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Abstract

The current paper is the third part of our work on the nonlinear
approximation theory for the homogeneous Boltzmann equation. In
the first two parts, we introduced an adaptive, non-truncated wavelet
spectral method for the numerical resolution of the equation. A conver-
gence theory and a wavelet filtering technique to preserve some physical
properties of the solution were also provided. In this part of the work,
we give an explicit formulation of the algorithm in the concrete case
of the Haar wavelet. We also provide numerical tests to confirm the
theoretical results done in the previous parts of the work.
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1 Introduction

The Boltzmann equation describes the behaviour of a dilute gas of particles
when only the binary elastic collisions are considered. In this work, we are
interested in the numerical resolution of the space homogeneous Boltzmann
equation

∂f

∂t
= Q(f, f), v ∈ Rd, (1.1)

where f := f(t, v) is the time-dependent particle distribution function for
the phase space. The quadratic Boltzmann collision operator Q is a defined

Q(f, f)(v) =

∫
Rd

∫
Sd−1

B(|v − v∗|, cos θ)(f ′∗f
′ − f∗f)dσdv∗, (1.2)

where f = f(v), f∗ = f(v∗), f
′ = f(v′), f ′∗ = f(v′∗) and{

v′ = v − 1
2((v − v∗ − |v − v∗|σ),

v′∗ = v − 1
2((v − v∗ + |v − v∗|σ),

with σ ∈ Sd−1.
We assume that

B(|u|, cos θ) = |u|γb(cos θ), cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
, (1.3)

where γ ∈ [0, 1] and b is a smooth function satisfying∫ π

0
b(cos θ) sin θdθ < +∞, (1.4)

and assumptions (2.1)-(2.2) in [18]

∃θb > 0 such that supp{b(cos θ)} ⊂ {θ | θb ≤ θ ≤ π − θb}. (1.5)

Under these assumptions, the collision operator could be split as

Q(f, f) = Q+(f, f)− L(f)f,
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with

Q+(f, f) =

∫
R3

∫
S2
B(|v − v∗|, cos θ)f ′∗f

′dσdv∗

and

L(f) =

∫
R3

∫
S2
B(|v − v∗|, cos θ)f∗dσdv∗.

Boltzmann collision operator has the properties of conserving mass, momen-
tum and energy∫

Rd
Q(f, f)dv = 0,

∫
Rd
Q(f, f)vdv = 0,

∫
Rd
Q(f, f)|v|2dv = 0,

and it satisfies the Boltzmann’s H-theorem

− d

dt

∫
Rd
f log fdv = −

∫
Rd
Q(f, f)logfdv ≥ 0,

in which −
∫
f log f is the entropy of the solution. The Boltzmann’s H-

theorem implies that any equilibrium distribution function has the form of
a Maxwellian distribution

M(ρ, u, T ) =
ρ

(2πT )3/2
exp

(
−|u− v|

2

2T

)
,

where ρ, u, T are the density, macroscopic velocity and temperature of the
gas

ρ =

∫
Rd
f(v)dv, u =

1

ρ

∫
Rd
vf(v)dv, T =

1

3ρ

∫
Rd
|u− v|2f(v)dv.

We suppose that the initial datum f0 is positive on R2d and∫
Rd
f0(v)(1 + |v|2)dv < +∞.

