5/ .
RZ
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Let us first estimate X; by looking at the terms inside the sum

/ p1lIp2 || f(p1) f(p2) — 9(p1)g(p2)|ELTSENT =5 d|p: |d|ps|
RQ
< / p1llp2|?[f (p1) — 9(p1)|lg(p2)|ELT*Ept T d|py |d|p2]
RQ
+/|p1||p2|2|f(p2)—g(p2)||f(p1)|5,’;f55§;1+j78d|p1\d|p2|,
R2

where we have used the triangle inequality

[f(p1)f(p2) = 9(p1)g(p2)| < [f(p1) = 9(p1)llg(p2)| + |/ (p2) — g(p2)I]f (p1)].

Since0<i+s<n/24+land0<k+14+j—s<n/2+ 1, we have
512?5 < C(Ip1] + ;" ?),
and
Ellf;lJrjfs <C (1 + |p2|n+2) ’

which yields

/ p1l[p2?|f(p1) f(p2) — 9(p1)g(p2)|ELTSEXTIHI=5d|p, |d|ps|
R2

IA

0/\p1|(lp1|+lpll”“) If(pl)—g(p1)|d|p1|/|p1|2(1+\p1|”+2) lg(p1)ld|p:]

R+ R+

+ 0/ 1| (Ip1| + |P1|n+2) |f(p1) — g(p1)|d|p:1] / lp1|* (14 |p1\n+2) |f(p1)ld|p:

]R+ ]R+

c / (1+ 2™ 1 £(p1) — 9(p2)ldps / (1+ [p1|™*?) |g(p1)ldpr

R3 R3

+C/(1+\p1|"+1) If(pl)—g(pl)ldpl/(1+lp1\"+2) | f(p1)|dp1,
RS

R3

IN

where in the last inequality, we have switched the integration on R, to R?, by a spherical
change of variables. Now, by the boundedness of f and ¢ in L' and L} 12
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/ pallp2 21 F (01) £ (p2) — 9(p1)g(pe) €5 EEH49=5dlpy d]p)
R2

<c / (1+ |2 ["*) 17 (1) — 9(p0)ldp.
]R3

which implies the following estimate on X3
X1 <OIf =gl +CIIf —gllza,, -
We now estimate X5. As an application of the inequality
EpPHE < C (Ipal + ™),

X5 can be bounded as follows

Xo

IN

c / o 1921 (01) £ (p2) — 9(p2)g(p2)] (2] + lp2l™2) dlpa|dlpa)
]RZ

IN

C/\p1l2|f(p1)—g(m)l\g(pz)\(|p2|2+\p2|"+3) d|p1|d|ps|
i3

+C [ P17 2) = 9@ G0l (Ipof + 21" dlprlalpal
R2

The same argument as for (2.88) leads to

Xo Clf =gl +CIIf = glire

n+1’

Combining (2.87), (2.88) and (2.89) yields

X< (If =gl +11f = glluy., )

The two inequalities (2.86) and (2.90) lead to
/}Cglz[f](pl) - 0212[9](101){ Ip1|"dpy < C (||f =gl +If - 9||L}1+1) .
R3

Inequality (2.85) is a consequence of Inequality (2.84), Lemma 2.5 and

1 ntl
;1 n+2
1F = glles,, <0 =gl Z7 (1o, +lglia,,) ™ - O

(2.88)

(2.89)

(2.90)

(2.91)
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2.8.3. Holder estimates for C3,

Proposition 2.7. Let f and g be two functions in LL(R3) N L*(R3), n/2 € N, n can be 0,
then there exists a constant C depending on || fry, [ fllzs, lgllzs, [lgllLr, such that

IC3[f] = CRalglllzy < C(If = glley + 1 = gllzr) - (2.92)

Tl £l lglles,, < Co. then

H0222[f] - 0222[9]|

1
s =6 (I =l 17 = ol ) (299)
where Cy is a constant depending on Cy, C.

Proof. As a view of Lemma 2.1, the L. norm of the difference C3,[f] — C2,[g] can be
written as

[163,17101) - Gl o) 1"y
R3

< C/K22(p1,p2,p3,p4)min{|p1|,|p2|,|p3\,|p4|}|p1\|p2||p3|\p4|5><

i
X (Epy + Epy — Epy — Ep )| F (1) f(p2) f(p3) — 9(p1)g(p2)g(p3)] ¥

X [Ipal™ + o[ + pa|™ + [p1 " | dipa dlps | dlps]dlpa .
Similar as for Proposition 2.6, by the inequality
pa|™ + |ps|™ + |p2|™ + [p1|™ < 05;14/2 + 0553/2 + 0552/2 + 0531/2’

one has
/ ‘0222 [f1(p1) — 0222[9](171)‘ Ip1|" dp1
R3

< C/K22(p1,p2,p3,p4)min{lp1I,Ip2|,|ps\,|p4|}|p1\|p2||p3|\p4|5><

RY
X (Epy +Epy — Eps — Ep)If (1) f(2) f(p3) — 9(p1)g(p2)9(p3)] X
<&/ + €32 + €317 + €3] dipaldlpaldipaldlpal.

By the Dirac function 6(&,, + &p, — Eps — Epy)s Ep, can be written as &, + &p, — Eps,
which implies
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[ 16:151m) ~ Rl o) 11"

R3

< C/K22(p1,p2,p3,194)miﬂ{|p1|,|p2|,\p3|7|p4|}\p1||p2\|p3||p4|5><

Ry
X (Epy + Epy — Eps — Ep I f (1) f(p2) f(p3) — 9(p1)g(p2)g(p3)|x
$ [ (Eps + & = &) + /2 + €32 + €12 dip|dlpa|dlps | dlpal.

