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In this paper we introduce a numerical scheme which preserves the behavior of solutions 
to the Kolmogorov Equation as time tends to infinity. The method presented is based on 
a self-similar change of variables technique to transform the Kolmogorov Equation into 
a new form, such that the problem of designing structure preserving schemes, for the 
original equation, amounts to building a standard scheme for the transformed equation. 
This transformation also has the added benefit of allowing for an exact operator splitting 
scheme, whereas in the original form a standard operator splitting was only second-order. 
Finally, we verify the preservation of long time behavior through numerical simulations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we are concerned with preserving the long time behavior of numerical solutions of the Kolmogorov Equa-
tion

∂t f − ∂2
v f − v∂x f = 0 . (1)

The hypoellipticity and the asymptotic behavior of this operator are well known, see for instance the original work of 
L. Hörmander [17] and the work of C. Villani [25] and F. Rossi [23]. The solution of eq. (1) over all of R2 is known to decay 
polynomially in time, while the solution on a truncated domain, � ⊂ R

2, is known to decay exponentially in time in L2

norm, with periodic boundary condition.
Attempting to simulate over all of R2 can be quite expensive and complicated, thus simulating over a truncated domain 

is quite attractive in this sense. However, as stated, the asymptotic behavior on a truncated domain is quite different from 
the asymptotic behavior on all R2. When simulating over a truncated domain, a set of artificial boundary conditions must 
be chosen. These boundary conditions then interact with the solution, such that the asymptotic behavior is changed. In this 
paper we present a scheme for solving the Kolmogorov Equation, eq. (1), on a truncated domain, � ⊂ R

2, which preserves 
the long time behavior of the solution to the Kolmogorov Equation over the whole space, R2.

To our knowledge, only a few papers investigate the long time asymptotics for numerical solutions of Fokker–Planck type 
equations. One of most popular schemes for Fokker–Planck equations of type
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∂t u(x) = 1

M(x)
div(N(x)∇u(x) + P (x)u(x))

is the Chang–Cooper method [9], which is a finite difference scheme in both space and time. The Chang–Cooper method was 
developed in [6] and [21]. In [3], [4] and [8], the authors studied nonlinear Fokker–Planck equations, where the nonlinearity 
is on the diffusion term. Systems of Fokker–Planck type equations have also been studied in [12] and [16] by a Voronoi 
finite volume discretization.

However, most of the equations studied before possess full parabolic structures, and thus the existing approaches aren’t 
appropriate for the Kolmogorov equation, which has a different structure: there is an advection term but no diffusion term 
in the x-variable. As can be seen from its form, the solution of the equation not only diffuses in the direction of v , by the 
effect of the diffusion operator ∂2

v , but also in the direction of x, due to the transport equation ∂t f − v ∂x f . This diffusion 
process causes the support of the solution to grow over time and therefore the artificial boundary conditions become quite 
important over time.

For the Kolmogorov Equation, one may choose one of two natural approaches to solving the Kolmogorov equation nu-
merically; either by an operator splitting method or by a change of variables. The most natural operator splitting technique 
to use is one by which the Kolmogorov Equation is split into two equations: a transport and a heat equation. In order to 
solve the heat equation by some discretization method, one needs to restrict the domain R2 to a truncated domain and 
impose boundaries condition. However, it is known that the support of the solution to the heat equation spreads to the 
whole space as time evolves, therefore restricting the computational domain to a truncated domain is not an ideal strategy 
to observe the long time behavior of the solution of eq. (1).

On the other hand the change of variables

f (t, v, x) = g(t, v, x + tv) = g(t, v, z) (2)

transforms the Kolmogorov Equation, eq. (1), into

∂t g = ∂2
v g + 2t ∂vz g + t2∂2

z g . (3)

With this change of variables the frame of reference follows the transport and this allows one to apply classical techniques 
such as the finite element method (FEM). However, the support of the solution spreads to the whole space as time evolves. 
In Section 4, we prove that for a truncated domain, the solutions of eq. (1) and eq. (3) set in a bounded domain with 
homogeneous Dirichlet boundary conditions converge exponentially to zero, while the solution to the original problem 
converges to zero in polynomial order.

Inspired by the self-similarity technique in control theory (see for instance [10,11]), we propose, in Section 3, a new 
strategy to design structure preserving schemes for the Kolmogorov Equation by using the technique of self-similarity change 
of variables. This scheme has the benefit of preserving the polynomial decay expected from a solution obtained over the 
whole space R2, but allowing us to solve eq. (1) on a truncated domain. Thus, simulations are more computationally efficient 
and less reliant on artificial boundary conditions.

We would also like to mention a similar technique: in [14,13], F. Filbet et al. introduce a new technique based on the 
idea of rescaling the kinetic equation according to hydrodynamic quantities. The rescaling in velocity, is as follows

f (t, x, v) = 1

ω(t, x)dv
g

(
t, x,

v

ω(t, x)

)
,

where the function ω is an accurate measure of the support of the function f and dv is the dimension of the velocity 
variable v . The rescaling can be defined based on the information provided by the hydrodynamic fields, computed from a 
macroscopic model corresponding to the original kinetic equation. However, the collisional kinetic equations considered by 
F. Filbet et al. are much more sophisticated than the Kolmogorov Equation, since they are nonlinear. Therefore, the scaling 
in space ω(t, x) has to be computed through hydrodynamic quantities, while in our case, the space scale is quite simple to 
compute.

Our idea is quite similar to theirs, but goes further; we not only rescale the velocity variable, but also the time variable. 
Indeed, we rescale the time and space so that the solution of the rescaled equation converges to a non-zero steady state 
solution. This has the benefit of maintaining compact support, rather than an expansion of the solution to the whole space. 
Numerically, one can see with the time rescaling, as time evolves, the support of the self-similarity solution is trapped in a 
truncated domain if the initial condition is compactly supported.

Rescaling/self-similar algorithms are a well-known strategy in constructing numerical schemes, which can capture the 
profile of blow up solutions. Such algorithms were first introduced in [2] and have continued to be developed in [5,20,18,
24]. We refer to [22] for a different attempt in this direction, using a finite-difference centered approximation.

The structure of the paper is as follows: in Section 2, we recall some classical results on the kernel and asymptotic be-
havior of the solution of the Kolmogorov Equation. In Section 3, we introduce the self-similar formulation of the Kolmogorov 
Equation. We also provide a theoretical study on the solution of the self-similar equation: in Proposition 3.1 the solution 
is proven to converge to a steady state in Theorem 3.1. In Section 4, we discuss truncating the domain for the Kolmogorov 
Equation in three forms: the original form eq. (1), the Lagrangian form eq. (3) and the self-similar form eq. (5). We prove 
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that once the domain is truncated the solution to the original form eq. (1) and the Lagrangian form eq. (3) converge ex-
ponentially to zero, which does not correspond to the polynomial convergence predicted for the original Cauchy problem. 
For the self-similar case eq. (5), we will see numerically in Section 5 that the solution converges to a steady state. This 
coincides with the property of the original Cauchy problem. As a consequence, we choose to truncate and discretize the 
self-similar equation (5). The convergence of the truncated method is given in Proposition 4.2. We also give a necessary 
condition, eq. (12), which should be satisfied for the truncated domain in order to obtain a time asymptotic convergence 
to a steady state. In Section 5 we introduce our method for simulating the Kolmogorov Equation in a truncated domain for 
both the original form of the Kolmogorov Equation and the Self-Similar form of the Kolmogorov Equation. We use an oper-
ator splitting technique combined with a finite element method. The analysis of the operator splitting technique is given in 
Proposition 5.1. Furthermore, numerical results verifying the theory are presented in Section 6.