We refer to [7] and [27] for further details and discussions on the Boltzmann
equation.
The numerical resolution of the Boltzmann equation has a very important
role in the study of the kinetic theory of gases. Several strategies have been
proposed to discretize the multidimensional Boltzmann collision operator.
One of the first natural approaches is the Monte Carlo method, introduced
in [2]. The method produces very good approximation of the solution of
the equation, but it is quite expensive. Among other approaches, Discrete
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Velocity Models - VDMs ([6, 4, 3, 19]) is an efficient deterministic tech-
nique based on a Cartesian grid in velocity and a discrete collision operator,
which is a nonlinear system of conservation laws. DVMs were proved to be
consistent ([9]) and converge weakly to the solution of the main equation
([20, 16]). The draw-back of this technique is the high cost of computation
and the lack of theoretical study on the strong convergence of the solutions
and error estimates of the system of conservation laws to the solution of the
Boltzmann equation. Another well-known approach is the Fourier Spectral
Methods - FSMs ([21, 22, 11, 10, 13, 14]). The main idea of this class of
techniques is to truncate the velocity space and periodize the solution on
the new bounded domain. The major drawback of DVMs and FSMs is that
the velocity is approximate by a bounded region. For DVMs, the truncation
breaks down the convolution structure of the collision operators. For FSMs,
we need to impose nonphysical periodic boundary conditions.
In our work, we introduce a new way to deal with the truncation problem:
in stead of truncating the computational domain from Rd into a bounded
domain (−R,R)d and constructing a mesh on the truncated domain like
classical deterministic approaches, we choose a change of variable mapping
ϕ : Rd → (−1, 1)d and construct a nonlinear wavelet basis for (−R,R)d in
the following way: Let {en} be a wavelet on L2(−1, 1)d, then en(ϕ) will be
our new wavelet basis taking values on the full space Rd. Using this new
wavelet basis, we can construct a wavelet spectral method to solve Boltz-
mann equation numerically. If the scaling function of the wavelet basis {en}
is positive, we could prove that the numerical solution of the Boltzmann
equation is also positive. The new wavelet basis is adaptive, in the sense
that by using ϕ, the mesh around the origin is very fine, while the mesh
away from the origin is very coarse. Since theoretical results show that the
solution of the Boltzmann equation is bounded from below and above by
Maxwellians ([24, 17, 12]), this particular mesh is adapted to the Boltz-
mann equation. Our work is divided into three parts: In the first part [25],
we proved that the algorithm converges in the energy norm. In the second
part [26], we introduce a filtering technique to preserve the propagation of
polynomial and exponential moments of the approximate solution. Our cur-
rent paper is the third part of the work, which is devoted to the practical
and numerical aspects of the theory.
The plan of our paper is the following: In section 2, we construct the nonlin-
ear wavelet basis (subsection 2.1), then build the wavelet spectral algorithm
(subsection 2.2) and give a formulation of the algorithm in the concrete
case of the Haar wavelet (subsection 2.3). The numerical case tests will be
presented in section 3.
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2 Wavelet spectral algorithm for the Boltzmann
equation

2.1 Adaptive wavelet basis

Let φ̄ be a positive scaling function which defines a multiresolution analysis,
i.e., a ladder of embedded approximation subspaces of L2(−1, 1)

V0 ⊂ V−1 · · · → L2(−1, 1)

such that φ̄j,k = {2−j/2φ(2−jy−k)}k∈Z constitutes an orthonormal basis for
Vj . The wavelet ψ is built to characterize the missing details between two
adjacent levels of approximation: {ψ̄j,k}k∈Z = {2−j/2ψ̄(2−jy − k)}k∈Z is an
orthonormal basis of Wj where

Vj−1 = Vj ⊕Wj .

Suppose that the scaling function φ̄ and the wavelet ψ̄ have reasonable
decays, for example |φ̄(y)|, |ψ̄(y)| ≤ C(1 + |y|)−2−ε, ε > 0. We refer to the
books [8, 15] for more details on wavelets. Define the change of variables
mapping:

ϕ : R→ (−1, 1),

ϕ(v) =
v

1 + |v|
. (2.1)

The new nonlinear wavelet basis is then {ψj,k}k∈Z = {ψj,k(ϕ)}k∈Z. Notice
that the Jacobian of this change of variables is 1

(1+|v|)2 .

We now construct an adaptive multiresolution analysis for L2((−1, 1)d). De-
fine

Ψj,k(y) = ψj1,k1(y1) . . . ψjd,kd(yd),

and
Φj,k(y) = φj1,k1(y1) . . . φjd,kd(yd),

where j = (j1, . . . , jd) ∈ (−N)d, k = (k1, . . . , kd) ∈ {0, . . . , 2|j| − 1}2, y =
(y1, . . . , yd) ∈ Rd.
Therefore, {Ψj,k} is a wavelet basis of L2(Rd) with weight

J(y) = (1 + |y1|)−2 . . . (1 + |yd|)−2. (2.2)

Notice that our nonlinear multiresolution analysis is slightly different from
the ones in [25, 26].
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2.2 Wavelet spectral algorithm

Similar as in [25, 26], we construct a wavelet spectral algorithm for (1.1).
We expand f using the wavelet {Ψj,k} and take the following truncation

fN =

(2N−1,2N−1)∑
k=(0,0)

aN,kΨN,k (2.3)

=:
2N−1∑
k=0

aN,kΨN,k, (2.4)

in which (2.4) is defined as an abbreviation of (2.3). Equivalently, we can
also use the basis created by the scaling function

fN =
2N−1∑
k=0

bN,kΦN,k. (2.5)

Plugging (2.3) into (1.1), we get the following approximate system

∂tfN = PN (Q(fN , fN )), (2.6)

which is

∂taN,k

∫
Rd

Ψ2
N,kJdv (2.7)