Similar as for (2.56), |pa|d|ps| can be bounded by Cd€,, and min{|p1|, |p2], |3, |p4]} can
be bounded by min{|p1|, |p2|, |p3|}, which leads to

[ 1€:15100) = Calalp)] Il

R3

C/K22(p1»P27P37P4)min{|p1|, 2|, P3|} p1lp2|lp3|6(Epy + Epy — Eps — Epy) X

R4
x |f(p1) f(p2)f(p3) — g(p1)g(p2)g(p3))|x
x [ (Eps + En = &) + /2 4+ €312 + €112 dlp|dlps | dlps e,

IN

IN

c / K (p1, pa, ps, pa)ming|pa], |pal, [pal} o] [pa]lps] x
Epy <Epy +Epy

X | f(p1) f(p2) f(p3)g(p1)g(p2)g(p3)|x
X | (€ Epa = Epo)"* + Ep/2 4+ 30 + E112| dlpr|dlpallps],

where we have taken the integration with respect to d&,,.
Since n/2 is a natural number, by Newton formula

, o
(Epy + Eps — Epg)" >+ EL2 1 ER2 y E7/? = 3 D j il E1ER
0<i,5,k 5 it+j+k=n/2

where D; ;1. » are positive constants. As an application of the above Newton formula,
one has

[1c1100) - Rl il
RS

< C > / K?*(p1, pa, p3, pa)min{|p1|, |p2|, [ps|} p1p2|ps]
ik s i+ith=n/2¢, <g, +&,,
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| f(p1)f(p2) f(p3) — 9(p1)g(p2)g(ps)|E}, ED, E dlp1|d|p2d|ps],

where C is a positive constant varying from line to line.
By using the fact that

K?*(p1,pa, p3, pa)min{|p1|, [p2|, [ps| }p1|Ip21ps| < Clpa[*[p2|*|ps|?,

where C' is a positive constant depending on p, defined in (1.17), we get

[ 1110 - Rl il
R3

c Y [ Pl o5 £0a)-

0<ijk s itjth=n/2 ¢, <& g,

IN

— g(p1)g(p2)g(ps) |}, EL,Ex. d|p1|d|p|d|ps|

¢ PPl o0 ) )~

0<ij,k ; i+j+k=n/2 ps
i

IN

— g(p1)g(p2)g(ps) |}, EL,Ex. d|p1|d|pa|d]ps]-

Changing from the radial integration on R, to the integration on R?® in the above
inequality, by a spherical coordinate change of variables, yields

/ |C3[f1(p1) — C[g)(p1) | pr]"dp:

R3

< C Z |F (1) (p2) f(p3) — g(p1)g(p2)g(ps)|EL ELER. dprdpadps.

0<i,j,k ; i+j+k=n/2 pixa
Applying the triangle inequality
|f(p1) f(p2)f(p3) — g(p1)g(p2)g(ps)]

< 1f(p1) = go)lIf (p2)If (ps)] + [ £ (p2) — 9(p2)llg(p)l1f (p3)]

+ 1 f(p3) — g(p3)llg(p1)llg(p3)l,

to the previous inequality gives
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[ 1C:15101) = Calalp)] Il

R3

< C > |F(p1) = g f ()| f (p3)|E, E,EE. dprdpadps

0<igik ; i+j+k=n/2 pivs

+C Z / 1F(p2) — g(p2)llg(p1) 11 f (p3)IEs, E7, En, dp1dpadps
0<iyjik § i+i+h=n/2 pixs

e 3 / 1F(p3) — 9(p3)llg (1) l9(ps) €2, £2, EX dpydpadps.
0<igk 3 i+i+hk=n/2 pixs

Notice that we can estimate &

o1 En, and 853 as

EL<CO+1p™), & <C+p™), &r<C+]p™),

which leads to the following estimate on the norm of C2,[f] — C3,[g]

[ 161710 - ulaltpo)| il
R?’

IA

c ¥ [ 1£0 = sl 7wl )

0<i,j,k 5 i+j+k=n/2 pixs

X (14 [pa|™) (X 4 [p2|™) (1 + |p3|™)dp1dp2dps

S [ 1502 = gto)latw) | 0)

0<4,5,k ; i+j+k=n/2 p3xs

X (14 [pa|™) (1 + [p2|™) (1 + |p3|™)dp1dpadps

ey [ 1502 = gtoa)lgton)lgtos)

0<i,5,k ; i+j+k=n/2 p3xs

X (L4 |p1[") (1 + |p2]™) (1 + [p3|™)dp1dpadps.

Now, since

/If(p)|(1+\p|"): Il + 1Nz, /Ig(p)l(1+lp|”): gl +llglizy,
R3 R3

we get from the above inequality that

/ |0222[f](171) - 0222[9](271)| [p1|"dp1 < C (||f — gl + | f _gHL}l) .

R3
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Inequality (2.93) is a consequence of Inequality (2.92), Lemma 2.5 and

1f = glley < 1F = alZT (M, + gl )™ - O
2.4. Proof of Theorem 1.1

In order to prove Theorem 1.1, we will use Theorem 1.2. Choose E = L3, (R?’). We
define the function |- |, to be

. = / f(p)dp.

Set

1]l = / \F(0)ldp.
R3

By (2.45), it is clear that for all f > 0, f € E, the following inequality holds true

QU <™ +f]l+), (2.94)

where C* depends on || f||z3gs). We then choose C, in Theorem 1.2 as C*.
The set St is defined as follows:

Sri= {F € LL () [ (50120, f) = (oD (52 [ Sy <o,
R3

(2.95)
(50) [ ehEsdp =1, (S1) [ £ dp < o},
Ry Ry

where

o= (2R +1)el@+VT (2.96)
and
3pn,

Cr = =5 (2.97)

with p,,, defined in (2.99). It is clear that St is a bounded, convex and closed subset of
L}, (R?). Moreover for all f in Sy, it is straightforward that |f|. = | f]|..

In the four Sections 2.4.2, 2.4.1, 2.4.3, 2.4.4, we will verify the four conditions (2(), (8),
(¢) and (D) of Theorem 1.2. Then, Theorem 1.1 follows as an application of Theorem 1.2.
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2.4.1. Checking condition ()
We choose the constant R, to be R+1, then for all u in St, ||ull. < (2R, +1)e(c*+1)T.
Condition (2) is satisfied.

2.4.2. Checking condition (*B)
First, the same argument as for (2.74) gives

[ alney o < Pl (1)) =
R3
Cte (£) + Crte ()5 + Cimge (£) 5 + O ()7 = Cmge (£)

k+1

+C 3 > s (1) (e ()5 4 e (f)

0<4,5,k<n*; i+j+k=n* s=0

+C Z M= (f),%* (mn*(f)%*l +mn*(f)j_nl*/2) y

0<i,5,k<n*; i+j+k=n*; j,k>0

jtk—s+1/2 )
¥

(2.98)

k—1/2

x (mn*(ﬁ%""mn*(f) " )7 Vf € Sr,

where C' is a positive constant depending on ¢g.

Let pp+ be the solution of P(p) = 0: if 0 < p < pp=, P(p) < 0; if p > pp=,|P(p) > 0.
(2.99)

Notice that p,~ depends on ¢q.

