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Abstract

A challenging problem in solving the Boltzmann equation numerically is that the
velocity space is approximated by a finite region. Therefore, most methods are based
on a truncation technique and the computational cost is then very high if the velocity
domain is large. Moreover, sometimes, non-physical conditions have to be imposed
on the equation in order to keep the velocity domain bounded. The current paper is
the first part of our work on the nonlinear approximation theory for the homogeneous
Boltzmann equation. In this part, we introduced an adaptive, non-truncated wavelet
spectral method for the numerical resolution of the equation. An complete convergence
theory is provided.
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1 Introduction

The Boltzmann equation describes the behaviour of a dilute gas of particles when the binary
elastic collisions are the only interactions taken into account. In this work, we are interested
in the space homogeneous Boltzmann equation, which reads

∂f

∂t
= Q(f, f), v ∈ R3, (1.1)

where f := f(t, v) is the time-dependent particle distribution function for the phase space.
The Boltzmann collision operator Q is a quadratic operator defined as

Q(f, f)(v) =

∫
Rd

∫
Sd−1

B(|v − v∗|, cos θ)(f ′∗f
′ − f∗f)dσdv∗, (1.2)

where f = f(v), f∗ = f(v∗), f
′ = f(v′), f ′∗ = f(v′∗) and{
v′ = v − 1

2(v − v∗ − |v − v∗|σ),

v′∗ = v − 1
2(v − v∗ + |v − v∗|σ),
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with σ ∈ S2 and

cos θ =

〈
v − v∗
|v − v∗|

, σ

〉
.

We assume that
B(|u|, cos θ) = |u|γb(cos θ), (1.3)

where γ ∈ [0, 1] and b is a smooth function satisfying∫ π

0
b(cos θ) sin θdθ < +∞, (1.4)

and assumptions (2.1)-(2.2) in [48]

∃θb > 0 such that supp{b(cos θ)} ⊂ {θ | θb ≤ θ ≤ π − θb}. (1.5)

Under these assumptions, the collision operator could be split as

Q(f, f) = Q+(f, f)− L(f)f,

with

Q+(f, f) =

∫
R3

∫
S2
B(|v − v∗|, cos θ)f ′∗f

′dσdv∗

and

L(f) =

∫
R3

∫
S2
B(|v − v∗|, cos θ)f∗dσdv∗.

Numerical resolution methods for the Boltzmann equation plays a very important role in
the practical and theoretical study of the theory of rarefied gas. The main difficulty in the
approximation of the Boltzmann equation is due to the multidimensional structure of the
Boltzmann collision operator.
After the early work of Carleman ([11, 10]), Discrete Velocity Models - DVMs has been
developed as a class of deterministic algorithms to resolve the Boltzmann equation numer-
ically ([60, 7, 8, 5, 57, 6, 49, 9, 37]). They are based on a Cartesian grid in velocity and
a discrete collision operator, which is a nonlinear system of conservation laws. In order
to guarantee the convergence, the mesh size needs to be small and the truncated domain
needs to be large. DVMs are then expensive. The models were proved to be consistent
([50, 28]), i.e. the discrete collision term could be seen as an approximation of the real
collision operator. In [44, 51, 21] the approximate solutions are proved to converge weakly
to the solution of the main equation by DiPerna-Lions theory ([24]). However, it is not easy
to obtain an accuracy estimate of errors between the approximate solutions and the global
solution on the entire non-truncated space.
The second deterministic approximation is the Fourier Spectral Methods - FSMs, which
were first introduced in [53] inspired by spectral methods in fluid mechanics. The methods
were later developed in several works, where a new way of accelerating the algorithms was
also introduced ([54, 46, 56, 32, 47, 32, 46, 55, 52, 29, 33, 30, 39]). The analysis of the meth-
ods was provided in [31]. The idea of the methods is to truncate the Boltzmann equation
on the velocity space and periodize the solution on this new bounded domain. To illustrate
this idea, we consider the equation

∂f

∂t
= QR(f, f), (x, v, t) ∈ Ω× (−R,R)3 × R, (1.6)
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where QR is the truncated collision operator and f is periodic on (−R,R)3. Since f is
periodic on (−R,R)3, we can write an approximation fN of f in terms of Fourier series

fN =

(N,N,N)∑
k=−(N,N,N)

f̂k exp
(
−i π
R
k.v
)
,

which leads to a system of ODEs

∂tfN = PNQ
R(fN , fN ).