=
2N−1∑
l,l′=0

aN,laN,l′

∫
R2d×Sd−1

B(|v − v∗|, σ)
[
ΨN,l(v

′
∗)ΨN,l′(v

′)

− ΨN,l(v∗)ΨN,l′(v)
]

ΨN,k(v)J(v)dσdv∗dv, ∀k ∈ {0, . . . , 2N − 1},

or

∂tbN,k

∫
Rd

Φ2
N,kJdv (2.8)

=
2N−1∑
l,l′=0

bN,lbN,l′

∫
R2d×Sd−1

B(|v − v∗|, σ)
[
ΦN,l(v

′
∗)ΦN,l′(v

′)

− ΦN,l(v∗)ΦN,l′(v)
]

ΦN,k(v)J(v)dσdv∗dv, ∀k ∈ {0, . . . , 2N − 1}.

Filtering technique: Following [26], in order to preserve the Maxwellian up-
per bound and the propagation of polynomial moment of the solution, we
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filter some components of the solution, which gives the following system,
where the unknowns are {aN,k} and {bN,k}

∂taN,k

∫
Rd

Ψ2
N,kJdv (2.9)

=

2N−1−M∑
l,l′=0

aN,laN,l′

∫
R2d×Sd−1

B(|v − v∗|, σ)
[
ΨN,l(v

′
∗)ΨN,l′(v

′)

− ΨN,l(v∗)ΨN,l′(v)
]

ΨN,k(v)J(v)dσdv∗dv, ∀k ∈ {0, . . . , 2N − 1−M},

or

∂tbN,k

∫
Rd

Φ2
N,kJdv (2.10)

=

2N−1−M∑
l,l′=0

bN,lbN,l′

∫
R2d×Sd−1

B(|v − v∗|, σ)
[
ΦN,l(v

′
∗)ΦN,l′(v

′)

− ΦN,l(v∗)ΦN,l′(v)
]

ΦN,k(v)J(v)dσdv∗dv, ∀k ∈ {0, . . . , 2N − 1−M},

where M is defined:

M =

[
∆2N − 1

2

]
,

which is the largest integer smaller than ∆2N−1
2 and ∆ is some constant in

(1/2, 1). The solution is then represented

f̄N =
2N−M∑
k=0

aN,kΨN,k. (2.11)

Forward Euler scheme in time: To numerically resolve (2.9) and (2.10), we
employ the classical forward Euler scheme in time

aN,k((p+ 1)∆t)− aN,k(p∆t)
∆t

∫
Rd

Ψ2
N,kJdv (2.12)

=
2N−1−M∑
l,l′=0

aN,l(p∆t)aN,l′(p∆t)

∫
R2d×Sd−1

B(|v − v∗|, σ)
[
ΨN,l(v

′
∗)ΨN,l′(v

′)

− ΨN,l(v∗)ΨN,l′(v)
]

ΨN,k(v)J(v)dσdv∗dv, ∀k ∈ {0, . . . , 2N − 1−M},

or

aN,k((p+ 1)∆t)− aN,k(p∆t)
∆t

∫
Rd

Φ2
N,kJdv (2.13)
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=
2N−1−M∑
l,l′=0

bN,l(p∆t)bN,l′(p∆t)

∫
R2d×Sd−1

B(|v − v∗|, σ)
[
ΦN,l(v

′
∗)ΦN,l′(v

′)

− ΦN,l(v∗)ΦN,l′(v)
]

ΦN,k(v)J(v)dσdv∗dv, ∀k ∈ {0, . . . , 2N − 1−M},

where ∆t is the time step length and p∆t is the time length.

2.3 Explicit Formulation in the case of Haar wavelet

In (2.12) and (2.13), we employ the Haar wavelet

H(y) =


1 for 0 ≤ y ≤ 1

2 ,

−1 for − 1
2 ≤ y ≤ 0,

0 otherwise .

(2.14)

Restrict our attention to the case d = 2 and γ = 0, the coeficients of (2.12)
and (2.13) could be computed explicitely.

Remark 2.1 Notice that for the case d = 3, we can also obtain an explicit
formulation for the coeficients of (2.15), but for γ = 1. The numerical
treatment of this case is the topic of a coming paper.