2. Kernel and long time behavior

In this section we recall the kernel for the Kolmogorov equation, on the whole space R2, and describe the long time 
behavior. This will be useful in determining the correctness of the methods developed in later sections and for developing 
the self-similarity change of variables.

The kernel is obtained by a standard method using the Fourier transform, and was originally obtained by A. Kol-
mogorov [19] in the ’60s. Later a more general statement was developed by O. Calin, D.-C. Chang and H. Haitao [7], and in 
K. Beauchard and E. Zuazua [1].

Proposition 2.1. The kernel of (3) is

Gt(v, z) =
√

3

2πt2
e
− 1

4 t3 (3z2+(2t v−3z)2)
(t > 0, x ∈R, v ∈R). (4)

Given the initial data, f0 ∈ C∞(R2), the solution f (t, v, x) to (1) is given by the convolution

f (t, v, x) = ( f0 ∗ Gt)(v, x + v t) (t > 0, x ∈ R, v ∈R).

In what follows, we will give precise decay rates, using the explicit form to the solution of (1) given in Proposition 2.1. 
Substituting z = x + v t into (4) we see the kernel in (v, x) variables is

Gt(v, x + v t) =
√

3

2πt2
e
− 1

4 t3 (3 (x+t v)2+(3x+t v)2)
.

Thus, the kernel represents a series of ellipses given by the Gaussian

e
− 1

4 t3 (3 (x+t v)2+(3x+t v)2)
,

where the spread of the ellipse in the direction x + t v is described by the standard deviation 2t
3
2√
3

, on the other hand the 

spread in the direction 3 x + t v is described by the standard deviation 2 t
3
2 . Thus, we see not only that the shape changes 

over time, but the width of the solution changes over time, and it changes to a varying degree in different directions.
Now we want to know what the behavior of the solution of (1) is as t → ∞. To this end, we compute the asymptotic 

behavior of the Kernel G .

Lemma 2.1. For every q ∈ [1, ∞] and every t > 0, we have Gt ∈ Lq(R2) and

‖Gt‖Lq(R2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q

−1
q

( √
3

2πt2

) q−1
q

if q ∈ [1,∞),

√
3

2πt2
if q = ∞.

(t > 0).

Combining the above estimates with Young’s inequality, we obtain

Corollary 2.1. Let p, q, r ∈ [1, ∞] such that 1
p + 1

q = 1 + 1
r .

If f0 ∈ Lp(R2), then the solution f of (1) satisfies for every t > 0, f (t) ∈ Lr(R2) and

‖ f (t)‖Lr(R2) �

⎧⎪⎪⎨⎪⎪⎩
C(q)

t2(1− 1
q )

‖ f0‖L p(R2) if q ∈ [1,∞),

C(q)

2
‖ f0‖L p(R2) if q = ∞,
t
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with C(q) = q
−1
q

(√
3

2π

) q−1
q

if q ∈ [1, ∞) and C(q) =
√

3
2π if q = ∞.

Remark 2.1. Since g(t, ·, ·) is obtained by the change of variable (2), we have ‖g(t)‖Lr (R2) = ‖ f (t)‖Lr (R2) and consequently, 
it is expected that the decay rate in time of g is also polynomial.

3. Self-similar formulation of the Kolmogorov operator

In this section we derive the self-similar form eq. (5) for the Kolmogorov Equation (1). In addition, we prove the conver-
gence of f̃ , the solution to eq. (5), to a steady state as time tends to infinity. Moreover, we give a remark establishing that 
the behavior of the norm of f̃ is not monotonic.

Let us introduce the function g from eq. (2) to obtain eq. (3). Now define the change of variables⎧⎨⎩
t = es − 1,

v = es/2 ṽ,

z = e3s/2̃x
((s, ṽ, x̃) ∈R+ ×R×R)

and define:

f̃ (s, ṽ, x̃) = e2s g(t, v, z).

Then, f̃ is the solution to the initial value problem

∂s f̃ = ∂2
ṽ f̃ + 2(1 − e−s)∂ ṽ̃x f̃ + (1 − e−s)2∂̃x̃x f̃ + 1

2
ṽ∂ṽ f̃ + 3

2
x̃∂̃x f̃ + 2 f̃ ,

f̃ (0, ·, ·) = f0 .

(5)

Since eq. (5) is obtained from eq. (1) by a change of variables, it is straightforward to show that this equation admits a 
unique solution.

Let us now give some qualitative behavior of f̃ . More precisely, we discuss the behavior of the norm of f̃ . It is easy to 
see that

1

2

d

ds
‖ f̃ (s)‖2

L2(R2)
= −∥∥(1 − e−s)∂̃x f̃ (s) + ∂ṽ f̃ (s)

∥∥2
L2(R2)

+ ∥∥ f̃ (s)
∥∥2

L2(R2)
(s > 0).

So we see the evolution of the norm of f̃ is the result of competition between the norm of f̃ and the norm of the 
“divergence” of f̃ . But since we are working on an unbounded domain, we cannot use a Poincaré inequality to give a 
precise result on the behavior of the norm of f̃ .

However, using the integral representation of g , we can give a more precise statement for the behavior of the L∞ norm 
of g .

Proposition 3.1. Let us assume that f0 ∈ L1(R2) ∩ L∞(R2), then the solution ̃ f of eq. (5) satisfies

‖ f̃ (s, ·, ·)‖L∞(R2) � min

{√
3

2π

1

(1 − e−s)2
‖ f0‖L1(R2) , e2s ‖ f0‖L∞(R2)

}
(s > 0).

Remark 3.1. It is easy to see that we also have

‖ f̃ (s, ·, ·)‖L∞(R2) � C(s)max
{‖ f0‖L1(R2) , ‖ f0‖L∞(R2)

}
(s > 0),

with C(s) = min
{√

3
2π

1
(1−e−s)2 , e2s

}
. The behavior of C is plotted on Fig. 1.

Proof. Recall:

f̃ (s, ṽ, x̃) = e2s g(es − 1, es/2 ṽ, e3s/2̃x) ((s, ṽ, x̃) ∈R×R×R)

and hence, for (s, ̃v, ̃x) ∈R ×R ×R,

f̃ (s, ṽ, x̃) = e2s
∫
R2

Ges−1(ν, ζ ) f0(es/2 ṽ − ν, e3/2s̃x − ζ )dνdζ

= e4s
∫
R2

Ges−1(es/2ν̃, e3s/2ζ̃ ) f0(es/2(̃v − ν̃), e3/2s (̃x − ζ̃ ))dν̃d̃ζ .
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Fig. 1. Graphical representation of s �→ min
{ √

3
2π

1
(1−e−s)2 , e2s

}
.

Hence, using Young’s inequality, for every s > 0, we have

‖ f̃ (s)‖L∞(R2) � e2s
∥∥∥Ges−1(es/2·, e3s/2·)

∥∥∥
L∞(R2)

∥∥∥e2s f0(es/2·, e3/2s·)
∥∥∥

L1(R2)
.

Consequently, using Lemma 2.1,

‖ f̃ (s)‖L∞(R2) �
√

3

2π

1

(1 − e−s)2
‖ f0‖L1(R2) .

On the other hand, since f0 ∈ L∞(R2), applying again Young’s inequality, we also obtain:

‖ f̃ (s)‖L∞(R2) � e2s ‖Ges−1‖L1(R2) ‖ f0‖L∞(R2) (s > 0)

and Lemma 2.1, gives:

‖ f̃ (s)‖L∞(R2) � e2s ‖ f0‖L∞(R2) (s > 0). �
Let us now consider the asymptotic behavior of the norm of the solution to eq. (5), f̃ , as s → ∞.

Theorem 3.1 (Long time behavior of ̃ f ). Let p ∈ [1, ∞] and f0 ∈ L1(R2) ∩ Lp(R2). If p = ∞, we assume in addition, f0 ∈ C0(R2).