Let f be an arbitrary element of the set Sy N B, (O, (2R. + 1)e(c*+1)T) and consider
the element f + hQ[f]. We will show that for all € > 0, there exists h, depending on f
and € such that B(f 4+ hQ[f], he) N St is not empty for all 0 < h < h,. Define xg(p)
to be the characteristic function of the ball B(O, R) centered at the origin with radius

R. Set fr(p) = xr(p)f(p) and wr = f + hQ[fr]. Since Q[fr] € L3, (R?), we find that
wg € L, (R3). We will prove that for h, small enough and R large enough, wr belongs

to Sp. We now verify the four conditions (S7), (S2), (S3) and (Sy).

o Condition (S1): Since fgr is compactly supported, it is clear that Q@ [fg], with Q~
defined in (2.7), is bounded by C(f, R, ¢, ¢,+), a positive constant depending on f,
R, ¢g, ¢p+, which implies

wr > f—hfrQ™[fr] > f(1 —hQ[fr]) >0,

for h < C(f, R, co,cpn+) "t
o Condition (Ss): Since

I1£lls < (2R, +1)elC~+DT
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and

li — =
lim | ~ wr). = 0,

we can choose h, small enough such that
lwrlls < (2R, + 1)elC=+DT

Condition (S3): By the conservation of energy, we have

/ngpdp = /(f"' hQ[fR])Epdp = /fgpdp = (1.
R3

R3 R3

Condition (S4): Now, we claim that R and h, can be chosen, such that

n 3Pn*
/ wr€, dp < 5
R3
In order to see this, we consider two cases:
If
n* 3Pnx
/ &) dp < 5
RS

we deduce from the fact

li — fIEY dp =
hl—%/'wR fl&y) dp =0,
R3

that we can choose h, small enough such that

n* 3pn*
/’lURgp dp < ?
R3

If, on the other hand, we have

n* Spn*
[ reyan =
R3

we can choose R large enough such that

/m%@>mn
RS
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which implies, by (2.99), that

As a consequence,

Finally, we have wg € St for all 0 < h < h,.
Now since

1
Rh—r)noo EHwR — f = hQ[fR]lLy, (r3) = m 1QIf] = QIfR]lILy, (r3) = 0,

then for R large enough, wg € B(f + hQ|[f], he), which implies B(f + hQ[f], he) N
Sr\{f + hQ[f]}. Condition (B) is verified.

2.4.3. Checking condition (€)
Condition (&) follows from Propositions 2.5, 2.6, and 2.7.

2.4.4. Checking condition (D)
By the Lebesgue dominated convergence theorem, we have that

[.0] < [ etoisiantot)a+ &) (2.100)
R3
which means that Condition () is satisfied if we have the following inequality
Mo = [[QUA®) - Qole)sien((S - D)1+ E)dp < Cllf =gl (2101
R3

Since Q = C15 + Coa, let us split
Moy = M1 4+ My,

where

M= [1C0ulf)) - Cralglo)sign((f — )01+ £,

R3

and
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My = / (Coalf)(p) — Coalg) () lsign((f — 9)(p))(1 + E2)dp.

R3

Step 1: Estimating M;.
Define o (p) = sign((f — g)(p))é’llf, keZ,k >0,k # 1. Let us consider the following
generalized term of M

Ny = / (Coalf)(0) — Cralg) (D))o (). (2.102)

R3

which by Lemma 2.1 can be rewritten as

No : [Ri2[f](p1) — Ri2[g](p1)][er(p1) — @r(p2) — @r(p3)|dp1dpadps

R3%3

/ K" (p2 + ps, 02, 03)6 (Epatps — Eps — Epa)[(f (p2) f(p3) — 9(p2)g(p3))

R3X2

—2(f(p2) f(p2 +p3) — g(p2)g(p2 + p3)) — (f(p2 + p3) — g(p2 + p3))] ¥

X [¢x(p2 + p3) — ¢ (p2) — ¢r(ps)|dp2dps. (2.103)

Split Ny into the sum of three terms:

Ny = / K" (p2 + p3,02:03)0 (Epytps — Epa — Epy)[f (02) f(p3) — 9(p2)9(p3)]
R3x2
x [pr(p2 + p3) — pr(p2) — ¢r(ps)ldpadps, (2.104)
Noi= =2 / K'2(p2 + 13,2, 03)0 (Epytps — Epy — Epy)
R3x2
x [f(p2) f(p2 + p3) — 9(p2)g(p2 + p3)ller(p2 + p3) — vr(p2) — r(ps)|dp2dps,
(2.105)
and
N3 = — / K'2(p2 + 13,2, 03)0 (Epytps — Epy — Epy)[f (02 + p3) — g(p2 + p3)]
R3x2
x [pr(p2 + p3) — wr(p2) — ¢r(ps)ldpadps.
(2.106)
The same arguments as for (2.80) and (2.81) give
M < CIIf = gllus, @), (2.107)

and
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No < CO|If = gllLy, s), (2.108)

where C is a positive constant varying from line to line.
The third term N3 can be estimated as

Ny= - / K*(p2 + 3,92, 93)0(Epatps — Epa — Ep ) 1f (02 + p3) — g(p2 + p3)] x
R3><2

X [EX 1 posign((f (P2 + p3) — g(p2 + ps)) — &y, sign((f (p2) — g(p2))—

— &k sign((f(ps) — g(ps))]dpadps

= / K'2(p2 + 3,02, 93)0 (Epstps — Epy — Ep, )| (P2 + P3) = 9(p2 + ps) |
R3x2
k k k
X [Epy + Epy = Eparipoldpadps. (2.109)

Now, let us consider the two cases k = 0 and k > 1 separately.

e Ifk=0,

N; < / K" (p2 + ps, 02, 03)6 (Epatps — Epy — Epa) | (02 + p3) — g(p2 + p3)|dp2dps,

R3x2
(2.110)
which, by the same arguments that lead to (2.82), can be bounded as
N3 <CIf = gllLsws)- (2.111)
o If £ > 1, since Ep,ypy = Ep, + &y, it is straightforward that
552 + g;l]fs - €§2+P3 = 552 + 51?3 - (5172 + gPS)k < —kgng;f;l <0.
As a consequence, we can estimate N3 as
N5 <
< = [ B2+ 5t b3 (Epn — E — 1)
R3x2
(2.112)

X | f(p2 + p3) — g(p2 + p3)|kEp, EF, dpadps

_ / / R (1, p2p1 — p2)| (1) — 9(01) KEa €L dor(po)dpr.
R3 Sgl

IN
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As a view of Lemma 2.2, we find the following bound on N3
Ny < - C/If(p) = g()| (Jp2*+ min{1, |p|}7 ) dp. (2.113)
R3
Combining (2.107), (2.108), (2.111) and (2.113) for the two cases k = 0 and k = n, yields

My < € [ 1) = o) (L+ 151+ I + P + P!
RS (2.114)

— [p2"* min{1, [p[}>"*7) dp.
Step 2: Estimating M.

