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Abstract

The current paper is the second part of our work on the nonlin-
ear approximation theory for the homogeneous Boltzmann equation.
In the first part, we introduced an adaptive wavelet spectral method
for the numerical resolution of the Boltzmann equation. A complete
convergence theory was provided and we also proved the approximate
solution is bounded from below by a Maxwellian. The third part is
devoted to the numerical study of the equation. This is part of the
work, we associate the adaptive spectral method associated with a
new wavelet filtering technique to preserve the some important prop-
erties of the solution: the propagation of polynomial and exponential
momentums.
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1 Introduction

The Boltzmann equation describes the behaviour of a dilute gas of particles
when the binary elastic collisions are the only interactions taken into ac-
count. In this work, we are interested in the space homogeneous Boltzmann
equation, which reads

∂f

∂t
= Q(f, f), v ∈ R3, (1.1)

where f := f(t, v) is the time-dependent particle distribution function for
the phase space. The Boltzmann collision operator Q is a quadratic operator
defined as

Q(f, f)(v) =

∫
Rd

∫
Sd−1

B(|v − v∗|, cos θ)(f ′∗f
′ − f∗f)dσdv∗, (1.2)

where f = f(v), f∗ = f(v∗), f
′ = f(v′), f ′∗ = f(v′∗) and{

v′ = v − 1
2(v − v∗ − |v − v∗|σ),

v′∗ = v − 1
2(v − v∗ + |v − v∗|σ),

with σ ∈ S2 and

cos θ =

〈
v − v∗
|v − v∗|, σ

〉
.
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We assume that
B(|u|, cos θ) = |u|γb(cos θ), (1.3)

where γ ∈ [0, 1] and b is a smooth function satisfying∫ π

0
b(cos θ) sin θdθ < +∞, (1.4)

and assumptions (2.1)-(2.2) in [21]

∃θb > 0 such that supp{b(cos θ)} ⊂ {θ | θb ≤ θ ≤ π − θb}. (1.5)

Under these assumptions, the collision operator could be split as

Q(f, f) = Q+(f, f)− L(f)f,

with

Q+(f, f) =

∫
R3

∫
S2
B(|v − v∗|, cos θ)f ′∗f

′dσdv∗

and

L(f) =

∫
R3

∫
S2
B(|v − v∗|, cos θ)f∗dσdv∗.

The main difficulty in the numerical resolution of the Boltzmann equation is
due to the multidimensional structure of the collision operator. One of the
main deterministic methods to resolve the Boltzmann equation numerically
is Discrete Velocity Models - DVMs, which was first initiated in the early
work of Carleman ([4], [3]). The DVMs were proved to be consistent ([22],
[8]), i.e. the discrete collision term could be seen as an approximation of the
real collision operator: and the approximate solutions are proved to con-
verge weakly to the solution of the main equation ([18], [23], [7]). However,
it is not easy to obtain an error estimate as well as the strong convergence
of the approximate solutions to the global solution. DVMs are also expen-
sive. Fourier Spectral Methods - FSMs is another well-known technique to
approximate the solution of the Botlzmann equation numerically. The idea
of the methods is to truncate the Boltzmann equation on the velocity space
and periodize the solution on the truncated domain. The methods were first
introduced in [25] developed in several works ([26], [20], [11], [20], [24], [9]).
The analysis of the methods was provided in [10].
The main problem with deterministic methods like DVMs and FSMs that
use a fixed discretization in the velocity space is that the velocity space is
approximated by a finite region. Physically, the velocity space is R3 and
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even if the initial condition is compactly supported, the collision operator
indeed spreads out the supports by a factor

√
2 (see [28]). Therefore in order

to use both DVMs and FSMs, we have to impose nonphysical conditions to
keep the supports of the solutions in the velocity space uniformly compact.
In our work, we introduce a new way to deal with the truncation problem:
in stead of truncating the computational domain from Rd into a bounded
domain (−R,R)d, we choose a change of variable mapping ϕ : Rd → (−1, 1)d

v → v̄ =
v

1 + |v|
.

and construct a nonlinear wavelet basis for (−R,R)d: Let {en} be a wavelet
on L2(−1, 1)d, then en(ϕ) will be our new wavelet basis on the entire space
Rd. The price that we need to pay after using this change of variable is the
Jacobian 1

(1+|v|)4 , a momentum of order −4, which goes naturally into the

physics of the equation. Using this new wavelet basis, we can construct an
adaptive wavelet spectral method to solve Boltzmann equation, the mesh
around the origin is very fine, while the mesh away from the origin is very
coarse. Theoretically, we know that the solution of the Boltzmann equation
is bounded from below and above by Gaussians ([28],[19],[12]), this partic-
ular mesh is adapted to the Boltzmann equation.
Our work is divided into three parts: In the first part [29], we proved that
the algorithm converges in the energy norm and the approximate solution is
also bounded from below by a Gaussian. The second part [30] is devoted to
the practical and numerical aspects of the theory. The current paper is the
second part of the work, in which we introduce the filtering technique and
how to preserve some important properties of the solutions: propagation
of exponential and polynomial moments. We first recall these quantitative
properties of the Boltzmann equation

• Production of polynomial moments (Povzner [27], Desvillettes
[6], Wennberg [31], Mischler and Wennberg [19]): if the initial condi-
tion f0 satisfies ∫

R3

f0(v)(1 + |v|2)dv < +∞,

then

∀s ≥ 2,∀t0 > 0, sup
t≥t0

∫
R3

f(t, v)(1 + |v|s) < +∞,

or

∀s ≥ 2, ∀t0 > 0, sup
t≥t0

∫
(−1,1)3

f(t, v̄)