Set M0 =
∫
R2

f0(v, x) dv dx and assume M0 �= 0.

Then the solution ̃ f of eq. (5) with initial Cauchy data f0 satisfies:

lim
s→∞‖ f̃ (s, ·, ·) − M0G1‖L p(R2) = 0 .

Proof. Let us first assume that f0 ∈ C∞
c (R2). The solution of eq. (3) with initial Cauchy data f0 is given by:

g(t, v, z) = (Gt ∗ f0) (v, z) =
∫
R2

Gt(ν, ζ ) f0(v − ν, z − ζ )dνdζ ((t, v, z) ∈R+ ×R×R),

with G given by eq. (4). Hence, in terms of self-similar variables, we have, as in the proof of Proposition 3.1,

f̃ (s, ṽ, x̃) = e4s
∫
R2

Ges−1(es/2ν̃, e3s/2ζ̃ ) f0(es/2(̃v − ν̃), e3/2s (̃x − ζ̃ ))dν̃ d̃ζ ((s, ṽ, x̃) ∈R+ ×R×R) .

But, we have from eq. (4),

e2sGes−1

(
es/2ν̃, e3s/2ζ̃

)
= e2s

√
3

2π(es − 1)2
exp

⎛⎝−
(
(3e3s ζ̃ 2 + (

2(es − 1)es/2ν̃ − 3e3s/2ζ̃
)2

)
4 (es − 1)3

⎞⎠
=

√
3

2π(1 − e−s)2
exp

⎛⎝−
(
(3̃ζ 2 + (

2(1 − e−s )̃ν − 3̃ζ
)2

)
4
(
1 − e−s

)3

⎞⎠
= G1−e−s

(̃
ν, ζ̃

)
.
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Thus,

f̃ (s, ṽ, x̃) = (
G1−e−s ∗ γs

)
(̃v, x̃) = (G1 ∗ γs) (̃v, x̃) + (

(G1−e−s − G1) ∗ γs
)
(̃v, x̃) ,

where we have set, γs (̃v, ̃x) = e2s f0
(
es/2 ṽ, e3/2s̃x

)
.

Let us notice that,∫
R2

M−1
0 γs (̃v, x̃)dṽd̃x = M−1

0

∫
R2

f0(v, x)dvdx = 1 and
∥∥∥M−1

0 γs

∥∥∥
L1(R2)

=
∣∣∣M−1

0

∣∣∣‖ f0‖L1(R2) < ∞ (s � 0)

and, since f0 has a compact support, for every ε > 0, there exists s0 � 0 large enough such that for every s � s0, we have 
suppγs ⊂ B(ε) (with B(ε) the ball of R2 of radius ε centered at 0).

Consequently, (M−1
0 γs)s�0 is an approximate identity sequence, and hence, for every p ∈ [1, ∞], we have,

lim
s→∞‖G1 ∗ γs − M0G1‖L p(R2) = 0.

In order to finish the proof, it remains to prove that

lim
s→∞

∥∥(G1−e−s − G1) ∗ γs
∥∥

L p(R2)
= 0 .

But Young’s inequality ensures that∥∥(G1−e−s − G1) ∗ γs
∥∥

L p(R2)
� ‖γs‖L1(R2)

∥∥G1−e−s − G1
∥∥

L p(R2)
(s � 0) ,

that is to say, for every s � 0,∥∥(G1−e−s − G1) ∗ γs
∥∥

L p(R2)
� M−1

0 ‖ f0‖L1(R2)

∥∥G1−e−s − G1
∥∥

L p(R2)
.

Consequently, in the rest of this proof we will prove that

lim
σ→0

‖G1−σ − G1‖L p(R2) = 0 .

For every (σ , ν, ζ ) ∈ [0, 1) ×R ×R, we have

G1−σ (ν, ζ ) =
√

3

2π(1 − σ)2
exp

( −1

(1 − σ)3

(
3ζ 2 − 3(1 − σ)ζν + (1 − σ)2ν2

))
=

√
3

2π

(
1

(1 − σ)2
− 1

)
exp

( −1

(1 − σ)3

(
3ζ 2 − 3(1 − σ)ζν + (1 − σ)2ν2

))
+

√
3

2π
exp

( −1

(1 − σ)3

(
3ζ 2 − 3(1 − σ)ζν + (1 − σ)2ν2

))
= σ(2 − σ)G1−σ (ν, ζ )

+ exp

( −1

(1 − σ)3

(
3ζ 2 − 3(1 − σ)ζν + (1 − σ)2ν2

)
+

(
3ζ 2 − 3ζν + ν2

))
G1(ν, ζ )

= σ(2 − σ)G1−σ (ν, ζ )

+ exp

( −σ

(1 − σ)3

(
3
(

3 − 3σ + σ 2
)

ζ 2 − 3(1 − σ) (2 − σ) ζν + (1 − σ)2ν2
))

G1(ν, ζ )

= σ(2 − σ)G1−σ (ν, ζ ) + ϕσ (ν, ζ )G1(ν, ζ ) ,

with ϕσ (ν, ζ ) = exp
(−(ζ, ν)Aσ (ζ, ν)


)
, where we have defined

Aσ = σ

(1 − σ)3

(
3
(
3 − 3σ + σ 2

) 3
2 (1 − σ)(2 − σ)

3
2 (1 − σ)(2 − σ) (1 − σ)2

)
.

Consequently, we have

G1−σ (ν, ζ ) − G1(ν, ζ ) = ϕσ (ν, ζ )

1 − σ(2 − σ)
G1(ν, ζ ) − G1(ν, ζ )

= 1

1 − σ(2 − σ)
(ϕσ (ν, ζ )G1(ν, ζ ) − G1(ν, ζ )) − σ(2 − σ)

1 − σ(2 − σ)
G1(ν, ζ )

and so
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‖G1−σ − G1‖L p(R2) � 1

|1 − σ(2 − σ)| ‖(ϕσ − 1) G1‖L p(R2) +
∣∣∣∣ σ(2 − σ)

1 − σ(2 − σ)

∣∣∣∣‖G1‖L p(R2) .

It is clear that lim
σ→0

∣∣∣∣ σ(2 − σ)

1 − σ(2 − σ)

∣∣∣∣‖G1‖Lp(R2) = 0. Thus, it remains to prove that lim
σ→0

‖(ϕσ − 1) G1‖Lp(R2) = 0.

One can easily compute that det Aσ > 0 and Tr Aσ > 0 for every σ ∈ (0, 1]. This ensures that for every σ ∈ (0, 1), ϕσ is 
bounded by 1 on R2 and exponentially decays to 0 at infinity. In addition, the eigenvalues of Aσ are of order σ as σ → 0.

Let us denote λσ the largest eigenvalue of Aσ . Then for every R ∈R
∗+ , every σ ∈ (0, 1) and every p ∈ [1, ∞], we have:

‖ϕσ G1 − G1‖L p(R2) = ‖(ϕσ − 1) G1‖L p(B(R)) + ‖(ϕσ − 1) G1‖L p(R2\B(R))

� ‖ϕσ − 1‖L∞(B(R)) ‖G1‖L p(B(R)) + ‖(ϕσ − 1) G1‖L p(R2\B(R))

�
(

1 − e−λσ R
)

‖G1‖L p(R2) + ‖G1‖L p(R2\B(R)) ,

where B(R) ⊂ R
2 is the ball of radius R centered at 0. Consequently, since lim

σ→0
λσ = 0 and G1 decays exponentially to 0

at infinity, by taking R = Rσ = 1√
λσ

, it follows that lim
σ→0

(
1 − e−λσ Rσ

)
= 0 and lim

σ→0
‖G1‖Lp(R2\B(Rσ )) = 0. That is to say, 

lim
σ→0

‖(ϕσ − 1) G1‖Lp(R2) = 0.