The major problem with deterministic methods like DVMs and FSMs that use a fixed
discretization in the velocity space is that the velocity space is approximated by a finite
region. Physically, the velocity space is R3 and even if the initial condition is compactly
supported, the collision operator does not preserve this property. The collision operator
indeed spreads out the supports by a factor

√
2 (see [59]). Therefore in order to use both

DVMs and FSMs, we have to impose nonphysical conditions to keep the supports of the
solutions in the velocity space uniformly compact. For DVMs, we have to remove binary
collisions which spread outside the bounded velocity space. This truncation breaks down
the convolution structure of the collision operators. For FSMs, the convolution structure is
perfectly preserved however we need to add nonphysical binary collisions by a periodized
process. Notice that in [35], [36], Gamba and Tharkabhushanam proposed another class of
FSMs, called Spectral-Lagrangian Methods (SLMs), to preserve the conservation of mass,
momentum and energy on the numerical schemes. The method works very well and pre-
serves several important properties of the solutions.
In order to be able to construct numerical schemes, it is natural that we require the compu-
tation domain to be bounded. The main idea of our new adaptive wavelet spectral method
is the following: Consider the following change of variables ϕ from R3 to (−1, 1)3

v → v̄ =
v

1 + |v|
.

Apply this change of variables to the Boltzmann equation, we get a new formulation where
the equation is considered on a bounded domain. The price that we need to pay after using
this change of variable is its Jacobian, which is 1

(1+|v|)4 . Notice that (
√

1 + |v|2)−4 is the

momentum with order −4, which goes naturally into the physics of the equation. This new
formulation of the Boltzmann equation is discussed in details in Section 2.
After having an equation on a bounded domain through a change of variables technique,
we can construct a spectral algorithm similar as in [53]. However, different from [53], we do
not use Fourier basis. We recall some quantitative properties of the Boltzmann equation
that we want to preserve on the numerical schemes. Notice that these properties could not
be preserved with previous strategies.

• Maxwellian lower bounds ([11, 59]): if the initial condition f0 satisfies∫
R3

f0(v)(1 + |v|2)dv < +∞,

then

∀t0 > 0,∃K0 > 0,∃A0 > 0; t ≥ t0 =⇒ ∀v ∈ R3, f(t, v) ≥ K0 exp(−A0|v|2), (1.7)
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or

∀t0 > 0,∃K0 > 0, ∃A0 > 0; t ≥ t0 =⇒ ∀v̄ ∈ (−1, 1)3, f(t, v̄) ≥ K0 exp

(
−A0

∣∣∣∣ v̄

1− |v̄|

∣∣∣∣2
)
.

• Production of polynomial moments ([58, 20, 64, 45]): if the initial condition f0

satisfies ∫
R3

f0(v)(1 + |v|2)dv < +∞,

then

∀s ≥ 2, ∀t0 > 0, sup
t≥t0

∫
R3

f(t, v)(1 + |v|s) < +∞. (1.8)

• Propagation of exponential moments ([4, 34, 1]): Assume that the initial data
satisfies for some s ∈ [γ, 2] ∫

R3

f0(v) exp(a0|v|s)dv ≤ C0,

then there are some constants C, a > 0 such that∫
R3

f(t, v) exp(a|v|s)dv < C. (1.9)

Suppose that we approximate f by its truncated Fourier series

fN =

(N,N,N)∑
k1,k2,k3=(−N,−N,−N)

f̂k exp(iπk.v̄),

with

f̂k =
1

8

∫
(−1,1)3

f(v̄) exp(−iπk.v̄)dv̄.