(
1 +

∣∣∣∣ v̄

1− |v̄|

∣∣∣∣s) < +∞. (1.6)
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• Propagation of exponential moments (Bobylev, Gamba and Pan-
ferov [2], Gamba, Panferov and Villani [12], Alonso, Cañizo, Gamba
and Mouhot[1]): Assume that the initial data satisfies for some s ∈
[γ, 2] ∫

R3

f0(v) exp(a0|v|s)dv ≤ C0,

then there are some constants C, a > 0 such that∫
R3

f(t, v) exp(a|v|s)dv < C,

or ∫
(−1,1)3

f(t, v̄) exp

(
a

∣∣∣∣ v̄

1− |v̄|

∣∣∣∣s) dv̄ < C. (1.7)

Suppose that we approximate f by its truncated Fourier series

fN =

(N,N,N)∑
k1,k2,k3=(−N,−N,−N)

f̂k exp(iπk.v̄),

with

f̂k =
1

8

∫
(−1,1)3

f(v̄) exp(−iπk.v̄)dv̄.

We can see that the approximate solution fN will never satisfy the properties
that we mention above no matter how good f is. The reason is that all com-
ponents of the Fourier basis, i.e. the sin and cos functions are globally and
smoothly defined on the whole interval [−1, 1] and they encounter singular
problems at the extremes −1 and 1. This raises the need for a compactly
supported wavelet basis and a new filtering technique. The idea of the tech-
nique is simple: we remove compactly supported wavelets which contain the
singular points −1 and 1. After having a good orthogonal basis based on this
filtering technique, we can apply the normal spectral method to solve the
equation. This filtering technique looks like a truncation technique, however
it is more natural since we only need to remove some spectral components
and different from classical approximations, the support of our approximate
solutions spread to the whole space R3 gradually after each approximate
level N . Our filtering technique is inspired by Zuazua’s Fourier filtering
technique ([32] and [33]) used to preserve the propagation, observation and
control of waves.
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2 Reformulating the Boltzmann equation

Let us define the change of variables mapping

ϕ : R3 → (−1, 1)3,

ϕ(v) = (ϕ1(v1), ϕ2(v2), ϕ3(v3)) =

(
v1

1 + |v|
,

v2

1 + |v|
,

v3

1 + |v|

)
, (2.1)

where |v| = max{|v1|, |v2|, |v3|} with v = (v1, v2, v3) ∈ R3. The inverse
mapping ϕ−1 of ϕ is then

ϕ−1 : (−1, 1)3 → R3,

ϕ−1(v̄) = (ϕ1(v̄1), ϕ2(v̄2), ϕ3(v̄3)) =

(
v̄1

1− |v̄|
,

v̄2

1− |v̄|
,

v̄3

1− |v̄|

)
.

We define
g(t, v̄) = f(t, ϕ−1(v̄)),

where v̄ is the new variable in (−1, 1)3.
Since the Jacobian of the change of variable v̄ → v is 1

(1+|v|)4∫
(−1,1)3

|g(v̄)|p(1− |v̄|)−s−4dv̄ =

∫
R3

|f(v)|p(1 + |v|)sdv.

We now set

Lps = {f |
∫
R3

|f(v)|p(1 + |v|)spdv < +∞},

Lps = {f |
∫

(−1,1)3
|f(v̄)|p(1− |v̄|)−spdv̄ < +∞},

Lp(W ) = {f |
∫
R3

|f(v)|pW p(v)dv < +∞},

Lp(W ′) = {f |
∫

(−1,1)3
|f(v̄)|p(W ′(v̄))pdv̄ < +∞},

where p, s are real numbers and W , W ′ are some positive weights.
Moreover, we also need the usual notation

< v >=
√

1 + |v|2, ∀v ∈ R3.
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The Boltzmann equation for g is now

∂tg(t, x, v̄) +
v̄

1− |v̄|
∇xg(t, x, v̄) =

∫
(−1,1)3

∫
S2

B(|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ)

(1− |v̄∗|)4
(2.2)

×
[
g

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×g
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− g(v̄)g(v̄∗)

]
dσdv̄∗.

Now define
h(t, v̄) = g(t, v̄)(1− |v̄|)−4,

then the Boltzmann equation for h then reads

∂th(t, x, v̄) +
v̄

1− |v̄|
∇xh(t, x, v̄) =

∫
(−1,1)3

∫
S2
B(|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ)

×
[
C(v̄, v̄∗, σ)h

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(2.3)

×h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− h(v̄)h(v̄∗)

]
dσdv̄∗,

where

C(v̄, v̄∗, σ) =

[
1− ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

)]4

×
[
1− ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

)]4

×(1− |v̄|)−4(1− |v̄∗|)−4. (2.4)

Define
B(v̄, v̄∗, σ) = B(|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ), (2.5)

we get our second new formulation of the Boltzmann equation

∂th(t, x, v̄) +
v̄

1− |v̄|
∇xh(t, x, v̄) =

∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)h

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(2.6)

×h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− h(v̄)h(v̄∗)

]
dσdv̄∗.
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The corresponding initial datum is

h0(v̄) = (1− |v̄|)−4f0(ϕ−1(v̄)),

then ∫
(−1,1)3

h0(v̄)

(
1 +

|v̄|2

(1− |v̄|)2

)
dv̄ < +∞.

3 The adaptive spectral method

3.1 Wavelets for L2((−1, 1)3)

We first define a multiresolution analysis for L2((−1, 1)).