All in all,

lim
s→∞‖ f̃ (s, ·, ·) − M0G1‖L p(R2) = 0 (p ∈ [1,∞])

and the result follows from density arguments. �
4. Restriction to a bounded domain

Since the numerical simulations will be performed in a truncated domain, let us first start this section with some 
results on the behavior of the solution to eqs. (1), (3) and (5) in a bounded domain with homogeneous Dirichlet boundary 
conditions. In addition, in the self-similar formulation, we will also present a convergence result for the truncated solution 
to the full solution as the size of the domain goes to infinity.

In this section we aim to study the impact of changing the space domain R2 to a bounded domain � ⊂ R
2 with 

homogeneous Dirichlet boundary conditions. First, let us remind the reader that according to Corollary 2.1, the decay in 
L2-norm of the solution, f , set in the whole space R2 is polynomial. In $ 4.1 we will see that the solution of the equation 
in the original form (1) converges exponentially to 0, when we truncate the space domain to a bounded domain. In $ 4.3, 
existence and uniqueness of a solution to the truncated self-similar equation and convergence of the bounded domain 
problem to the full space problem are proven in Proposition 4.1 and Proposition 4.2. A condition such that the truncated 
solution does not tend to 0 as time goes to infinity is given in Proposition 4.3.

The results presented here are consequences of the following Poincaré inequality.

Lemma 4.1. Let � ⊂R
2 be a bounded domain and set I v and Ix be two open and bounded intervals of R such that � ⊂ I v × Ix.

Then for every 
(
(v, x) �→ g(v, x)

) ∈ H1
0(�) and every t � 0, there exists C�(t) ∈R

∗+ such that:

‖g‖2
L2(�)

� C�(t)‖∂v g + t∂x g‖2
L2(�)

,

with,

C�(t) � C Iv×Ix(t) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|I v |2

2
if 0 � |I v |

|Ix| t � 1 ,

|Ix|2
2t2

if 1 � |I v |
|Ix| t .

(6)

The proof of this result is given in Appendix A.

4.1. The Kolmogorov equation

In this subsection we show that the asymptotic behavior of (1) simulated on a truncated domain with Dirichlet boundary 
conditions is no longer polynomial and is, in fact, exponential.

To this end, let us consider (1) on a bounded domain �, i.e.
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∂t f = v∂x f + ∂2
v f in R

∗+ × �,

f = 0 on R
∗+ × ∂�,

f = f0 on {0} × �.

It is easy to see that

1

2

d

dt
‖ f (t)‖2

L2(�)
= −‖∂v f (t)‖2

L2(�)
(t > 0).

Now using Lemma 4.1 for t = 0, it follows that

d

dt
‖ f (t)‖2

L2(�)
� −2C�(0)−1‖ f (t)‖2

L2(�)
,

with C�(0) > 0 defined in Lemma 4.1. Thus, using Grönwall’s lemma, we obtain:

‖ f (t)‖L2(�) � ‖ f0‖L2(�) exp
−t

C�(0)
(t � 0) .

Consequently, this direct simulation cannot be used in order to capture the long time behavior of the solution, since the 
expected decay rate is polynomial.

4.2. The rotating form

As in $ 4.1, we show in this subsection that the asymptotic of (2) simulated on a truncated domain with Dirichlet 
boundary conditions is no longer polynomial and is, in fact, exponential.

To this end, let us consider (3) on a bounded domain �, i.e.

∂t g = ∂2
v g + 2t∂v∂x g + t2∂2

x g in R
∗+ × �,

g = 0 on R
∗+ × ∂�,

g = f0 on {0} × �.

It is easy to see that

1

2

d

dt
‖g(t)‖2

L2(�)
= −‖∂v f (t) + t∂x g‖2

L2(�)
(t > 0).

Now using Lemma 4.1 for t � 0, it follows that

d

dt
‖g(t)‖2

L2(�)
� −2C�(t)−1‖g(t)‖2

L2(�)
,

with C�(t) > 0 defined in Lemma 4.1. Thus, using Grönwall’s lemma, we obtain:

‖g(t)‖L2(�) � ‖ f0‖L2(�) exp

t∫
0

−ds

C�(s)
(t � 0) .

Let I v and Ix be two open and bounded intervals of R such that � ⊂ I v × Ix then from the estimate (6), we have,

t∫
0

ds

C�(s)
�

⎧⎨⎩
2t

|I v |2 if t � |Ix|
|I v | ,

4|Ix|
3|I v |3 + 2t3

3|Ix|2 if t >
|Ix||I v | .

Consequently, we have � ‖g(t)‖L2(�) = O t→∞
(

e
2t3

3|Ix |2
)

. Consequently, this direct simulation cannot be used in order to 
capture the long time behavior of the solution, since the expected decay rate is polynomial, see Remark 2.1.

4.3. The self-similar form

Now in contrast to the results in the previous subsection, we will show in this subsection that using a self-similar 
change of variables allows one to simulate (1) on a truncated domain with Dirichlet boundary conditions and still preserve 
the polynomial decay. Thus, a self-similar change of variables is indeed a useful method for preserving asymptotic decay 
rates.

Let us consider the self-similar form of (1), i.e. (5), on a bounded domain, �,
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∂s f̃ = ∂2
ṽ f̃ + 2(1 − e−s)∂ṽ ∂̃x f̃ + (1 − e−s)2∂2

x̃ f̃ + 1
2 ṽ∂ṽ f̃ + 3

2 x̃∂̃x f̃ + 2 f̃ in R
∗+ × �, (7a)

f̃ = 0 on R
∗+ × ∂�, (7b)

f̃ = f0 on {0} × �. (7c)

In Proposition 4.1 we prove that (7) admits a unique solution. Then, in Proposition 4.2 we show that if the truncated 
domain is converging to the full space, then the truncated solution is also converging to the full one i.e. to the solution of (5).

Proposition 4.1. Let f0 ∈ L2(�), then there exists a unique solution ̃ f ∈ C1([0, T ], L2(�)) for (7).
Moreover, we have

‖ f̃ (s)‖L2(�) � exp

⎛⎝s −
s∫

0

dσ

C�(1 − e−σ )

⎞⎠‖ f0‖L2(�) (s � 0) , (8)

with C�(·) defined in Lemma 4.1.

Proof. In order to prove that (7) has a unique solution, we consider the following equivalent form of (7).
Define f = f̃ e−2s , then f satisfies the following equation

∂sf= −F(f) := ∂2
ṽ f+ 2(1 − e−s)∂ṽ ∂̃xf+ (1 − e−s)2∂2

x̃ f+ 1
2 ṽ∂ṽ f+ 3

2 x̃∂̃xf in R
∗+ × �, (9a)

f= 0 on R
∗+ × ∂�, (9b)

f= f0 on {0} × �. (9c)

A classical argument shows that F is a continuous operator in L2(�). We show that F is also coercive∫
�

F(f)fdṽd̃x =
∫
�

∣∣∂ṽ f+ (1 − e−s)∂̃xf
∣∣2

dṽd̃x +
∫
�

|f|2 dṽd̃x . (10)

The existence and uniqueness of a solution to (9) then follows and estimate (8) follows from (10), Lemma 4.1 and Grönwall’s 
lemma. �

For every ϕ ∈D(R+ ×R
2)′ , a distribution on R+ ×R

2, we define

Kϕ = ∂sϕ − (
∂ṽ + (1 − e−s)∂̃x

)2
ϕ −

(
1

2
ṽ∂ṽ + 3

2
∂̃x

)
ϕ − 2ϕ and

K ∗ϕ = −∂sϕ − (
∂ṽ + (1 − e−s)∂̃x

)2
ϕ +

(
1

2
ṽ∂ṽ + 3

2
∂̃x

)
ϕ .