We can see that the approximate solution fN will not satisfy the properties that we mention
above. The reason is that all components of the Fourier basis, i.e. the sin and cos functions
are globally and smoothly defined on the whole interval [−1, 1] and they encounter singular
problems at the extremes −1 and 1. This raises the need for a compactly supported wavelet
basis and a wavelet filtering technique. In this paper, we only focus on the preservation of
the Maxwellian lower bound. The wavelet filtering technique, whose role is to preserve the
propagation of polynomial and exponential moments, will be presented in the second part
of our work [61].
We preserve the good properties of both DVMs and FSMs: we are able to keep the convo-
lution structure of the collision operators and do not have to impose a periodic boundary
condition on the equation. The wavelet basis and the spectral method will be presented in
section 3. More precisely, our spectral equation is defined in (3.12).
In order to understand better the mechanism of our nonlinear, adaptive spectral method,
we now provide a different point of view based on Nonlinear Approximation Theory ([22,
19, 23]). The fundamental problem of approximation theory is to resolve a complicated
function, by simpler, easier to compute functions called ”the approximants”. The main
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idea of nonlinear approximation is that the approximants do not come from linear spaces
but rather from nonlinear manifolds. An important application of nonlinear approximation
is the adaptive finite element methods for elliptic equations originated in [3] and developed
in [14, 13, 16]. These methods are based on the idea that fine meshes are put where the
solutions are ’bad’ and coarse meshes are set where the solutions are ’good’. Coming back
to the Boltzmann equation, suppose that we use the Haar wavelet to solve the Boltzmann
equation with the new variable v̄ on (−1, 1)3. As we see later from (3.16) and (3.17), solv-
ing the Boltzmann equation with v̄ on (−1, 1)3 means that we need construct a mesh by
dividing (−1, 1)3 into 23N small cubes. To explain better our idea, suppose that we are in
one dimension and we need to approximate the solution in a space spanned by the following
orthogonal basis{

φN,k(v̄) = χ(2−N (2k−1),2−N (2k+1)) for k = 0,±1, . . . ,±(2N−1 − 1),

φN,2N−1(v̄) = χ(−1,−1+2−N )∪(1−2−N ,1).

Let us make the change of variable v̄ → v = v̄
1−|v̄| .

φN,k(v) = χ(
min

{
2k−1

2N−|2k−1|
, 2k+1

2N−|2k+1|

}
,max

{
2k−1

2N−|2k−1|
, 2k+1

2N−|2k+1|

}) for k = 0,±1, . . . ,±(2N−1 − 1),

φN,2N−1(v) = χ(−∞,2N−1)∪(2N−1,+∞).

We can see that solving the Boltzmann equation in v̄ on a uniform mesh in (−1, 1) is
equivalent with solving the Boltzmann equation in v on a non-uniform mesh in R. In other
words, the role of the change of variables v → v̄ is to construct a new non-uniform mesh to
approximate the Boltzmann equation. The non-uniform mesh has the following interesting
property: the larger |v| is the coarser the mesh is, and the smaller |v| is the finer the mesh
is. This is crucial, since properties (1.7), (1.8) and (1.9) play the role of a preconditioning
analysis in our nonlinear approximation theory: the solution f of the Boltzmann equation
behaves like a Maxwellian as |v| large, which means that if |v| is large, we only need a
coarse mesh to represent the value of f . This is also the main difference between our
approximation and classical ones. We can see from the spectral equations (3.12) and (3.13)
that the mapping ϕ has a ”support-stretching” effect: it maps the wavelet basis {ΦN,k}
supported in (−1, 1)3 to a new ”nonlinear basis” {ΦN,k(ϕ)} supported in the whole space,
which are ”the approximants” of our nonlinear approximation. Our method therefore gives
a general frame work for solving kinetic integral equations (for example, the coagulation
models [26], the quantum Boltzmann equations [27]) numerically: Suppose that we need to
solve the following problem

∂tf(t, v) = Q(f, f)(t, v), on (0, T )× R3,

f(0, v) = f0(v) on R3,

where Q is some bilinear form. We approximate f as

fN (v) =

(N,N,N)∑
k=(−N,−N,−N)

akΦN,k(ϕ(v)),
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and get the approximate equation on the unknown (ak(t))
(N,N,N)
k=(−N,−N,−N)

∂ak
∂t

=

(N,N,N)∑
i,j=(−N,−N,−N)

aiaj〈Q (ΦN,i(ϕ(v)),ΦN,j(ϕ(v))) ,ΦN,k(ϕ(v))〉.

Moreover, our approximation also provides a general view point for both DVMs and FSMs:
FSMs and DVMs are special cases of our approximation using Fourier and Haar wavelet
basis. If we take Haar wavelet basis as the spectral basis, our algorithm in this special case
then gives an nonlinear, adaptive DVMs for Boltzmann equation, where no direct truncation
is imposed and the convolution structure of the collision operator is preserved. Our new
adaptive DVMs is then not expensive and it has a spectral accuracy. Therefore, both
classical DVMs and FSMs could be seen as special linear and non-adaptive approximations
in our theory. We will come back to this discussion at the end of subsection 3.2.
We also introduce a full new analysis to study theoretically our algorithm. Different with
the periodized case ([31]) where the truncated Boltzmann collision operator is a bounded
bilinear form and the projection of the collision operator onto the subspaces PNQ

R could
be considered as a perturbation of QR with a small term (Id − PN )QR, in our case, the
collision operator is unbounded. Since PNQ does not preserve the symmetry of Q, the first
problem is how we could preserve the conservation laws with this approximation∫

R3

PNQ(f, f)dv =

∫
R3

PNQ(f, f)vidv =

∫
R3

PNQ(f, f)|v|2dv = 0.