V per
0 ⊂ V per

−1 ⊂ V
per
−2 ⊂ · · · → L2(−1, 1)

with
W per

0 ⊕ V per
0 = V per

−1 . . .

and {φper0,0 } ∪ {ψ
per
j,k ; j ∈ −N, k = 0, . . . , 2|j| − 1} is an orthonormal basis of

L2(−1, 1).
Multiresolution analysis is a frame work developed by Mallat [13] and Meyer
[16], we refer to these two pioneering works or the books [5], [17] for more
details, examples and proofs.
Define by Sjκ the orthogonal project of a function κ in L1(−1, 1) onto Vj ,
due to [5, Section 9.3] we then have the following remarkable property, which
is not true with a Fourier basis

‖Sjκ‖L1(−1,1) ≤ CS‖κ‖L1(−1,1),

and for wavelets like Haar, we also have

‖Sjκ‖L∞(−1,1) ≤ CS‖κ‖L∞(−1,1),

where CS is a constant not depending on j and κ.
We now construct a multiresolution analysis for L2((−1, 1)3). Define

Ψper
j̄,k

(ȳ) = ψperj1,k1
(ȳ1)ψperj2,k2

(ȳ2)ψperj3,k3
(ȳ3),

and
Φper
j̄,k

(ȳ) = φperj1,k1(ȳ1)φperj2,k2(ȳ2)φperj3,k3(ȳ3),

where j̄ = (j1, j2, j3) ∈ (−N)3, k = (k1, k2, k3) ∈ {0, . . . , 2|j| − 1}3, ȳ =
(ȳ1, ȳ2, ȳ3) ∈ (−1, 1)3. Then {Φper

0,0 } ∪ {Ψ
per
j̄,k
} is an orthonormal basis of
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L2((−1, 1)3).
Set j ∈ −N and put

V|j| = {Φ|j|,k(ȳ) = Φper
(j,j,j),k(ȳ), k = (k1, k2, k3) ∈ {0, . . . , 2|j| − 1}3}.

then
∪|j|∈NV|j| = L2((−1, 1)3),

which is the ladder of multiresolution spaces for L2((−1, 1)3) we need.
Define by P|j|% the orthogonal project of a function % in L1((−1, 1)3) onto
V|j|, we also have the following properties

‖P|j|%‖L1((−1,1)3) ≤ CP ‖%‖L1((−1,1)3), (3.1)

and for wavelets like Haar, we also have

‖P|j|%‖L∞((−1,1)3) ≤ CP ‖%‖L∞((−1,1)3), (3.2)

where CP is a constant not depending on j or %.
Notice that since φ is a positive function, the following property is true

% ≥ 0⇒ P|j|% ≥ 0. (3.3)

3.2 The nonlinear approximation for the homogeneous Boltz-
mann equation

First of all, we define the concept of a filter.

Definition 3.1 Let ς be a function in VN , N ∈ N and

ς =

(2N−1,2N−1,2N−1)∑
k=(0,0,0)

ςN,kΦN,k,

where

ςN,k =

∫
(−1,1)3

ςΦN,kdv̄.

Set AN to be the set of indices {k = (k1, k2, k3) | 0 ≤ k1, k2, k3 ≤ 2N −1},
and suppose that BN is a subset of AN . Define

FN ς =
∑

k∈AN\BN

ςN,kΦN,k,
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then FN is called a filter for ς. In other words, a filter eliminates some com-
ponents when we write ς as a linear combination of the basis {ΦN,k}k∈AN of
VN .
Since our idea is to remove wavelets containing the extreme points of (−1, 1)3,
we suppose that after the filtering process, FN ς is supported in (−ζN , ζN )3

with 0 < ζN < 1 and FN1 is the characteristic function of (−ζN , ζN )3. No-
tice that if v̄ belongs to (−ζN , ζN )3, then v = ϕ−1(v̄) belongs to (− ζN

1−ζN ,
ζN

1−ζN )3.
For the sake of simplicity, we still denote

∑
k∈AN\BN

=
2N−1∑
k=0

. (3.4)

In this work, we only consider spectral methods for the homogeneous Boltz-
mann equation, which is written

∂f

∂t
= Q(f, f), v ∈ R3. (3.5)

After performing the change of variables, we get

∂th(t, v̄) =

∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)h

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(3.6)

×h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− h(v̄)h(v̄∗)

]
dσdv̄∗,

where B, C are defined in (2.4).
Let N be a positive integer and set

hN =

(
1 +

|v̄|2

(1− |v̄|)2

)−1

FNPN

((
1 +

|v̄|2

(1− |v̄|)2

)
h

)
,

where FN is a filter and PN is the orthogonal project onto the space VN .
Define

h̃N = FNPN

((
1 +

|v̄|2

(1− |v̄|)2

)
h

)
, PN = FNPN , η(v̄) =

(
1 +

|v̄|2

(1− |v̄|)2

)−1

.

then

∂th̃N (t, v̄)
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= QN (h̃N , h̃N ) = Q+
N (h̃N , h̃N )−Q−N (h̃N , h̃N )

:= PN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
η(v̄)−1C(v̄, v̄∗, σ)h̃N

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×h̃N

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
(3.7)

×η
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×η
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− h̃N (v̄)h̃N (v̄∗)η(v̄∗)

]
dσdv̄∗

}
,

or equivalently

∂thN (t, v̄)

= QN (h̃N , h̃N ) = Q+
N (h̃N , h̃N )−Q−N (h̃N , h̃N )

:= PN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(3.8)

×hN
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
,

where
PN (%) = ηPN (η−1%),

for some function %, and the initial condition is

h0N = PN (h0).