Proposition 4.2. Consider the sequence of bounded domains of R2, {�N }N∈N∗ and assume:⋃
N∈N∗

�N = R
2 and �1 ⊂ �2 ⊂ · · · ⊂ �N ⊂ · · · ⊂ R

2.

Set f0 ∈ Cc(R
2). Then the equation

∂s gN = ∂2
ṽ gN + 2 (1 − e−s) ∂ṽ ∂̃x gN + (1 − e−s)2∂2

x̃ gN + 1
2 ṽ ∂ṽ gN + 3

2 x̃ ∂̃x gN + 2gN in R
∗+ × �N , (11a)

gN = 0 on R
∗+ × ∂�N , (11b)

gN = f0|�N on {0} × �N , (11c)

has a unique solution gN in C1([0, T ], L2(�N )).
Moreover, for every T > 0, then, there exists a subsequence of (gN)N which converges in the weak topology of L2([0, T ] × R

2) to 
the solution g∗ of (7) in the following sense

0 =
∫
R2

ϕ(0, ·) f0 +
∫

[0,T ]×R2

g∗K ∗ϕ ,

for every ϕ ∈ C∞
c ([0, T ) × R

2). In addition, all convergent subsequences of (gN)N are weakly convergent in L2((0, T ) × R
2) to a 

solution of (7) in the sense mentioned above.
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Proof. The existence and uniqueness of gN is provided by Proposition 4.1.
Let us classically extend gN by 0 outside �N . We now prove the weak convergence of (gN)N to f̃ . Thus, according to 

(8), for every N ∈N
∗ we have

‖gN(s)‖L2(R2) = ‖gN(s)‖L2(�N ) � exp

⎛⎝s −
s∫

0

dσ

C�N (1 − e−σ )

⎞⎠‖ f0‖L2(�N ) � es‖ f0‖L2(R2) (s ∈ [0, T ]) .

This ensures that up to a subsequence the sequence (gN )N is convergent to some g∗ ∈ L2([0, T ] ×R
2) for the weak topology 

of L2([0, T ] ×R
2). Let us still denote by (gN )N this convergent subsequence. Now, for every ϕ ∈ C∞

c ([0, T ) ×R
2), there exists 

N0 ∈N
∗ such that for every N � N0, we have suppϕ ⊂ [0, T ) ×�N . Since gN is solution of (11), we have, 0 =

∫
[0,T ]×R2

ϕK gN

and integrating by parts, we obtain,

0 =
∫
R2

ϕ(0, ·) f0 +
∫

[0,T ]×R2

gN K ∗ϕ .

But, since ϕ ∈ C∞
c ([0, T ) ×R

2), we have K ∗ϕ ∈ L2([0, T ] ×R
2) and by the weak convergence of (gN )N , we have, taking the 

limit N → ∞,

0 =
∫
R2

ϕ(0, ·) f0 +
∫

[0,T ]×R2

g∗K ∗ϕ ,

for all ϕ ∈ C∞
c ([0, T ) ×R

2). �
While the self-similarity change of variables can indeed provide a method for preserving the polynomial decay of solu-

tions, this method is very reliant on the following condition to be able to provide for such decay rates.

Proposition 4.3. Given ̃ f the solution to (7) and let � ⊂ R
2 be a bounded domain and let I v and Ix be two bounded intervals of R

such that � ⊂ I v × Ix ⊂ R
2 .

In order to avoid the exponential convergence of ̃ f to zero as t → ∞, I v and Ix shall satisfy

|I v | � √
2 and |Ix| �

√
2 . (12)

Proof. Using (8) together with the estimates (6), we have

‖ f̃ (s)‖L2(�) � exp

⎛⎝s −
s∫

0

dσ

C̃(1 − e−σ )

⎞⎠‖ f0‖L2(�) (s � 0) ,

with

C̃(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|I v |2

2
if 0 � |I v |

|Ix| t � 1 ,

|Ix|2
2t2

if 1 � |I v |
|Ix| t .

(t � 0) .

But,

1. if |I v | � |Ix|, then C̃(1 − e−σ ) = |I v |2
2 for every σ � 0. Thus,

s∫
0

dσ

C̃(1 − e−σ )
= 2s

|I v |2 (s � 0) ;

2. if |I v | > |Ix|,
let us define s0 = ln

|I v |
|I v | − |Ix| , i.e. |I v |

|Ix| (1 − e−s0 ) = 1, then,

C̃(1 − e−σ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|I v |2

2
if σ � s0 ,

|Ix|2
−σ 2

if σ > s0

2(1 − e )
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and consequently, if s � s0 we have

s∫
0

dσ

C̃(1 − e−σ )
= 2s

|I v |2

and if s > s0 we have

s∫
0

dσ

C̃(1 − e−σ )
= 2s0

|I v |2 + 2

|Ix|2
s∫

s0

(1 − e−σ )2 dσ

= 2s0

|I v |2 + 2

|Ix|2
(

s − s0 + 2e−s − 2e−s0 − 1

2
e−2s + 1

2
e−2s0

)
= 2s

|Ix|2 + O s→∞(1) .

According to Theorem 3.1 it is expected that the solution to (5) does not decay to zero. In order to avoid the exponential 
convergence to zero as t → ∞, we have to choose � = I v × Ix such that the solution f̃ is not decaying to zero. From the 
above expressions, it easily follows that in order to ensure this condition, we must have:{

|I v | � √
2 if |I v | � |Ix| ,

|Ix| �
√

2 if |I v | > |Ix| .
That is to say, in any cases, |I v | � √

2 and |Ix| �
√

2. �
5. Discretization schemes

In this section, we introduce the numerical schemes used to solve the various forms of the Kolmogorov equations, i.e. 
eqs. (1) and (5). This is needed to compare the effectiveness of the self-similarity change of variables introduced in Section 3, 
which is discussed in Section 6.

Since eq. (1) and (5) are not coercive it is quite natural to use an operator splitting method. Thus, in this subsection we 
will introduce two operator splitting methods for the simulation of eqs. (1) and (5). The operator splitting method for (1)
will be a second order scheme, while the method used for (5) will be an exact method.

In order to simulate the equation, we will truncate the solution to a bounded domain � of R2, as in Section 4. Then, 
the spatial approximation will be based on the finite element method. To this end, in this section, T h is a triangulation of 
� with given average triangle size, h, and Xh ⊂ H1

0(�) is the set of P1-finite elements based on this triangulation T h . Let 
us also define P h a projector of H1

0(�) to Xh .

5.1. Operator splitting for Kolmogorov equation

As stated above the Kolmogorov equation, (1), is not coercive and thus an operator splitting method will be used in 
our simulations. The operator splitting method Algorithm 1 introduced in this subsection is second order accurate and thus 
some care must be taken when simulating over long times. Thus, we see that there is not only a problem with artificial 
boundary conditions, but the accuracy of the method tends to cause a problem.

For the operator splitting method used on the Kolmogorov equation, (1), we define two operators

A1 = ∂t − ∂2
v (13a)

A2 = ∂t − v ∂x. (13b)

With these two operators in place we can solve the first operation using a finite element method, or some other method of 
choice, while solving the second operation using an exact solution from the method of characteristics.

To this end we introduce the following weak form relating to the operator A1. Given the test function χ ∈ H1
0(�) then 

the weak form for A1 defined on a domain � ⊂ R
2 with f |∂� = 0 is

Find f ∈ H1
0(�) such that

(∂t f ,χ)+(∂v f , ∂vχ) = 0 ∀χ ∈ H1
0(�) .