Another problem is the preservation the ”coercivity” property of the gain part of the collision
operator ∫

R3

PNQ+(f, f)fdv ≥
∫
R3

|v|γf2dv.

Notice that this is one of the main advantages of our approximation: preserve the coer-
civity property of the gain part of the collision operator. Approximation strategies using
Fourier basis could not preserve this coercivity structure because of the effect of the Gibbs
phenomenon. We construct the following scheme to study our algorithm theoretically.

• We approximate the projected operator PNQ by bounded operators QN,λ and prove
that the solutions fN,λ produced by the bounded operators are uniformly bounded in
L1 and L2, moreover they are bounded from below by a Maxwellian.

• We prove that fN,λ converges to fN as λ tends to infinity. Moreover fN are uniformly
bounded in L1, L2 and they are bounded from below by a Maxwellian.

• We perform a detailed analysis to prove that fN converges to f which guarantees the
convergence of the algorithm.

The structure of the paper is the following: In Section 2, we introduce the change of
variable mapping and the new formulation of the Boltzmann equation. Section 3 is devoted
to the contruction of the adaptive wavelet basis and the spectral method. We also provide
some assumptions on the multiresolution analysis. Our main results are represented in
Section 4. We prove that the algorithm converges; the energy, mass and momentum of the
approximate solution converge to that of the original equation; moreover the approximate
solution is bounded from below by a Maxwellian. These are the results of theorems 4.1 and
4.2.
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2 A reformulation of the Boltzmann equation

Formally, Boltzmann collision operator has the properties of conserving mass, momentum
and energy ∫

R3

Q(f, f)dv = 0,

∫
R3

Q(f, f)vdv = 0,

∫
R3

Q(f, f)|v|2dv = 0,

and it satisfies the Boltzmann’s H-theorem

− d

dt

∫
R3

f log fdv = −
∫
R3

Q(f, f)logfdv ≥ 0,

in which −
∫
f log f is defined as the entropy of the solution. A consequence of the Boltz-

mann’s H-theorem is that any equilibrium distribution function has the form of a locally
Maxwellian distribution

M(ρ, u, T ) =
ρ

(2πT )3/2
exp

(
−|u− v|

2

2T

)
,

where ρ, u, T are the density, macroscopic velocity and temperature of the gas

ρ =

∫
R3

f(v)dv, u =
1

ρ

∫
R3

vf(v)dv, T =
1

3ρ

∫
R3

|u− v|2f(v)dv.

We suppose that the initial datum f0 satisfies f0(x, v) ≥ 0 on R6 and∫
R3

f0(v)(1 + |v|2)dv < +∞.

We refer to [12] and [63] for further details and discussions on the Boltzmann equation. In
this work, we only consider the equation in R3 but the methodology would be exactly the
same for other dimensions.
Different from [53], where a truncation technique is introduced in order to reduce the Boltz-
mann equation defined on the whole domain into an equation on a bounded domain, we
introduce in this section a new formulation of the Boltzmann equation defined on (−1, 1)3

based on a change of variables technique. Let us define the following change of variables
mapping

ϕ : R3 → (−1, 1)3,

ϕ(v) = (ϕ1(v1), ϕ2(v2), ϕ3(v3)) =

(
v1

1 + |v|
,

v2

1 + |v|
,

v3

1 + |v|

)
, (2.1)

where we restrict our attention to the norm |v| = max{|v1|, |v2|, |v3|} with v = (v1, v2, v3) ∈
R3. The inverse mapping ϕ−1 of ϕ reads

ϕ−1 : (−1, 1)3 → R3,

ϕ−1(v̄) = (ϕ1(v̄1), ϕ2(v̄2), ϕ3(v̄3)) =

(
v̄1

1− |v̄|
,

v̄2

1− |v̄|
,

v̄3

1− |v̄|

)
.