3.3 Assumptions on the multiresolution analysis and the fil-
ter

Assumption 3.1 (Energy preserving property) Define κ = η(v̄)−1PNχ(−1,1)3,
where χ(−1,1)3 is the characteristic function of (−1, 1)3. Set κ(v) = κ(ϕ(v)),
where ϕ is the change of variables mapping defined in (2.1). In order to
preserve the energy of the approximate solution, we impose the following
assumption on PN

κ(v′∗) + κ(v′)−κ(v)−κ(v∗) ≤ 0, ∀(v, v∗) ∈
(
− ζN

1− ζN
,

ζN
1− ζN

)6

. (3.9)
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Assumption 3.2 (Coercivity preserving property) Let N be a positive in-
teger and ϑ, ϑ′ be two positive functions in L2((−1, 1)3). Define

ϑN = PNϑ, and ϑN = PNϑ′.

Let s be a constant. We impose the following assumption on the multireso-
lution analysis and the filter FN : There exist constants N0, K1, K2, K3, K4

not depending on ϑ, ϑ′ such that

∀N > N0, K1(1− |v̄|)s ≥ PN ((1− |v̄|)s) ≥ K2(1− |v̄|)s on [−ζN , ζN ]3,

and K3ϑNϑ
′
N ≥ PN (ϑNϑ

′) ≥ K4ϑNϑ
′
N . (3.10)

We refer the readers to the first part of our work [29], in which more expli-
cations about the above two assumption are given.

4 Propagation of polynomial moments

In [6], [31], it is proved that the solution f of (3.5) satisfies the following
property

∀s > 0,∀t0 > 0, sup
t≥t0

∫
R3

f(t, v)(1 + |v|s)dv < +∞,

or equivalently

∀s > 0,∀t0 > 0, sup
t≥t0

∫
(−1,1)3

h(t, v̄)(1− |v̄|)−sdv̄ < +∞.

We will establish some conditions on the filter FN such that the above
property is satisfied with the solution hN of the approximate problem (3.8).
The idea of constructing FN is, again, to remove some components of the
wavelet representation which are close to the extreme points of (−1, 1)3, or
in other words, to restrict hN onto [−ζN , ζN ]3 with 0 < ζN < 1.

4.1 Assumption

First, we establish some properties on the filter FN .

Assumption 4.1 Let n be a positive integer, we suppose the following as-
sumption on the multiresolution analysis and the filter FN : There exists a
constant ε(N) such that

lim
N→∞

ε(N) = 0,
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and
‖PCN (η−n(v̄))‖L∞([−ζN ,ζN ]3) < ε(N),

where
PCN (η−n(v̄)) := η−n(v̄)− PN (η−n(v̄)).

We now point out an example which satisfies this assumption. Consider
again the Haar function in (??), (??), (??) and (??). According to the def-
inition of the filter FN , the approximate function PN (η−n(v̄)) is supported
in [−2−N (2k̂N + 1), 2−N (2k̂N + 1)]3.

Proposition 4.1 Let ∆ be some constant in (0, 1) and suppose that

k̂N =

[
∆2N − 1

2

]
,

where [∆2N−1
2 ] denotes the largest integer smaller than ∆2N−1

2 .
There exists a constant ε(N) such that

lim
N→∞

ε(N) = 0,

and
‖PCN (η−n(v̄))‖L∞([−2−N (2k̂N+1),2−N (2k̂N+1)]3) < ε(N).

Remark 4.1 This technique of wavelets filtering is inspired by the Fourier
filtering technique introduced in [32], [33], [14], [15]. In order to preserve
the propagation, observation and control of waves, Zuazua introduced a new
Fourier filter: Suppose that the solution u defined on (0, 1) could be written
under the form of Fourier series

u(x) =
∞∑
−∞

am exp(−2πmi),

and its approximation is

uN (x) =
N∑
−N

am exp(−2πmi).

Zuazua’s Fourier filter is defined by removing all of the indices m such that
|m| > [∆(N + 1)] where ∆ is a constant in (0, 1)

FNuN (x) =

[∆(N+1)]∑
−[∆(N+1)]

am exp(−2πmi).
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Proof Set

PN
[(

|v̄|2

(1− |v̄|)2

)n]
=

k̂N∑
k=−k̂N

dkΦN,k,

where

dk =

∫
(−1,1)3

(
|v̄|2

(1− |v̄|)2

)n
ΦN,kdv̄.

Suppose that

ΦN,k(v̄) = φper−N,k1(v̄1)φper−N,k2(v̄2)φper−N,k3(v̄3),

with |k1| ≥ |k2| ≥ |k3|. Hence, |v̄| = max{|v̄1|, |v̄2|, |v̄3|} ∈ [2−N (2|k1| −
1), 2−N (2|k1|+ 1)] if k1 6= 2N−1 and |v̄| ∈ [0, 2−N ] if k1 = 2N−1.
If k1 6= 2N−1 and |v̄| = max{|v̄1|, |v̄2|, |v̄3|} ∈ [2−N (2|k1|−1), 2−N (2|k1|+1)].∣∣∣∣PCN [( |v̄|2

(1− |v̄|)2

)n]∣∣∣∣ (4.1)

=

∣∣∣∣( |v̄|2

(1− |v̄|)2

)n
− dkΦN,k

∣∣∣∣
≤

∣∣∣∣∣
∣∣∣∣ 2−N (2|k1| − 1)