Compute the ’Gain’ Coefficients: By using Haar wavelet, we can com-
pute explicitely the coeficients∫

R2d×Sd−1

B(|v − v∗|, σ)ΦN,l(v
′
∗)ΦN,l′(v

′)ΦN,k(v)J(v)dσdv∗dv (2.15)

in (2.12) and (2.13). In order to compute these coefficients , it is enough to
approximate ∫

R2

Q(G,F )ϕJdv

where F = χA, G = χB, ϕ = χC being the characteristic functions of
A = [a1, a1]× [a2, a1], B = [b1, b1]× [b2, b2] and C = [c1, c1]× [c2, c2]. We do
the following approximation∫

R2

Q(G,F )ϕJdv = V (C)Q(G,F )(vC)J(vC), (2.16)

where V (C) = (c1− c1)(c2− c2) is the volume of C and vC =
(
c1+c1

2 ,
c2+c2

2

)
is the center of C.
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We will represent below an exact formulation for Q(G,F )(v). Recall Carle-
man’s representation

Q(G,F )(v) = 2

∫
R2

F (v′)
1

|v − v′|

∫
Ev,v′

G(v′∗)dv
′
∗dv
′,

where Ev,v is the hyperplane containing v and orthogonal to v − v′, then

Q(G,F )(v) = 2

∫
R2

χA(v′)
1

|v − v′|

∫
Ev,v′

χB(v′∗)dv
′
∗dv
′

= 2

∫
{v′∈A}

1

|v − v′|

∫
Ev,v′

χB(v′∗)dv
′
∗dv
′

= 2

∫
{w∈Av}

1

|w|

∫
Ev,v′

χB(v′∗)dv
′
∗dw,

where Av = [A1, A1]× [A2, A1] := [a1 − v1, a1 − v1]× [a2 − v2, a1 − v2]. By
definition, Ev,v′ = {v′∗|(v′∗ − v)(v − v′) = 0}, then

Q(G,F )(v) = 2

∫
{w∈Av}

1

|w|

∫
ω.w=0

χBv(ω)dωdw,

where Bv = [B1, B1]× [B2, B1] := [b1 − v1, b1 − v1]× [b2 − v2, b1 − v2].
It is well-known in classical geometry [1, 5, 28] that

Q(G,F )(v) = 2

∫
{w∈Av}

1

|w|

∫
ω.w=0

χBv(ω)dωdw (2.17)

=

∫
{w∈Av}

1

w1w2
(|w1B1 + w2B2|+ |w1B1 + w2B2|

−|w1B1 + w2B2| − |w1B1 + w2B2|)dw.

In order to evaluate (2.17), it is enough to employ the following formulas in
the code:∫ d

c

∫ b

a

|w1m+ w2n|
w1w2

dw1dw2 =

∫ md

mc

∫ nb

na

|w1 + w2|
w1w2

dw1dw2, (2.18)

for m.n 6= 0, a, b, c, d,m, n ∈ R and∫ d

c

∫ b

a

|w1 + w2|
w1w2

dw1dw2

= 2(|d + b|+ |c + a| − |c + b| − |d + a|) +
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+log|b|[(d− b)sign(d + b)− (c− b)sign(c + b)]

−log|a|[(d− a)sign(d + a)− (c− a)sign(c + a)]

+log|d|[(b− d)sign(d + b)− (a− d)sign(d + a)]

−log|c|[(b− c)sign(b + c)− (a− c)sign(a + c)], (2.19)

for ab > 0, cd > 0, a, b, c, d,m, n ∈ R.
Compute the ’Loss’ Coefficients: It is not so difficult to compute the
loss parts in (2.12) and (2.13).∫

R4×S
ΦN,l(v∗)ΦN,l′(v)ΦN,k(v)J(v)dσdv∗dv = 0,

for l′ 6= k and∫
R4×S

B(|v − v∗|, σ)ΦN,l(v∗)ΦN,k(v)ΦN,k(v)J(v)dσdv∗dv

= 2π‖ΦN,l‖L1(R2)‖ΦN,k

√
J‖2L2(R2).

3 Numerical Results

3.1 Test 1: Two Gaussian Initial Condition

We take b = b0 = 1
3π and the initial condition to be the sum of two Gaussian

f0(v1, v2) = 0.3e−10((v1−1/2)2+v22) + 0.3e−10((v1+1/2)2+v22). (3.1)

The expected equilibrium should be

0.15e−1.3(v21+v22).

We take 25 mesh points in each direction, corresponding to

−2.4343,−1.8531,−1.4410,−1.1333,−0.8947,−0.7043,−0.5487,−0.4191,

−0.3096,−0.2158,−0.1346,−0.0635, 0, 0.0635, 0.1346, 0.2158, 0.3096,

0.4191, 0.5487, 0.7043, 0.8947, 1.1333, 1.4410, 1.8531, 2.4343.