We can estimate My in a straightforward manner by employing Propositions 2.6 and
2.7, as follows

Mz < C [ 1) = o) (L+ 1ol + o™ + 1o ). (2115)
R3

Step 3: Estimating M.
Combining (2.114) and (2.115) yields

M, < C/If(p) —g(p)\(1+ pl + Ipl® + [p[*"
Rs (2.116)

— [P+ min{1, [} dp.
Since for |p| <1,
L [pl + [p® + [p*" — |p|*"+® < 5,
and for |p| > 1, there exists C' > 0 independent of p such that
L+ [pl + [p® + [p*" = [p*"* < C,
we find that the weight
Lt [pl + [pf* + [p[*" — |p|*" " min{1, [p[}*"*

of (2.116) is bounded uniformly in p by a universal positive constant C. As a consequence,
Inequality (2.116) implies
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A%S;C/UUD—MMMM (2.117)
R3

which concludes the proof of (2.101).
3. Proof of Theorem 1.2

Our proof is a extension and generalization of the framework proposed in [16]. The
proof is divided into four parts:

Part 1: Fix a element v of S, due to the Holder continuity property of @, we have
Q)| < IQ)I| + Cllu —vl|”,  Vu e Sr.

According to our assumption, Sy is bounded by a constant Cs. We deduce from the
above inequality that

Q)| < QW) +C (Jlull + [[vI)” < 1Q) + C (Cs + [|v]))” =: Cq., Vu € St

For an element u be in Sy, there exists £, > 0 such that for 0 < £ < &,, u+£Q(u) € Sr,
which implies

B(u+£Q(u),0) N Sr\{u + £Q(u)} # %o,

for ¢ small enough. Choose € = 2C((Cg + 1)€)?, then [|Q(u) — Q(v)|| < & if lu —v|| <

(Cq + 1)&, by the Holder continuity of Q. Let z € B (u +£Q(u), %) NSr\{u+£EQ(u)}
and define

t(z —u)
g i

t—9(t) =u+ t € [0,¢&].

Since St is convex, ¥ maps [0, £] into Sp. It is straightforward that

[9(8) — ull < &llQu)]l + % < (Cq +1)¢,

which implies

€
1QM®)) — Q)| < 5, ¥t €[0,¢].
The above inequality and the fact that
. €
19(t) - QI < 5.
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leads to

19(t) = Q)| <€, Vi€ (0. (3.1)

Part 2: Let ¢ be a solution to (3.1) on [0, 7] constructed in Part 1. From Part 1, we have
that

t(z —u) t(z —u) tC,
9Ol =100 =+ E=2) <pule+ [ E] <l 5
tC,
— 19l (1+5).
We then obtain
W < (DO + 1) — 1< (2R, + 1)e-*. (3.2)

Using the procedure of Part 1, we assume that 9 can be extended to the interval
[r, 7+ 7].

The same arguments that lead to (3.2) imply
[9(r + )]l < ()]l + De* =1), ¢ [0,7].

Combining the above inequality with (3.2) yields

N

19T + )« < ((IO0)]|« +1) e —141)eCt —1
([9(0) [l + 1) e T —1 (3.3)

< (ZR*+1)€C*(T+t)7

IN

where the last inequality follows from the fact that R, > 1.

Part 3: From Part 1, there exists a solution ¥ to the equation (3.1) on an interval [0, A].
Now, we have the following procedure.

o Step 1: Suppose that we can construct the solution 9 of (3.1) on [0, 7] (7 < T'). Since
9(7) € St, by the same process as in Part 1 and by (3.2) and (3.3), the solution
could be extended to [r,7 + h;] where 7+ h, < T, h, < T.

e Step 2: Suppose that we can construct the solution ¢ of (3.1) on a series of inter-
vals [0,71], [11,72], -+ [Tn, Tnt1], -+ - - Observe that the increasing sequence {7,,} is
bounded by T, the sequence has a limit, defined by 7. Recall that Q(¢) is bounded
by Cg on [1,,Tny1] for all n € N, then 9 is bounded by € + Cg on [0,7). As a
consequence Y(7) can be defined as

I(7) = lim 19(7'”),19(7') = lim 19(7'”),

n—roo n—roo
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which, together with the fact that Sy is closed, implies that 9 is a solution of (3.1)
on [0, 7].

By Step 2, if the solution ¥ can be defined on [0,Tp), Ty < T, it could be extended
to [0, Tp]. Now, we suppose that [0,7p] is the maximal closed interval that ¢ could be
defined, by Step 1, ¢ could be extended to a larger interval [Ty, Ty + T], which means
that T'= T and ¢ is defined on the whole interval [0, 7.

Part 4: Finally, let us consider a sequence of solution {u¢} to (3.1) on [0,7]. We will
prove that this is a Cauchy sequence. Let {u¢} and {v¢} be two sequences of solutions
0 (3.1) on [0,T]. We note that u® and v are affine functions on [0, 7]. Moreover by the
one-side Lipschitz condition

for a.e. t € [0, T, which leads to

LT
Jut(#) = v (Il < 26—

Let € tend to 0, u® — w uniformly on [0, 7. It is straightforward that u is a solution to
(1.26).

Acknowledgments

This work was partially supported by a grant from the Simons Foundation (#395767
to Avraham Soffer). A. Soffer is partially supported by NSF grant DMS 1201394. M.-B
Tran is partially supported by NSF Grant DMS (Ki-Net) 1107291, ERC Advanced Grant
DYCON. M.-B Tran would like to thank Professor Daniel Heinzen, Professor Linda
Reichl, Professor Mark Raizen, Professor Robert Dorfman and Professor Jeremie Szeftel
for fruitful discussions on the topic. A part of the research was carried on while M.-B.
Tran was visiting University of Texas at Austin. A part of this work was done when both
of the authors were visiting the Central China Normal University, China. The authors
would like to acknowledge the institutions for the hospitality. The authors would like to
thank the referee for useful comments.