1− 2−N (2|k1| − 1)

∣∣∣∣2n − ∣∣∣∣ 2−N (2|k1|+ 1)

1− 2−N (2|k1|+ 1)

∣∣∣∣2n
∣∣∣∣∣

≤
∣∣∣∣ 2−N (2|k1| − 1)

1− 2−N (2|k1| − 1)
− 2−N (2|k1|+ 1)

1− 2−N (2|k1|+ 1)

∣∣∣∣
×

2n−1∑
i=0

∣∣∣∣ 2−N (2|k1| − 1)

1− 2−N (2|k1| − 1)

∣∣∣∣i ∣∣∣∣ 2−N (2|k1|+ 1)

1− 2−N (2|k1|+ 1)

∣∣∣∣2n−1−i

≤ 21−N

(1− 2−N (2|k1| − 1))(1− 2−N (2|k1|+ 1))

×
2n−1∑
i=0

∣∣∣∣ 2−N (2|k1| − 1)

1− 2−N (2|k1| − 1)

∣∣∣∣i ∣∣∣∣ 2−N (2|k1|+ 1)

1− 2−N (2|k1|+ 1)

∣∣∣∣2n−1−i

≤ 21−N
2n−1∑
i=0

|2−N (2|k1| − 1)|i

|1− 2−N (2|k1| − 1)|i+1

|2−N (2|k1|+ 1)|2n−1−i

|1− 2−N (2|k1|+ 1)|2n−i
.

Now consider the function

%(y) =
yj

(1− y)j+1
, y ∈ (0, 1),

14



for any positive integer j. Since

%′(y) =
jyj−1(1− y)j+1 + (j + 1)yj(1− y)j

(1− y)2j+2
> 0,

the function % is increasing. Apply this into (4.1), we get∣∣∣∣PCN [( |v̄|2

(1− |v̄|)2

)n]∣∣∣∣
≤ 21−N

2n−1∑
i=0

|2−N (2k̂N + 1)|i

|1− 2−N (2k̂N + 1)|i+1

|2−N (2k̂N + 1)|2n−1−i

|1− 2−N (2k̂N + 1)|2n−i

≤ 21−N2n
|2−N (2k̂N + 1)|2n−1

|1− 2−N (2k̂N + 1)|2n+1
(4.2)

≤ 21−N2n
∆2n−1

|1−∆|2n+1
.

If k1 = 2N−1 and |v̄| ∈ [0, 2−N ].∣∣∣∣PCN [( |v̄|2

(1− |v̄|)2

)n]∣∣∣∣
=

∣∣∣∣( |v̄|2

(1− |v̄|)2

)n
− PN

[(
|v̄|2

(1− |v̄|)2

)n]∣∣∣∣ (4.3)

≤
∣∣∣∣ 2−N

1− 2−N

∣∣∣∣2n .
The conclusion of the proposition follows from (4.2) and (4.3).

4.2 Propagation of polynomial moments

Theorem 4.1 Assuming assumptions 3.1, 3.2, 4.1 on the multiresolution
analysis and the filter, then we get the following propagation of polynomial
moments property

∀s > 0, ∀t0 > 0, ∃N0, such that sup
t≥t0,N>N0

∫
(−1,1)3

hN (t, v̄)(1−|v̄|)−sdv̄ < +∞.

(4.4)
If ∫

(−1,1)3
h0(t, v̄)(1− |v̄|)−sdv̄ < +∞,

then t0 could be chosen to be 0.
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Remark 4.2 Using theorem 4.1, by the same argument as theorem 4.2, [29],
we can have the following property

∀s > 0, ∀t0 > 0, ∃N0, s.t. sup
t≥t0,N>N0

∫
(−1,1)3

|hN (t, v̄)|2(1−|v̄|)−s+4dv̄ < +∞.

(4.5)
Moreover, by theorem 4.1, we can expect that

sup
t∈[0,T ]

lim
N→∞

‖hN (t)− h(t)‖L1s = 0,∀T ∈ R,

if h0 ∈ L1
s.

Proof We only prove the theorem for integer values of s, s > 1, the non-
integer cases could be deduced directly from the integer cases by classical
interpolation arguments. First, we observe that f0N are uniformly bounded
with respect to N in L1

s if f0 belongs to L1
s. We prove the theorem in two

steps.
Step 1: Transforming (3.7).
We recall (3.7)

∂thN (t, v̄)

= ηPN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(4.6)

×hN
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
,

and use η−s (s ∈ N) as a test function for (4.6) to obtain∫
(−1,1)3

∂thN (t, v̄)η−sdv̄

=

∫
(−1,1)3

η1−sPN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
dv̄
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=

∫
(−1,1)3

PN [η1−s]

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
dv̄

=

∫
(−1,1)6×S2

B(v̄, v̄∗, σ)η−s

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗dv̄

−
∫

(−1,1)3
PCN [η1−s]

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1 (4.7)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))]
dσdv̄∗

}
dv̄

+

∫
(−1,1)3

PCN [η1−s]

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1hN (v̄)hN (v̄∗)dσdv̄∗

}
dv̄.