For the operator A2 the method of characteristics can be used and therefore it is easy to see that the solution of

∂t f − v∂x f = 0 on �,

f (·, ·,0) = f0 on �
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is

f (v, x, t) = f0(v, x + v t) (t � 0 , (v, x) ∈ �)

and so an exact solution can be obtained using a translation.
Using these two operators we then define Algorithm 1 for determining the solution to the Kolmogorov equation, (1), 

using finite elements.

Algorithm 1: Operator splitting method for Kolmogorov equation (1).

Given �t > 0 a time step and given f0 ∈ H1
0(�).

initialization Set f 0
h = P h f0 ∈ Xh .

repeat
1. Find ϕh ∈ Xh such that

(∂tϕh,χh) + (∂vϕh, ∂vχh) = 0 (t ∈ (0,�t), χh ∈ Xh) ,

ϕh(0) = f n
h .

2. Using the method of characteristics solve

∂tψh = v∂xψh (t ∈ (0,�t)),

ψh(0) = ϕh(�t).

3. Update solution,

f n+1
h = ψh(�t).

until n�t = T .

The proof of the convergence of Algorithm 1 can be found in [15].

5.2. An exact splitting scheme

The self-similar version of the Kolmogorov equation (5) is not coercive and so a unique solution to the finite element 
discretization is not guaranteed. To address this issue we can split the (5) into two operators. We will select these operators 
in such a way that both are coercive and commute, since operators which commute result in a no error from the operator 
splitting scheme. The following theorem states that there exists an operator splitting for (5) which is exact.

Proposition 5.1. Set σ1 � 1 and σ2 = 2 − σ1 and define

K1,s = − (
∂ṽ + (1 − e−s)∂̃x

)2 − 1

2
ṽ∂ṽ − 3

2
x̃∂̃x − σ1Id , (14a)

K2,s = σ2 I . (14b)

Then K1,s and K2,s commute, K2,s is coercive on H1
0(�), K1,s is coercive on L2(�) and (5) can be written as

∂s f̃ = −K1,s f̃ + K2,s f̃ . (15)

Proof. Since σ1 + σ2 = 2, it is obvious that (5) can be written as (15).
Since σ2 = 2 − σ1 > 0 and K2,s is a multiple of identity, it is obvious that K2,s is coercive and K2,s and K1,s commute.
Let us now check that K1,s is coercive. As in the proof of Proposition 4.1, we have for every f̃ ∈ H1

0(�),∫
�

f̃ K1,s f̃ =
∫
�

∣∣∂ṽ f̃ + (1 − e−s)∂̃x f̃
∣∣2 + (1 − σ1)

∫
�

∣∣ f̃
∣∣2 �

∥∥∂ṽ f̃ + (1 − e−s)∂̃x f̃
∥∥2

L2(�)
.

But, according to Lemma 4.1, for every s � 0, there exists C�(1 − e−s) > 0 such that∥∥∂ṽ f̃ + (1 − e−s)∂̃x f̃
∥∥2

L2(�)
� 1

C�(1 − e−s)

∥∥ f̃
∥∥2

L2(�)
. �

Since (5) is not coercive we cannot guarantee the Finite Element solution to (5) is unique. However, since K1,s and 
K2,s commute, we can create an exact operator splitting method where our operators are coercive by choosing σ1 � 1 and 
σ2 = 2 − σ1.

For the purpose of the numerical simulation, we introduce the following weak form, relating to the operator ∂s + K1,s .
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Find f̃ ∈ H1
0(�) such that

(∂t f̃ ,χ) + as( f̃ ,χ) = 0 ∀χ ∈ H1
0(�) ,

where we have set

as( f̃ ,χ) = (∂ṽ f̃ , ∂ṽχ) + (1 − e−s)
(
(∂ṽ f̃ , ∂̃xχ) + (∂̃x f̃ , ∂ṽχ)

) + (1 − e−s)2(∂̃x f̃ , ∂̃xχ)

+ 1

4

(
( f̃ , ṽ∂ṽχ) − (̃v∂ṽ f̃ ,χ)

) + 3

4

(
( f̃ , x̃∂̃xχ) − (̃x∂̃x f̃ ,χ)

)
+ (1 − σ1)( f̃ ,χ) .

For the operator K2,s , the solution is explicit. In fact, it is easy to see that the solution of

∂s f̃ − K2,s f̃ = 0 on �,

f (·, ·,0) = f0 on �

is

f (·, ·, s) = eσ2s f0 (s � 0) .

Using these two operators we then define Algorithm 2 for determining the solution to the Kolmogorov equation in 
self-similar variables (5), using finite elements.

Algorithm 2: Operator splitting method for the self-similar Kolmogorov equation (5).

Given �s > 0 a time step and given f0 ∈ H1
0(�).

initialization Set ̃ f 0
h = P h f0 ∈ Xh .

repeat
1. Find ϕh ∈ Xh such that

(∂tϕh,χh) + as(ϕh,χh) = 0 (t ∈ (0,�s), χh ∈ Xh) , (16a)

ϕh(0) = f̃ n
h . (16b)

2. Update solution,

f n+1
h = eσ2�sϕh(�s).

until n�s = T .

In the numerical test, we will use Crank–Nicolson method to solve (16).

6. Numerical results

In this section we compare the results of the finite element method applied to the various forms of the Kolmogorov 
Equation, eqs. (1) and (5). The comparison will be performed on two different initial conditions, eqs. (19) and (23). The first 
initial condition, (19), is a smooth Gaussian, while the second initial condition, (23), is a square pulse centered at zero. In 
this way, we demonstrate the benefits of using the self-similarity change of variables, which include

• Small space domain,
• Fast marching in time,
• Convergence to steady state.

In what follows we determine the effectiveness of each finite element discretization introduced in Section 5 through 
comparison of L2-errors and a percent difference defined as

%diff( f ) = ‖ fnumerical − fexact‖
‖ fexact‖ · 100%. (17)

The use of %diff will show the distribution of error and thus show where the largest errors occur. For (1) the major con-
tribution of errors is expected to occur on the boundary, due to the interaction with the artificial boundary conditions. 
However, it is expected that for the self-similarity solution of (5), the major contribution of error should directly come from 
discretization error rather than imposed boundary conditions.

For the various forms of the Kolmogorov Equation, eqs. (1) and (5), we take the time interval, and problem domain to 
be respectively

I = [0,10], � = [−10,10] × [−10,10], (18)
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Table 1
L2-error for the finite element discretizations 
at t = 10 (i.e. s = ln(t − 1) = ln(9) for Algo-
rithm 2).

Algorithm 1 Algorithm 2

0.0490644 0.019473

which obviously satisfies condition (12). For each equation we take the time step to be �t = �s = 0.01 and the number of 
triangles along each side of the domain, �, to be N = 128.

Remark 6.1. We note that while the starting domain for (5) is given by � the respective change of variables results in the 
domain growing over time. Additionally, since s is a scaling of the time, t , we take the time interval for (5) to be Is = [0, 2.4]
which corresponds to t ∈ I , since t = es − 1 ⇒ s ∈ [0, log(t + 1)].

Due to the scaling in time, when comparing solution behavior (L2 and L∞ norms) over time we will take t ∈ [0, 240] for 
simulating the Kolmogorov Equation, (1). This will allow for a proper comparison of long time behavior in the norms. While 
t = 240 is still no where close to the final time of s = 10, we obtain a good picture of the decay rate over time. Running the 
simulation out to this time took quite a bit of computational time especially as compared to simulating, (5), out to s = 10.

To this end, we begin by comparing the simulations given an exact solution resulting from the initial condition (19). 
In the last subsection we will compare long time solution behavior given a square pulse as the initial condition. No finite 
element error analysis will be performed on this example, since we do not have an exact solution.