This mesh is adaptive: it is very fine around 0 and very coarse away from
0. The distance between the two last grid points is large 2.4343− 1.8531 =
0.5812. This is reasonable since the solution of the equation is mainly con-
centrated around (−1.4410, 1.4410). In this case, we filter the mesh and stop
the grids at the two points −2.4343 and 2.4343. However, we could stop the
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grids at further grid points with coarser meshes.
In Figure 1, we plot the solution f of the equation with respect to time
1, 14, 28,42, 56, 71. In Figure 2, we plot the values of f(t, v1, 0) in time
T = 1, 5, 10, 15, 20, 25. In both pictures the solution is positive and con-
verges to the equilibrium state.

3.2 Test 2: BKW solution

We take b = b0 = 1
6π and the initial condition to be

f0(v1, v2) =
v2

1 + v2
2

5π(π/5.5)2
e
− v21+v

2
2

(π/5.5)2 , (3.2)

and the exact solution of the homogeneous Boltzmann equation (1.1) is
known to be

f(t, v1, v2) =
1

10πS2

(
2S − 1 +

1− S
2S

v2
1 + v2

2

(π/5.5)2
e
− v21+v

2
2

2S(π/5.5)2

)
,

where
S(t) = 1− e−(π/5.5)2t/30/2.

We take 27 mesh points in each direction, corresponding to

−2.6364,−2.0210,−1.5846,−1.2588,−1.0062,−0.8045,

−0.6398,−0.5026,−0.3867,−0.2874,−0.2013,−0.1261,

−0.0597, 0, 0.0597, 0.1261, 0.2013, 0.2874,

0.3867, 0.5026, 0.6398, 0.8045, 1.0062, 1.2588,

1.5846, 2.0210, 2.6364.

Similar as in Test 1, it is very fine around 0 and very coarse away from 0. The
distance between the two last grid points is large 2.6364− 2.0210 = 0.6154.
Notice again that, we filter the mesh and stop the grids at the two points
−2.6364 and 2.6364; but we could stop the grids at further grid points with
coarser meshes.
In Figure 3, we plot the solution at time 1, 3 and 161. The numerical solu-
tion is positive and converges to the equilibrium. Figure 3d is the evolution
in time of the entropy, which is decreasing and tends to the steady state as
time goes to infinity.
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Figure 1: Test 1: Solution with respect to the initial data (3.1) at time 1,
14, 28,42, 56, 71
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Figure 2: Test 1: Solution with respect to the initial data (3.1) at time 1,
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13



The purpose of the simulations of Figure 4 is to compare the numerical so-
lution and the exact one given by the BKW formula. We plot the numerical
and exact values of f(t, v1, 0) when T = 1, 15, 30, 45, 60. The numerical val-
ues are denoted by triangles and the exact ones are lines. The numerical
and exact solutions are on top of each other, though the mesh is coarse. The
accuracy is O(10−6).
In the simulations of Figure 5, we compare the physical quantities of the
exact and computed solutions. Figure 5 is the evolution in time of the com-
puted mass, energy and momentum, in comparison with the exact quantities.
It is proved in the theoretical parts of our work (see [26]) that once the filter-
ing technique is applied, the computed mass and energy is decreasing. On
this picture, the those computed quantities could be seen to slightly decrease
in time. Postprocessing techniques like the ones introduced in [13, 14] could
potentially be combined with our method to prevent the loss of mass and
energy.

4 Conclusion

In this paper, we complete the third part of our work on the nonlinear
approximation theory for the homogeneous Boltzmann equation. We give an
explicit formulation and numerical simulations for our new adaptive spectral
technique to illustrate our theory developed in the first two parts of the work
[25, 26]. In the first numerical test, we consider an initial data which is the
sum of two Gaussian. In the second one, we compare the numerical solution
with the exact solution in the BKW case. In both cases, the numerical
solutions seem to provide good approximations of the exact solutions. The
complexity of the algorithm is N2, and acceleration of the method as well as
the treatment of more complicated collision kernels in higher dimensions is
the topic of our ongoing work. We are also trying to employ postprocessing
techniques like the ones introduced in [13, 14] to improve the performance
of our code.
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Figure 3: Test 2: Solution with respect to the initial data (3.2) at time 1,
30, 161 and evolution in time of the entropy
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[16] Stéphane Mischler. Convergence of discrete-velocity schemes for the
Boltzmann equation. Arch. Rational Mech. Anal., 140(1):53–77, 1997.
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