Now, consider the second term on the right hand side of (4.7), we have

−
∫

(−1,1)3
PCN [η1−s]

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))]
dσdv̄∗

}
dv̄

= −
∫

(−1,1)3
PCN [η1−s]χ(−ζN ,ζN )3

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))]
dσdv̄∗

}
dv̄
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−
∫

(−1,1)3
η1−sχR3\(−ζN ,ζN )3

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1 (4.8)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))]
dσdv̄∗

}
dv̄

≤ −
∫

(−1,1)3
PCN [η1−s]χ(−ζN ,ζN )3

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))]
dσdv̄∗

}
dv̄

≤ ε(N)

∫
(−1,1)6×S2

B(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))]
dσdv̄∗dv̄,

where we use that fact

PCN [η1−s]χR3\(−ζN ,ζN )3 = (Id−PN )[η1−s]χR3\(−ζN ,ζN )3 = η1−sχR3\(−ζN ,ζN )3 ,

since PN [η1−s] is supported in (−ζN , ζN )3, after that assumption 4.1 is ap-
plied to get the final inequality.
According to assumption 4.1, the third term on the right hand side of (4.7)
could be bounded in the following way∫

(−1,1)3
PCN [η1−s]

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1hN (v̄)hN (v̄∗)dσdv̄∗

}
dv̄

≤
∫

(−1,1)6×S2
ε(N)η−1B(v̄, v̄∗, σ)hN (v̄)hN (v̄∗)dσdv̄∗dv̄, (4.9)

with the notice that since hN (v̄) is supported in (−ζN , ζN )3, we can suppose
that η1−s(v̄) is supported in (−ζN , ζN )3 as well and hence assumption 4.1 is
applicable.
We use again the change of variables mapping ϕ to define

fN (v) = hN (ϕ(v))(1 + |v|)−4.
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Inequalities (4.7), (4.8) and (4.9) lead to∫
R3

∂tfN |v|2sdv (4.10)

≤
∫
R6×S2

B(|v − v∗|, σ)[f ′N∗f
′
N − fN∗fN ]|v|2sdσdv∗dv

+ε(N)

∫
R6×S2

B(|v − v∗|, σ)[f ′N∗f
′
N + fN∗fN ]|v|2dσdv∗dv

≤
∫
R6×S2

B(|v − v∗|, σ)[f ′N∗f
′
N − fN∗fN ](|v|2s + ε(N)|v|2)dσdv∗dv

+2ε(N)

∫
R6×S2

B(|v − v∗|, σ)fN∗fN |v|2dσdv∗dv

≤ 1

2

∫
R6×S2

B(|v − v∗|, σ)fN∗fN (|v′∗|2s + |v′|2s − |v∗|2s − |v|2s)dσdv∗dv

+2ε(N)

∫
R6×S2

B(|v − v∗|, σ)fN∗fN |v|2dσdv∗dv,

where the last inequality follows from the usual change of variables (v, v∗)→
(v′, v′∗).
Step 2: Using Povzner’s inequality.
By Povzner’s inequality (Theorem 4.1 [31]), we get from (4.10) that∫

R3

∂tfN |v|2sdv ≤ C

∫
R6

fN∗fN |v∗|2s−1|v||v − v∗|γdv∗dv (4.11)

−C
∫
R6

fN∗fN (|v∗|2s + |v|2s)|v − v∗|γdv∗dv

+Cε(N)

∫
R6

fN∗fN |v|2|v − v∗|γdv∗dv.

Since

|v∗|2s−1|v||v − v∗|γ ≤ |v∗|2s−1|v|(1 + |v|+ |v∗|) ≤ (1 + |v∗|2s)(1 + |v|2),

the first term on the right hand side of (4.11) could be bounded by

C

(
1 +

∫
R3

fN |v|2sdv
)
. (4.12)

We estimate the second term on the right hand side of (4.11)∫
R6×S2

fN∗fN |v∗|2s|v − v∗|γdσdv∗dv
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≥ C

∫
R3

fN |v|2s+γ ≥ C
(
fN |v|2s

) 2s+γ
2s , (4.13)

with the notice that the results of lemma ?? still hold with λ =∞.
We now estimate the third term on the right hand side of (4.11)

Cε(N)

∫
R6

fN∗fN |v|2|v − v∗|γdv∗dv ≤ Cε(N)

∫
R3

fN (Cε + ε|v|2+γ)dv(4.14)

≤ Cε(N)

∫
R3

fN (Cε + ε|v|2s+γ)dv.

where the inequality follows from the fact that the energy of fN is uniformly
bounded with respect to N and Young’s inequality with a small positive
constant ε, with the notice that s > 1. Combine (4.11), (4.12), (4.13) and
(4.14) with the assumption that N is sufficiently large or ε(N) is sufficiently
small we get∫

R3

∂tfN |v|2sdv ≤ C
(∫

R3

fN |v|2sdv + 1

)
− C

(∫
R3

fN |v|2sdv
)1+ γ

2s

.(4.15)

Define

Y (t) =

∫
R3

fN |v|2sdv,

inequality (4.15) becomes

dY

dt
≤ C(Y + 1)− CY 1+ γ

2s .

Proceed similarly as the classical case [31], we get the conclusion of the the-
orem.

5 Propagation of exponential moments

In [1] and [12], it is proved that the solution of the homogeneous Boltzmann
equation is bounded from above by a Maxwellian. Let us recall theorem 2
[1].
Theorem 2 [1] (Propagation of exponential moments)
Let f be an energy-conserving solution to the homogeneous Boltzmann equa-
tion (3.5) on [0,+∞) with initial data f0 ∈ L1

2. Assume moreover that the
initial data satisfies for some s ∈ [γ, 2]∫

R3

f0(v)(a0|v|s)dv ≤ C0. (5.1)

20



Then there are some constants C, a > 0 which depend only on b, γ and the
initial mass, energy and a0, C0 in (5.1) such that∫

R3

f(t, v) exp(a|v|s)dv < C. (5.2)

Our task in this section is to preserve this property at the numerical level∫
(−1,1)3

hN (t, v̄) exp

(
a

(
|v̄|

1− |v̄|

)s)
dv̄ < C, (5.3)

or if we use the fN formulation

fN (v) = hN (ϕ(v))(1 + |v|)−4,

we should have ∫
R3

fN (t, v) exp(a|v|s)dv < C. (5.4)

5.1 Assumption

Since ∫
R3

f0 exp(a0|v|s)dv ≤ C0,

we have ∫
(−1,1)3

h0 exp

(
a

(
|v̄|

1− |v̄|

)s)
dv̄ < C0.