References

[1] T. Allemand, Derivation of a two-fluids model for a Bose gas from a quantum kinetic system, Kinet.

Relat. Models 2 (2) (2009) 379-402.


http://refhub.elsevier.com/S0001-8708(17)30366-3/bib416C6C656D616E643A444F463A32303039s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib416C6C656D616E643A444F463A32303039s1

A. Soffer, M.-B. Tran / Advances in Mathematics 325 (2018) 533—-607 605

[2] R. Alonso, V. Bagland, Y. Cheng, B. Lods, One dimensional dissipative Boltzmann equation: mea-
sure solutions, cooling rate and self-similar profile, submitted for publication, 2016.

[3] R. Alonso, I.M. Gamba, M.-B. Tran, The Cauchy problem for the quantum Boltzmann equation
for bosons at very low temperature, arXiv preprint, arXiv:1609.07467, 2016.

[4] M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose—
Einstein condensation in a dilute atomic vapor, Science 269 (5221) (1995) 198-201.

[5] M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Observation
of interference between two Bose condensates, Science 275 (5300) (1997) 637—641.

[6] J.R. Anglin, W. Ketterle, Bose-Einstein condensation of atomic gases, Nature 416 (6877) (2002)
211-218.

[7] L. Arkeryd, On the Boltzmann equation. I. Existence, Arch. Ration. Mech. Anal. 45 (1972) 1-16.

[8] L. Arkeryd, A. Nouri, Bose condensates in interaction with excitations: a kinetic model, Comm.
Math. Phys. 310 (3) (2012) 765-788.

[9] L. Arkeryd, A. Nouri, A Milne problem from a Bose condensate with excitations, Kinet. Relat.
Models 6 (4) (2013) 671-686.

[10] L. Arkeryd, A. Nouri, Bose condensates in interaction with excitations: a two-component space-
dependent model close to equilibrium, J. Stat. Phys. 160 (1) (2015) 209-238.

[11] V. Bach, S. Breteaux, T. Chen, J. Frohlich, I.M. Sigal, The time-dependent Hartree—Fock—
Bogoliubov equations for bosons, arXiv preprint, arXiv:1602.05171, 2016.

[12] L. Barbara Goss, Cornell, Ketterle, and Wieman share Nobel Prize for Bose-Einstein Condensates,
Search and Discovery. Physics Today, 2001, online.

[13] G. Ben Arous, K. Kirkpatrick, B. Schlein, A central limit theorem in many-body quantum dynamics,
Comm. Math. Phys. 321 (2) (2013) 371-417.

[14] K.H. Bennemann, J.B. Bennemann, The Physics of Liquid and Solid Helium, Interscience Mono-
graphs and Texts in Physics And Astronomy, vol. 1, Wiley, New York, Wiley, New York, 1976.

[15] M.J. Bijlsma, E. Zaremba, H.T.C. Stoof, Condensate growth in trapped Bose gases, Phys. Rev. A
62 (6) (2000) 063609.

[16] A. Bressan, Notes on the Boltzmann Equation, Lecture Notes for a Summer Course, S.I.S.S.A,
Trieste, 2005.

[17] M. Briant, A. Einav, On the Cauchy problem for the homogeneous Boltzmann-Nordheim equation
for bosons: local existence, uniqueness and creation of moments, J. Stat. Phys. 163 (5) (2016)
1108-1156.

[18] T. Buckmaster, P. Germain, Z. Hani, J. Shatah, Effective dynamics of the nonlinear Schrédinger
equation on large domains, arXiv preprint, arXiv:1610.03824, 2016.

[19] T. Buckmaster, P. Germain, Z. Hani, J. Shatah, Analysis of the (CR) equation in higher dimensions,
Int. Math. Res. Not. IMRN (2017), in press.

[20] T. Carleman, Sur la théorie de I’équation intégrodifférentielle de Boltzmann, Acta Math. 60 (1)
(1933) 91-146.

[21] C. Cercignani, Theory and Application of the Boltzmann Equation, Elsevier, New York, 1975.

[22] C. Cercignani, The Boltzmann Equation and Its Applications, Applied Mathematical Sciences,
vol. 67, Springer-Verlag, New York, 1988.

[23] C. Cercignani, R. Illner, M. Pulvirenti, The Mathematical Theory of Dilute Gases, Applied Math-
ematical Sciences, vol. 106, Springer-Verlag, New York, 1994.

[24] G. Craciun, M.-B. Tran, A reaction network approach to the convergence to equilibrium of quantum
Boltzmann equations for Bose gases, arXiv preprint, arXiv:1608.05438, 2016.

[25] D-A. Deckert, J. Frohlich, P. Pickl, A. Pizzo, Dynamics of sound waves in an interacting Bose gas,
Adv. Math. 293 (2016) 275-323.

[26] U. Eckern, Relaxation processes in a condensed Bose gas, J. Low Temp. Phys. 54 (1984) 333-359.

[27] M. Escobedo, F. Pezzotti, M. Valle, Analytical approach to relaxation dynamics of condensed Bose
gases, Ann. Physics 326 (4) (2011) 808-827.

[28] M. Escobedo, M.-B. Tran, Convergence to equilibrium of a linearized quantum Boltzmann equation
for bosons at very low temperature, Kinet. Relat. Models 8 (3) (2015) 493-531.

[29] M. Escobedo, J.J.L. Veldzquez, Finite time blow-up and condensation for the bosonic Nordheim
equation, Invent. Math. 200 (3) (2015) 761-847.

[30] M. Escobedo, J.J.L. Veldzquez, On the theory of weak turbulence for the nonlinear Schrodinger
equation, Mem. Amer. Math. Soc. 238 (1124) (2015), v+107.