6.1. Test 1: simulation with exact solution

For the purposes of comparing solutions and contribution of errors from the finite element discretization we first need 
exact solutions to each of the different forms of the Kolmogorov Equation. To this end, we define the initial condition

f0(v, x) = e−v2−x2
(19)

and therefore the solutions to eqs. (1) and (5) are respectively given by

fexact(t, v, x) =
exp

(
−

(
3+3t2+4t3

)
v2+6t(1+2t)vx+3(1+4t)x2

3+12t+4t3+4t4

)
√

1 + 4t + 4
3 t2 + 4

3 t4
, (20)

f̃exact(s, v, x) =
exp

((
1−4es

(
3+es

(−3+es
)))

v2+12es
(−1+es

)2
vz−3e2s

(−3+4es
)
z2

−9+8es+12e2s−12e3s+4e4s

)
√

−3 + 8
3 es + 4e2s − 4e3s + 4

3 e4s
. (21)

Additionally, from Theorem 3.1 we see that the solution to (5) converges to

f̃∞(̃v, x̃) =
√

3

2
e−ṽ2+3ṽ x̃−3̃x2

(22)

which is an elliptic Gaussian having magnitude 
√

3
2 .

For (1) the support of the solution grows beyond the problem domain in the given time interval, I , and therefore 
the boundary conditions become more and more important as time increases until the solution, given by the finite element 
method, no longer approximates the true solution of the original problem. This can be seen in Fig. 4. Thus, as time increases 
the error becomes larger and larger, due to the divergence from the exact solution caused by the interaction of the boundary 
conditions. While (5) tends to a steady state with compact support in the domain � for the given time interval, therefore 
the approximation given by the finite element method remains valid throughout the simulated time and should provide a 
better approximation to the exact solution, as can be seen in Fig. 5.

Additionally, the L2-error at time t = 10 is smaller for the self-similarity version of the Kolmogorov Equation, (5), as 
compared to the original Kolmogorov Equation, (1), as expected, as seen in Table 1. In fact, the L2-error for the self-similarity 
version of the Kolmogorov Equation at t = e10 − 1, i.e. s = 10, is still smaller than the L2-error associated with (1) at t = 10
and is

‖ f̃exact(10, ṽ, x̃) − f̃ (10, ṽ, x̃)‖ = 0.0107995.

Thus, we see that the self-similarity solution performs much better over long times.
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Table 2
L2-errors for finite element method applied to the self-similar Kolmogorov 
equation, (5), at s = 10 with dt = 0.01.

h L2-error Order

1.00000 6.27854 × 10−1 −
0.50000 9.90501 × 10−2 2.6642
0.25000 2.70934 × 10−2 1.8702
0.12500 6.94450 × 10−3 1.9640
0.06250 1.74641 × 10−3 1.9915
0.03125 4.36256 × 10−4 2.0011
0.01562 1.08071 × 10−4 2.0132

Fig. 2. The observed solution behavior over time for finite element method and Algorithm 2 applied to (5).

Fig. 3. Observed L∞-norm and L2-norm over time.

Remark 6.2 (Finite element convergence). We see in Table 2 that the rate of convergence appears to follow the classical 
quadratic convergence rate expected for linear finite elements and the convergence rate is given by the least squares fit

E(h) = 0.49796 h2.0401.

In addition to the decreasing L2-error for the finite element approximation to (5) we would like to bring the reader’s 
attention back to behavior remarked in Proposition 3.1 relating to the L∞-norm of (5) not being monotonic. Indeed, the 
numerical simulation of (5) by finite element method follows the same behavior as the one predicted by Proposition 3.1
and this can be seen in Fig. 2. In this simulation we observe that initially the L∞-norm increases and then eventually 
decreases to a steady state as expected (see Fig. 2). We also note that while the graph appears to be increasing as time 
increases the data appears to be converging to a constant, and can be observed by the fact that the L∞ eventually is only 
changing in the 4th decimal.

When comparing long time solution norms on a log–log (see Fig. 3a) plot we see that the solution given by Algorithm 2
applied to the Self-Similar Kolmogorov Equation seems to have a polynomial decay rate, while the solution given by Algo-
rithm 1 applied to the Kolmogorov Equation seems to have a decay rate which is faster than any polynomial decay rate.
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Fig. 4. Solution to the Kolmogorov Equation, (1), simulated using Algorithm 1 (a) and percent difference (b) between exact solution and simulated solution 
at t = 10.

Fig. 5. Solution to the self-similar Kolmogorov Equation, (5), using Algorithm 2 (a, c) and percent difference (b, d) between exact solution and simulated 
solution at s = 2.40 (t ∼ 10).

Remark 6.3. We note that the change of variable z = x + t v results in the rotation of the initial condition in the opposite 
direction to the direction seen in the original variables. This is apparent in both the exact solution given in (4) and the 
simulation presented in Section 6, especially in Fig. 5.

6.2. Test 2: square pulse

In the next example we take the initial condition to be a square pulse defined by

f (0,x) = f0(x) =
{

1 if |x| < 1 and |v| < 1

0 otherwise.
(23)
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Fig. 6. Comparison of solution behavior over time for similarity solution, b, in original variables and Kolmogorov equation, a, with initial condition (23).

Fig. 7. Comparison of solutions, at t = 10, to self-similar Kolmogorov, b and c, and Kolmogorov equations, a, with the initial condition (23).

For this initial condition we see that again the solution support has grown beyond the original domain size by t = 10
(see Fig. 7a), and therefore the boundary conditions begin to play a big role in the simulated solution. However, due to a 
lack of exact solution, we cannot quantify the error due to boundary conditions. However, we can determine the effects on 
the solution behavior.

The solution to the Kolmogorov Equation is supposed to follow a polynomial decay, but as can be seen in Fig. 6a the 
solution does not appear exhibit polynomial decay. However, in Fig. 6b, we see a clear trend of polynomial decay. In fact, 
polynomial decay which is of second order as indicated by the slope of the line in the log–log plot, Fig. 6b.

7. Conclusions

In this paper we introduce a discretization of the self-similar Kolmogorov equation (5) based on an operator splitting 
technique combined with a finite element method and provide theoretical results for the method. Then in Section 6 we 
verified our theoretical results. The effectiveness of the self-similar change of variables was demonstrated in Section 6, by 
comparing finite element solutions for (1) using the method of splitting in Algorithm 1, and the self-similar version of 
Kolmogorov (5). The self-similar change of variables had the lowest L2-error as compared to the solutions for (1). The main 
reason for this was due to the interaction of the artificially imposed boundary conditions with the solution on the inside 
of the domain. This is exactly as expected. We note that the self-similar change of variables solution can also suffer from 
the same draw back of artificial boundary conditions if a domain which is too small is chosen. However, the key point here 
is that the domain required is much smaller than that of (1), allowing for efficient long time simulation. In addition to the 
ability to use much smaller domains for long time simulation, the self-similar change of variables allows for fast marching 
in time due to the change in time from t to s where t = es − 1. Thus, time marching is exponential which adds to the 
efficiency of computing solutions to the self-similar change of variables version of the Kolmogorov equation. In summary 
we see that for long time integration the self-similar change of variables has the following benefits, as compared to the 
original formulation of the Kolmogorov equation: small space domain, and fast marching in time.
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Appendix A. Proof of Lemma 4.1

Let g ∈ H1
0(�) and let us extend g by 0 outside �, so that g ∈ H1

0(I v × Ix). Assume that there exists C I v ×Ix (t) such that

‖g‖2
L2(I v×Ix)

� C Iv×Ix(t)‖∂v g + t∂x g‖2
L2(I v×Ix)

.