Therefore, we need the following property as well for each initial datum of
the approximate equation (3.8)∫

(−1,1)3
ηPN [h0η

−1] exp

(
a

(
|v̄|

1− |v̄|

)s)
dv̄ < C,

or equivalently∫
(−1,1)3

h0η
−1PN

[
η exp

(
a

(
|v̄|

1− |v̄|

)s)]
dv̄ < C. (5.5)

In order to have (5.5) we establish some further properties on the multireso-
lution analysis and the filter FN (notice that we always assume assumptions
3.1, 3.2, 4.1 are satisfied).
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Assumption 5.1 Let q, a be positive constants. We impose the following
assumption on the multiresolution analysis and the filter FN : There exist
constants N0, K̄, such that

∀N > N0,PN [η exp(aηq)] ≤ K̄η exp(aηq). (5.6)

A consequence of this assumption is that (5.5) follows directly from (5.1).
We will point out an example which satisfies this assumption. Consider again
the Haar function in (??), (??), (??) and (??). According to the definition
of the filter FN , the approximate function PN [η exp(aηq)] is supported in
[−2−N (2k̂N + 1), 2−N (2k̂N + 1)]3.

Proposition 5.1 Let ∆ be some constant in (1/2, 1) and suppose that

k̂N =

[
∆2N − 1

2

]
,

where [∆2N−1
2 ] denotes the largest integer smaller than ∆2N−1

2 .
There exist constants N0, K̄, such that

∀N > N0,PN [η exp(aηq)] ≤ K̄η exp(aηq).

Proof Set

PN [η exp(aηq)] =

k̂N∑
k=−k̂N

dkΦN,k,

where

dk =

∫
(−1,1)3

η exp(aηq)ΦN,kdv̄.

Suppose that

ΦN,k(v̄) = φper−N,k1(v̄1)φper−N,k2(v̄2)φper−N,k3(v̄3),

with k = (k1, k2, k3) and |k1| ≥ |k2| ≥ |k3|. Hence, |v̄| = max{|v̄1|, |v̄2|, |v̄3|} ∈
[2−N (2|k1|−1), 2−N (2|k1|+ 1)] if k1 6= 2N−1 and |v̄| ∈ [0, 2−N ] if k1 = 2N−1.
If k1 6= 2N−1 and |v̄| = max{|v̄1|, |v̄2|, |v̄3|} ∈ [2−N (2|k1|−1), 2−N (2|k1|+1)].

dkΦN,k(v̄)(
1 + |v̄|2

(1−|v̄|)2

)−1
exp

(
a
(
|v̄|2

(1−|v̄|)2

)q) (5.7)

≤
1 + (2−N (2|k1|+1))2

(1−2−N (2|k1|+1))2

1 + (2−N (2|k1|−1))2

(1−2−N (2|k1|−1))2

[
exp

(
a

(
(2−N (2|k1|+ 1))2

(1− 2−N (2|k1|+ 1))2

)q)
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− exp

(
a

(
(2−N (2|k1| − 1))2

(1− 2−N (2|k1| − 1))2

)q)]

≤
1 + (2−N (2|k1|+1))2

(1−2−N (2|k1|+1))2

1 + (2−N (2|k1|−1))2

(1−2−N (2|k1|−1))2

[
2 exp

(
a

(
∆

1−∆

)2q
)]
≤ C,

where the second inequality follows from a similar argument as proposition
4.1.
If k1 = 2N−1 and |v̄| ∈ [0, 2−N ].

dkΦN,k(v̄)(
1 + |v̄|2

(1−|v̄|)2

)−1
exp

(
a
(
|v̄|2

(1−|v̄|)2

)q) (5.8)

≤
(

1 +
|2−N |2

(1− 2−N )2

)
exp

(
a

(
|2−N |2

(1− 2−N )2

)q)
≤ C.

The two inequalities (5.7) and (5.8) imply the conclusion of the proposition.

5.2 Propagation of exponential moments

Theorem 5.1 Assume that the assumptions 3.1, 3.2, 4.1, 5.1 are all satis-
fied. Assume moreover that the initial data satisfies for some s ∈ [γ, 1]∫

R3

f0(v)(a0|v|s)dv ≤ C0. (5.9)

Then there are some constants C, a,N0 > 0 which depend only on the equa-
tion, the initial mass, momentum energy and a0, C0 in (5.1) such that∫

(−1,1)3
hN (t, v̄) exp

(
a

(
|v̄|

1− |v̄|

)s)
dv̄ < C, ∀N > N0. (5.10)

Proof We define

mN
p (t) =

∫
R3

fN (t, v)|v|pdv, p ∈ R+. (5.11)