[31] E. Faou, P. Germain, Z. Hani, The weakly nonlinear large-box limit of the 2D cubic nonlinear
Schrodinger equation, J. Amer. Math. Soc. 29 (4) (2016) 915-982.


http://refhub.elsevier.com/S0001-8708(17)30366-3/bib416C6F6E736F47616D626142696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib416C6F6E736F47616D626142696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5769656D616E436F726E656C6Cs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5769656D616E436F726E656C6Cs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B65747465726C65s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B65747465726C65s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib616E676C696E32303032626F7365s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib616E676C696E32303032626F7365s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib41726B657279643A313937323A4F4245s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib41726B657279644E6F7572693A323031323A424349s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib41726B657279644E6F7572693A323031323A424349s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib41726B657279644E6F7572693A414D503A32303133s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib41726B657279644E6F7572693A414D503A32303133s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib41726B657279644E6F7572693A323031353A424349s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib41726B657279644E6F7572693A323031353A424349s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib626163683230313674696D65s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib626163683230313674696D65s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib42617262617261476F7373s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib42617262617261476F7373s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B69726B7061747269636B5363686C65696E3A323031333A41434Cs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B69726B7061747269636B5363686C65696E3A323031333A41434Cs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib42656E6E656D616E6E42656E6E656D616E6E3A54504C3A31393736s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib42656E6E656D616E6E42656E6E656D616E6E3A54504C3A31393736s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib62696A6C736D6132303030636F6E64656E73617465s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib62696A6C736D6132303030636F6E64656E73617465s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4272657373616Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4272657373616Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib427269616E7445696E61763A323031363A4F5443s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib427269616E7445696E61763A323031363A4F5443s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib427269616E7445696E61763A323031363A4F5443s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6275636B6D617374657232303136656666656374697665s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6275636B6D617374657232303136656666656374697665s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6275636B6D617374657232303136616E616C79736973s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6275636B6D617374657232303136616E616C79736973s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4361726C656D616E3A313933333A544549s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4361726C656D616E3A313933333A544549s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4365726369676E616E693A313937353A544142s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4365726369676E616E693A313938383A424549s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4365726369676E616E693A313938383A424549s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4365726369676E616E69496C6C6E657250756C766972656E74693A313939343A544D54s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4365726369676E616E69496C6C6E657250756C766972656E74693A313939343A544D54s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4372616369756E42696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4372616369756E42696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4465636B65727446726F686C6963685069636B6C3A323031363A445357s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4465636B65727446726F686C6963685069636B6C3A323031363A445357s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib45s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib455056s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib455056s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib42696E6839s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib42696E6839s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4573636F6265646F56656C617A7175657A3A323031353A465442s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4573636F6265646F56656C617A7175657A3A323031353A465442s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4573636F6265646F56656C617A7175657A3A323031353A4F5454s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4573636F6265646F56656C617A7175657A3A323031353A4F5454s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib46616F754765726D61696E48616E693A54574E3A32303136s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib46616F754765726D61696E48616E693A54574E3A32303136s1

606 A. Soffer, M.-B. Tran / Advances in Mathematics 325 (2018) 533-607

[32] .M. Gamba, L.M. Smith, M.-B. Tran, On the wave turbulence theory for stratified flows in the
ocean, arXiv preprint, arXiv:1709.08266, 2017.

[33] C.W. Gardiner, M.D. Lee, R.J. Ballagh, M.J. Davis, P. Zoller, Quantum kinetic theory of condensate
growth: comparison of experiment and theory, Phys. Rev. Lett. 81 (1998) 5266.

[34] C. Gardiner, P. Zoller, Quantum kinetic theory. A quantum kinetic master equation for condensation
of a weakly interacting Bose gas without a trapping potential, Phys. Rev. A 55 (1997) 2902.

[35] C. Gardiner, P. Zoller, Quantum kinetic theory. III. Quantum kinetic master equation for strongly
condensed trapped systems, Phys. Rev. A 58 (1998) 536.

[36] C. Gardiner, P. Zoller, Quantum kinetic theory. V. Quantum kinetic master equation for mutual
interaction of condensate and noncondensate, Phys. Rev. A 61 (2000) 033601.

[37] C. Gardiner, P. Zoller, R.J. Ballagh, M.J. Davis, Kinetics of Bose-Einstein condensation in a trap,
Phys. Rev. Lett. 79 (1997) 1793.

[38] P. Germain, Z. Hani, L. Thomann, On the continuous resonant equation for NLS, II. Statistical
study, Anal. PDE 8 (7) (2015) 1733-1756.

[39] P. Germain, Z. Hani, L. Thomann, On the continuous resonant equation for NLS, I. Deterministic
analysis, J. Math. Pures Appl. 105 (1) (2016) 131-163.

[40] P. Germain, A.D. Ionescu, M.-B. Tran, Optimal local well-posedness theory for the kinetic wave
equation, arXiv preprint, arXiv:1711.05587, 2017.

[41] P. Germain, L. Thomann, On the high frequency limit of the 1l equation, arXiv preprint, arXiv:
1509.09080, 2015.

[42] R.T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathe-
matics (STAM), Philadelphia, PA, 1996.

[43] A. Griffin, T. Nikuni, E. Zaremba, Bose-Condensed Gases at Finite Temperatures, Cambridge Uni-
versity Press, Cambridge, 2009.

[44] M. Grillakis, M. Machedon, Beyond mean field: on the role of pair excitations in the evolution of
condensates, J. Fixed Point Theory Appl. 14 (1) (2013) 91-111.

[45] M. Grillakis, M. Machedon, Pair excitations and the mean field approximation of interacting bosons,
I, Comm. Math. Phys. 324 (2) (2013) 601-636.

[46] M. Grillakis, M. Machedon, D. Margetis, Second-order corrections to mean field evolution of weakly
interacting bosons, II, Adv. Math. 228 (3) (2011) 1788-1815.

[47] E.D. Gust, L.E. Reichl, Collision integrals in the kinetic equations of dilute Bose-Einstein conden-
sates, arXiv:1202.3418, 2012.

[48] E.D. Gust, L.E. Reichl, Relaxation rates and collision integrals for Bose-Einstein condensates, Phys.
Rev. A 170 (2013) 43.

[49] E.D. Gust, L.E. Reichl, Transport coefficients from the boson Uehling—Uhlenbeck equation, Phys.
Rev. E 87 (4) (2013) 042109.

[50] M. Imamovic-Tomasovic, A. Griffin, Quasiparticle kinetic equation in a trapped Bose gas at low
temperatures, J. Low Temp. Phys. 122 (2001) 617-655.

[61] M. Inguscio, S. Stringari, C.E. Wieman, Bose-Einstein Condensation in Atomic Gases, vol. 140,
IOS Press, Amsterdam, 1999.

[62] D. Jaksch, C. Gardiner, K.M. Gheri, P. Zoller, Quantum kinetic theory. IV. Intensity and amplitude
fluctuations of a Bose—Einstein condensate at finite temperature including trap loss, Phys. Rev. A
58 (1998) 1450.