But we have

‖g‖2
L2(I v×Ix)

= ‖g‖2
L2(�)

and ‖∂v g + t∂x g‖2
L2(I v×Ix)

= ‖∂v g + t∂x g‖2
L2(�)

.

Consequently, for every g ∈ H1
0(�), there exists C�(t) � C I v ×Ix(t) so that

‖g‖2
L2(�)

� C�(t)‖∂v g + t∂x g‖2
L2(�)

.

Consequently, it remains to prove the existence and the estimate on C I v ×Ix(t).
Assume now that � = I v × Ix , with I v = (av , bv) and Ix = (ax, bx) and let g ∈ H1

0(I v × Ix). Let us define

g̃(̃v, x̃) = g (av + (bv − av )̃v,ax + (bx − ax)̃x) ((̃v, x̃) ∈ (0,1)2) .

Then we have g̃ ∈ H1
0((0, 1)2),

(∂ṽ g̃ + t∂̃x g̃) (̃v, x̃) = |I v |
(

∂v g + |Ix|
|I v | t∂x g

)
(av + |I v |̃v,ax + |Ix |̃x)

and

‖̃g‖2
L2((0,1)2)

= |I v ||Ix|‖g‖2
L2(I v×Ix)

and ‖∂ṽ g̃ + t∂̃x g̃‖2
L2((0,1)2)

= |I v |3|Ix|
∥∥∥∥∂v g + |Ix|

|I v | t∂x g

∥∥∥∥2

L2(I v×Ix)

.

Consequently, if there exists C(0,1)2 (t) such that

‖g‖2
L2((0,1)2)

� C(0,1)2(t)‖∂v g + t∂x g‖2
L2((0,1)2)

(g ∈ H1
0((0,1)2)) ,

then,

‖g‖2
L2(I v×Ix)

� |I v |2C(0,1)2

( |I v |
|Ix| t

)
‖∂v g + t∂x g‖2

L2(I v×Ix)
(g ∈ H1

0(I v × Ix)) .

Consequently, it remains to prove the result for � = (0, 1)2.
Let us prove the result for g ∈ C∞

0 (�) (with � = (0, 1)2), the global result will follow from density arguments. Let us 
extend g by 0 outside �, then we have g ∈ C∞

c (R2). For every (v0, x0) ∈R
2 and every s ∈R, we have:

g(v0 + s, x0 + ts) =
s∫

0

d

dσ
g(v0 + σ , x0 + tσ)dσ

=
s∫

0

(∂v g(v0 + σ , x0 + tσ) + t∂x g(v0 + σ , x0 + tσ)) dσ .

Hence, by Cauchy–Schwarz inequality,

|g(v0 + s, x0 + ts)|2 � s

s∫
0

|∂v g(v0 + σ , x0 + tσ) + t∂x g(v0 + σ , x0 + tσ)|2 dσ . (24)

Before continuing, let us consider the particular case t = 0.
In this case, eq. (24) is
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|g(v0 + s, x0)|2 � s

s∫
0

|∂v g(v0 + σ , x0)|2 dσ

and hence,

‖g‖2
L2(�)

=
1∫

0

1∫
0

|g(v, x)|2 dvdx �
1∫

0

1∫
0

v

v∫
0

|∂v g(σ , x)|2 dσ dvdx

�
1∫

0

1∫
0

v

1∫
0

|∂v g(σ , x)|2 dσ dvdx � 1

2
‖∂v g‖2

L2(�)
.

That is to say C�(0) � 1
2 .

Let us now consider the case t > 0. Then, we have

‖g‖2
L2(�)

=
1∫

0

1∫
0

|g(v, x)|2 dxdv = t

1∫
0

1
t∫

0

|g(v, ts)|2 dsdv = t

1
t∫

0

1−s∫
−s

|g(w + s, ts)|2 dwds .

Then,

• if t < 1,

‖g‖2
L2(�)

= t

⎛⎜⎜⎝
1− 1

t∫
−1

t

1
t∫

−w

|g(w + s, ts)|2 dsdw +
0∫

1− 1
t

1−w∫
−w

|g(w + s, ts)|2 dsdw +
1∫

0

1−w∫
0

|g(w + s, ts)|2 dsdw

⎞⎟⎟⎠ ;

• if t � 1,

‖g‖2
L2(�)

= t

⎛⎜⎜⎝
0∫

−1
t

1
t∫

−w

|g(w + s, ts)|2 dsdw +
1− 1

t∫
0

1
t∫

0

|g(w + s, ts)|2 dsdw +
1∫

1− 1
t

1−w∫
0

|g(w + s, ts)|2 dsdw

⎞⎟⎟⎠ .

All the integrals in the above expressions are of the form:

b∫
a

β(w)∫
α(w)

|g(w + s, ts)|2 ds dw,

with a � b and α(w) � β(w).
But we have, using eq. (24),

b∫
a

β(w)∫
α(w)

|g(w + s, ts)|2 dsdw

=
b∫

a

β(w)−α(w)∫
0

|g(w + α(w) + s, ts + tα(w))|2 dsdw

�
b∫

a

β(w)−α(w)∫
0

s

s∫
0

|∂w g(w + α(w) + σ , tσ + tα(w)) + t∂x g(w + α(w) + σ , tσ + tα(w))|2 dσ dsdw

�
b∫

a

β(w)−α(w)∫
0

s

s+α(w)∫
α(w)

|∂w g(w + σ , tσ) + t∂x g(w + σ , tσ)|2 dσ dsdw

�
b∫

a

β(w)−α(w)∫
s

β(w)∫
|∂w g(w + σ , tσ) + t∂x g(w + σ , tσ)|2 dσ dsdw
0 α(w)
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�
b∫

a

(β(w) − α(w))2

2

β(w)∫
α(w)

|∂w g(w + σ , tσ) + t∂x g(w + σ , tσ)|2 dσdw

� 1

2

(
sup

w∈[a,b]
(β(w) − α(w))2

) b∫
a

β(w)∫
α(w)

|∂w g(w + σ , tσ) + t∂x g(w + σ , tσ)|2 dσdw.

Consequently,

• if 0 < t < 1,

‖g‖2
L2(�)

� t

2

⎛⎜⎜⎝
1− 1

t∫
−1

t

1
t∫

−w

|∂w g(w + s, ts) + t∂x g(w + s, ts)|2 dsdw

+
0∫

1− 1
t

1−w∫
−w

|∂w g(w + s, ts) + t∂x g(w + s, ts)|2 dsdw

+
1∫

0

1−w∫
0

|∂w g(w + s, ts) + t∂x g(w + s, ts)|2 dsdw

⎞⎠ ;

• if t � 1,

‖g‖2
L2(�)

= 1

2t

⎛⎜⎜⎝
0∫

−1
t

1
t∫

−w

|∂w g(w + s, ts) + t∂x g(w + s, ts)|2 dsdw

+
1− 1

t∫
0

1
t∫

0

|∂w g(w + s, ts) + t∂x g(w + s, ts)|2 dsdw

+
1∫

1− 1
t

1−w∫
0

|∂w g(w + s, ts) + t∂x g(w + s, ts)|2 dsdw

⎞⎟⎟⎠ .

Going back to [0, 1]2, we end up with

‖g‖2
L2(�)

�

⎧⎪⎪⎨⎪⎪⎩
1

2
‖∂w g + t∂x g‖2

L2(�)
if 0 < t � 1,

1

2t2
‖∂w g + t∂x g‖2

L2(�)
if t > 1.

All in all, we have proved that C(0,1)2 (t) exists and we have

C(0,1)2(t) �

⎧⎪⎪⎨⎪⎪⎩
1

2
if 0 � t � 1 ,

1

2t2
if t � 1

(t � 0) . �
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