We now prove the theorem in two steps.
Step 1: Estimate mN

sp, with 0 < s ≤ 1 and p ≥ 2/s.
A similar argument as theorem 4.1 gives∫

R3

∂tfN |v|sp
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≤
∫
R6×S2

|v − v∗|γb(cos θ)fN∗fN [|v′∗|sp + |v′|sp − |v∗|sp − |v|sp]dσdv∗dv

+2ε(N)

∫
R6

|v − v∗|γb(cos θ)fN∗fN |v|2dσdv∗dv. (5.12)

We recall the sharp Povzner Lemma (Lemma 3 [1]) for q ≥ 1∫
S2

(|v′|2q + |v′∗|2q)b(cos θ)dσ ≤ γq(|v|2 + |v∗|2)q, (5.13)

where γq are positive constants satisfying q → γq is strictly decreasing and
tends to 0 as q →∞.
Apply (5.13) to (5.12), we get

d

dt
mN
sp ≤ γ sp

2

∫
R6

fNfN∗

[
(|v|2 + |v∗|2)

sp
2 − |v|sp − |v∗|sp

]
|v − v∗|γdv∗dv

−2
(

1− γ sp
2

)∫
R6

fNfN∗|v|sp|v − v∗|γdv∗dv (5.14)

+2ε(N)

∫
R6×S2

|v − v∗|γfN∗fN |v|2dv∗dv,

with the normalized assumption∫
S2
b(cos θ)dσ = 1.

By the inequalities

(|v|2 + |v∗|2)
sp
2 ≤ (|v|s + |v∗|s)p, for 0 < s ≤ 1,

and

[ p+1
2 ]−1∑
k=1

Ckp (akbp−k+ap−kbk) ≤ (a+b)p−ap−bp ≤
[ p+1

2 ]∑
k=1

Ckp (akbp−k+ap−kbk),

(see Lemma 2 in [2]), we can bound the first term on the right hand side of
(5.14)

γ sp
2

∫
R6

fNfN∗

[
(|v|2 + |v∗|2)

sp
2 − |v|sp − |v∗|sp

]
|v − v∗|γdv∗dv

≤ 2γ sp
2

[ p+1
2 ]∑

k=1

Ckp (mN
sk+γm

N
s(p−k) +mN

skm
N
s(p−k)+γ). (5.15)
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We then define

Ss,p :=

[ p+1
2 ]∑

k=1

Ckp (mN
sk+γm

N
s(p−k) +mN

skm
N
s(p−k)+γ).

The second term could be bounded from below by

2
(

1− γ sp
2

)∫
R6

fNfN∗|v|sp|v − v∗|γ ≥ 2
(

1− γ sp
2

)
C̄γ [mN

sp+γ + C], (5.16)

where C̄γ depends on γ and the initial data and we use lemma ??, with the
assumption that N is sufficiently large.
We can also estimate the third term

2ε(N)

∫
R6×S2

|v − v∗|γb(cos θ)fN∗fN |v|2dv∗dv ≤ 2Cε(N)[mN
γ+2 + C].(5.17)

Combine (5.14), (5.15), (5.16) and (5.17), with the assumption that ε(N) is
small enough, we get

d

dt
mN
sp ≤ 2γ sp

2
Ss,p − 2

(
1− γ sp

2

)
C̄γm

N
sp+γ + 2Cε(N)mN

γ+2. (5.18)

Step 2: Reduce the problem to the classical case of [1].
We define

Ems (t, z) :=
m∑
p=0

mN
sp(t)

zp

p!
,

and

Ims,γ(t, z) :=
m∑
p=0

mN
sp+γ(t)

zp

p!
.

Let s be in [γ, 1] and p0 >
2
s . We reuse (5.18) with a < min{1, a0} to get

d

dt

m∑
p=p0

msp
ap

p!
≤

m∑
p=p0

ap

p!
(2γ γp

2
Sγ,p − 2C̄γ

(
1− γ sp

2

)
mN
sp+γ + 2Cε(N)mN

γ+2)

≤
m∑

p=p0

ap

p!
2γ sp

2
Ss,p −K1I

m
s,γ +K1

p0−1∑
p=0

mN
sp+γ

ap

p!

+

(
m∑

p=p0

ap

p!

)
K2ε(N)mN

γ+2
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≤
m∑

p=p0

ap

p!
2γ sp

2
Ss,p −K1I

m
s,γ +K1

p0−1∑
p=0

mN
sp+γ

ap

p!
(5.19)

+

(
m∑

p=p0

ap

p!

)
K2ε(N)(C(ε)mN

γ + εmN
sp0+γ)

≤
m∑

p=p0

ap

p!
2γ sp

2
Sγ,p −K3I

n
s,γ +K4

p0−1∑
p=0

mN
sp+γ

ap

p!
,

where in the third inequality, we use Young’s inequality

mN
γ+2 ≤ C(ε)mN

γ + εmN
sp0+γ ,

in the fourth inequality, we suppose that N is sufficiently large, such that K1

could absorb the constants of the last term. Once we have (5.19) the proof
could be proceeded in exactly the same way as the proof of the classical case
(Theorem 2 [1]).

6 Conclusion

In this paper, we complete the second part of our work on the nonlinear
approximation theory for the homogeneous Boltzmann equation. We intro-
duce and then prove that our filtering technique preserves some important
properties of the solution of the Boltzmann equation: the propagation of
polynomial and exponential momentums. Our results are the complement
of the theory introduced in [29], in which we prove that the approximate
converges strongly to the exact solution [30] and the approximate is also
bounded from below by a Maxwellian. In the third part of the work [30],
we will give a formulation of the algorithm in the concrete case of the Haar
wavelet and provide numerical tests to confirm the theoretical results.
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