[63] D. Jaksch, C. Gardiner, P. Zoller, Quantum kinetic theory. II. Simulation of the quantum Boltzmann
master equation, Phys. Rev. A 56 (1997) 575.

[54] S. Jin, M.-B. Tran, Quantum hydrodynamic approximations to the finite temperature trapped Bose
gases, arXiv preprint, arXiv:1703.00825, 2017.

[65] Y. Kagan, B.V. Svistunov, Evolution of correlation properties and appearance of broken symmetry
in the process of Bose-Einstein condensation, Phys. Rev. Lett. 79 (18) (1997) 3331.

[56] T.R. Kirkpatrick, J.R. Dorfman, Transport theory for a weakly interacting condensed Bose gas,
Phys. Rev. A (3) 28 (4) (1983) 2576-2579.

[67] T.R. Kirkpatrick, J.R. Dorfman, Transport in a dilute but condensed nonideal Bose gas: kinetic
equations, J. Low Temp. Phys. 58 (1985) 301-331.

[68] E.H. Lieb, R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev.
Lett. 88 (17) (2002) 170409.

[59] X. Lu, On isotropic distributional solutions to the Boltzmann equation for Bose-Einstein particles,
J. Stat. Phys. 116 (5-6) (2004) 1597-1649.

[60] X. Lu, The Boltzmann equation for Bose—Einstein particles: velocity concentration and convergence
to equilibrium, J. Stat. Phys. 119 (5-6) (2005) 1027-1067.


http://refhub.elsevier.com/S0001-8708(17)30366-3/bib47616D6261536D69746842696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib47616D6261536D69746842696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B36s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B36s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B31s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B31s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B33s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B33s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B35s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B35s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B30s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B30s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6765726D61696E32303135636F6E74696E756F7573s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6765726D61696E32303135636F6E74696E756F7573s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6765726D61696E32303136636F6E74696E756F7573s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6765726D61696E32303136636F6E74696E756F7573s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4765726D61696E496F6E657363755472616Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4765726D61696E496F6E657363755472616Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6765726D61696E3230313568696768s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6765726D61696E3230313568696768s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib476C61737365793A313939363A43504Bs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib476C61737365793A313939363A43504Bs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696666696E4E696B756E695A6172656D62613A323030393A424347s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696666696E4E696B756E695A6172656D62613A323030393A424347s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696C6C616B69734D61636865646F6E3A323031333A424D46s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696C6C616B69734D61636865646F6E3A323031333A424D46s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696C6C616B69734D61636865646F6E3A323031333A504541s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696C6C616B69734D61636865646F6E3A323031333A504541s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696C6C616B69734D61636865646F6E4D617267657469733A323031313A534F43s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4772696C6C616B69734D61636865646F6E4D617267657469733A323031313A534F43s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C477573743A323031323A434949s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C477573743A323031323A434949s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C477573743A323031333A525241s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C477573743A323031333A525241s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib67757374323031337472616E73706F7274s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib67757374323031337472616E73706F7274s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4947s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4947s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib696E67757363696F31393939626F7365s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib696E67757363696F31393939626F7365s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B34s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B34s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B34s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B32s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib514B32s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4A696E42696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4A696E42696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6B6167616E3139393765766F6C7574696F6Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6B6167616E3139393765766F6C7574696F6Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B4431s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B4431s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B4432s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4B4432s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6C6965623230303270726F6F66s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6C6965623230303270726F6F66s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C753A323030343A4F4944s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C753A323030343A4F4944s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C753A323030353A544245s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C753A323030353A544245s1

A. Soffer, M.-B. Tran / Advances in Mathematics 325 (2018) 533—-607 607

[61] X. Lu, The Boltzmann equation for Bose-Einstein particles: condensation in finite time, J. Stat.
Phys. 150 (6) (2013) 1138-1176.

[62] J. Lukkarinen, H. Spohn, Weakly nonlinear Schrédinger equation with random initial data, Invent.
Math. 183 (1) (2011) 79-188.

[63] R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Pure Appl. Math.,
Wiley-Interscience, 1976.

[64] D. Mitrouskas, S. Petrat, P. Pickl, Bogoliubov corrections and trace norm convergence for the
Hartree dynamics, arXiv preprint, arXiv:1609.06264, 2016.

[65] S. Nazarenko, Wave Turbulence, Lecture Notes in Phys., vol. 825, Springer, Heidelberg, 2011.

[66] Yu.A. Nepomnyashchii, A.A. Nepomnyashchii, Infrared divergence in field theory of a base system
with a condensate, Sov. Phys. JETP 493 (48) (1978).

[67] T.T. Nguyen, M.-B. Tran, Uniform in time lower bound for solutions to a quantum Boltzmann
equation of bosons, arXiv preprint, arXiv:1605.07890, 2016.

[68] T.T. Nguyen, M.-B. Tran, On the kinetic equation in Zakharov’s wave turbulence theory for capillary
waves, arXiv preprint, arXiv:1702.03892, 2017.

[69] L.W. Nordheim, On the kinetic methods in the new statistics and its applications in the electron
theory of conductivity, Proc. R. Soc. Lond. Ser. A 119 (1928) 689-698.

[70] Y. Pomeau, M.-E. Brachet, S. Métens, S. Rica, Théorie cinétique d’un gaz de Bose dilué avec
condensat, C. R. Acad. Sci., Ser. IIB Mech. Phys. Astron. 327 (8) (1999) 791-798.

[71] V.N. Popov, A.V. Seredniakov, Low-frequency asymptotic form of the self-energy parts of a super-
fluid Bose system at T=0, Sov. Phys. JETP 193 (50) (1979).

[72] N. Proukakis, S. Gardiner, M. Davis, M. Szymanska, Cold Atoms: Volume 1, Quantum Gases Finite
Temperature and Non-Equilibrium Dynamics, Imperial College Press, 2013.

[73] N.P. Proukakis, B. Jackson, Finite-temperature models of Bose-Einstein condensation, J. Phys., B
At. Mol. Opt. Phys. 41 (20) (2008) 203002.

[74] L.E. Reichl, E.D. Gust, Transport theory for a dilute Bose-Einstein condensate, J. Low Temp. Phys.
88 (2013) 053603.

[75] L.E. Reichl, M.-B. Tran, A kinetic model for very low temperature dilute Bose gases, arXiv preprint,
arXiv:1709.09982, 2017.

[76] R. Seiringer, The excitation spectrum for weakly interacting bosons, Comm. Math. Phys. 306 (2)
(2011) 565-578.

[77] D.V. Semikoz, I.I. Tkachev, Kinetics of Bose condensation, Phys. Rev. Lett. 74 (16) (1995) 3093.

[78] D.V. Semikoz, I.I. Tkachev, Condensation of bosons in the kinetic regime, Phys. Rev. D 55 (2)
(1997) 489.

[79] A. Soffer, M.-B. Tran, On coupling kinetic and Schrodinger equations, arXiv preprint, arXiv:
1610.04496, 2016.

[80] H. Spohn, Kinetics of the Bose-Einstein condensation, Phys. D 239 (2010) 627-634.

[81] H. Spohn, Weakly nonlinear wave equations with random initial data, in: Proceedings of the In-
ternational Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi, 2010,
pp. 2128-2143.

[82] H. Stoof, Coherent versus incoherent dynamics during Bose-Einstein condensation in atomic gases,
J. Low Temp. Phys. 114 (1999) 11-108.

[83] G.E. Uhlenbeck, E.A. Uehling, Transport phenomena in Einstein-Bose and Fermi-Dirac gases,
Phys. Rev. 43 (1933) 552-561.

[84] C. Villani, A review of mathematical topics in collisional kinetic theory, in: Handbook of Mathe-
matical Fluid Dynamics, vol. I, North-Holland, Amsterdam, 2002, pp. 71-305.

[85] B. Wennberg, Entropy dissipation and moment production for the Boltzmann equation, J. Stat.
Phys. 86 (5-6) (1997) 1053-1066.

[86] J.E. Williams, E. Zaremba, B. Jackson, T. Nikuni, A. Griffin, Dynamical instability of a condensate
induced by a rotating thermal gas, Phys. Rev. Lett. 88 (7) (2002) 070401.

[87] V.E. Zakharov (Ed.), Nonlinear Waves and Weak Turbulence, American Mathematical Society
Translations, Series 2, vol. 182, American Mathematical Society, Providence RI, 1998, Advances in
the Mathematical Sciences, 36.

[88] V.E. Zakharov, V.S. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence I: Wave Turbulence,
Springer Science & Business, Media, 2012.

[89] E. Zaremba, T. Nikuni, A. Griffin, Dynamics of trapped Bose gases at finite temperatures, J. Low
Temp. Phys. 116 (1999) 277-345.


http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C753A323031333A544245s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C753A323031333A544245s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C756B6B6172696E656E53706F686E3A574E533A32303131s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4C756B6B6172696E656E53706F686E3A574E533A32303131s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4D617274696Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4D617274696Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6D6974726F75736B617332303136626F676F6C6975626F76s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6D6974726F75736B617332303136626F676F6C6975626F76s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4E617A6172656E6B6F3A323031313A5754s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4E65706F6D6E79617368636869693A31393738s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4E65706F6D6E79617368636869693A31393738s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib546F616E42696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib546F616E42696E68s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6E677579656E323031377175616E74756Ds1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib6E677579656E323031377175616E74756Ds1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4E6F72646865696D3A4F544B3A31393238s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib4E6F72646865696D3A4F544B3A31393238s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib706F6D656175313939397468656F726965s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib706F6D656175313939397468656F726965s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib506F706F7653657265646E69616B6F763A31393738s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib506F706F7653657265646E69616B6F763A31393738s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib436F6C6441746F6D7331s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib436F6C6441746F6D7331s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib70726F756B616B69733230303866696E697465s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib70726F756B616B69733230303866696E697465s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C477573743A323031333A545446s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C477573743A323031333A545446s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C5472616Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib52656963686C5472616Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib73656972696E6765723230313165786369746174696F6Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib73656972696E6765723230313165786369746174696F6Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib73656D696B6F7A313939356B696E6574696373s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib73656D696B6F7A31393937636F6E64656E736174696F6Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib73656D696B6F7A31393937636F6E64656E736174696F6Es1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib736F6666657232303136636F75706C696E67s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib736F6666657232303136636F75706C696E67s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib53706F686E3A323031303A4B4F54s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib53706F686E3A574E573A32303130s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib53706F686E3A574E573A32303130s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib53706F686E3A574E573A32303130s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib53746F6F663A313939393A435649s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib53746F6F663A313939393A435649s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5565686C696E6755686C656E6265636B3A5450493A31393333s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5565686C696E6755686C656E6265636B3A5450493A31393333s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib56696C6C616E693A323030323A524D54s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib56696C6C616E693A323030323A524D54s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib57656E6E626572673A313939373A45444Ds1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib57656E6E626572673A313939373A45444Ds1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib77696C6C69616D733230303264796E616D6963616Cs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib77696C6C69616D733230303264796E616D6963616Cs1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5A616B6861726F763A313939383A4E5741s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5A616B6861726F763A313939383A4E5741s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5A616B6861726F763A313939383A4E5741s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib7A616B6861726F76323031326B6F6C6D6F676F726F76s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib7A616B6861726F76323031326B6F6C6D6F676F726F76s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5A6172656D62614E696B756E694772696666696E3A313939393A444F54s1
http://refhub.elsevier.com/S0001-8708(17)30366-3/bib5A6172656D62614E696B756E694772696666696E3A313939393A444F54s1

	On the dynamics of ﬁnite temperature trapped Bose gases
	1 Introduction
	2 The quantum Boltzmann equation
	2.1 Mass, momentum and energy of solutions of the kinetic equation
	2.1.1 Conservation of momentum and energy and the H-Theorem
	2.1.2 Resonance manifolds/energy surfaces
	2.1.3 Boundedness of the total mass for the kinetic equation

	2.2 Finite time moment estimates of the solution to the kinetic equation
	2.2.1 Estimating C12
	2.2.2 Estimating C22
	2.2.3 Finite time moment estimates

	2.3 Holder estimates for the collision operators
	2.3.1 Holder estimates for C12
	2.3.2 Holder estimates for C221
	2.3.3 Holder estimates for C222

	2.4 Proof of Theorem 1.1
	2.4.1 Checking condition (A)
	2.4.2 Checking condition (B)
	2.4.3 Checking condition (C)
	2.4.4 Checking condition (D)


	3 Proof of Theorem 1.2
	Acknowledgments
	References