The idea of our technique is to replace the variable v in R3 by a new variable in (−1, 1)3

through the mapping ϕ. Based on this idea, we define the new density function

g(t, v̄) = f(t, ϕ−1(v̄)),
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where v̄ is the new variable in (−1, 1)3.
With the notice that the Jacobian of the change of variable v̄ → v is 1

(1+|v|)4 , we have∫
(−1,1)3

|g(v̄)|p(1− |v̄|)−s−4dv̄ =

∫
(−1,1)3

|f(ϕ−1(v̄))|p(1− |v̄|)−s−4dv̄

=

∫
R3

|f(v)|p(1 + |v|)s+4d(ϕ(v)) =

∫
R3

|f(v)|p(1 + |v|)sdv.

Therefore if f(v) belongs to L1 with the weight (1 + |v|)s, then g(v̄) belongs to L1 with the
weight (1 − |v̄|)−s−4. Notice that there are several one-to-one mappings that map R3 to
(−1, 1)3 however the above property makes us choose to work on ϕ.
We now define

Lps =

{
f |

∫
R3

|f(v)|p(1 + |v|)spdv < +∞
}
, Lps =

{
f |

∫
(−1,1)3

|f(v̄)|p(1− |v̄|)−spdv̄ < +∞

}
,

where p, s are real numbers. For further use, we also need

Lp(W ) =

{
f |

∫
R3

|f(v)|pW p(v)dv < +∞
}
,

Lp(W ′) =

{
f |

∫
(−1,1)3

|f(v̄)|p(W ′(v̄))pdv̄ < +∞

}
,

where W , W ′ are some positive weights.
Moreover, we also need the notation

〈v〉 =
√

1 + |v|2, ∀v ∈ R3.

The Boltzmann equation for g is now

∂tg(t, v̄) =

∫
(−1,1)3

∫
S2

B(|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ)

(1− |v̄∗|)4
(2.2)

×
[
g

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×g
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− g(v̄)g(v̄∗)

]
dσdv̄∗.

Now define
h(t, v̄) = g(t, v̄)(1− |v̄|)−4,

which implies ∫
(−1,1)3

|h(v̄)|(1− |v̄|)−sdv̄ =

∫
R3

|f(v)|(1 + |v|)sdv.

This means if f belongs to L1
s then h belongs to L1

s. Notice that we define h(t, v̄) =
g(t, v̄)(1 − |v̄|)−4 to make our proof simpler, however the theoretical results remain the
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same if h(t, v̄) = g(t, v̄)(1− |v̄|)−n, with n being any constant in R, n could be 0.
The Boltzmann equation for h then reads

∂th(t, v̄) =

∫
(−1,1)3

∫
S2
B(|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ)

×
[
C(v̄, v̄∗, σ)h

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(2.3)

×h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− h(v̄)h(v̄∗)

]
dσdv̄∗,

where

C(v̄, v̄∗, σ) =

[
1− ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

)]4

×
[
1− ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

)]4

×(1− |v̄|)−4(1− |v̄∗|)−4. (2.4)

Define
B(v̄, v̄∗, σ) = B(|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ), (2.5)

we get

∂th(t, x, v̄) =

∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)h

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(2.6)

×h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− h(v̄)h(v̄∗)

]
dσdv̄∗.

The initial datum is now defined

h0(v̄) = (1− |v̄|)−4f0(ϕ−1(v̄)),

then ∫
(−1,1)3

h0(v̄)

(
1 +

|v̄|2

(1− |v̄|)2

)
dv̄ < +∞.

Let us mention that though the two new formulations seem to be complicated, we only
use them for theoretical purposes. Our spectral equation (3.12) is based on the former
formulation of the equation.

3 Approximating the homogeneous Boltzmann equation: an
adaptive spectral method

We will construct a wavelet basis for L2((−1, 1)3) in subsection 3.1. Our new spectral
algorithm is defined in equation (3.12) of subsection 3.2. In subsection 3.3 we discuss
about the assumption that we need for the multiresolution analysis and the wavelet filtering
technique.
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3.1 Wavelets for L2((−1, 1)3)

We first construct a wavelet multiresolution analysis for L2((−1, 1)). Let φ be a positive
scaling function which defines a multiresolution analysis, i.e., a ladder of embedded approx-
imation subspaces of L2(R)

{0} → . . . V1 ⊂ V0 ⊂ V−1 · · · → L2(R)

such that φj,k = {2−j/2φ(2−jy−k)}k∈Z constitutes an orthonormal basis for Vj . The wavelet
ψ is built to characterize the missing details between two adjacent levels of approximation.
More concretely, {ψj,k}k∈Z = {2−j/2ψ(2−jy − k)}k∈Z is an orthonormal basis of Wj where

Vj−1 = Vj ⊕Wj .

Multiresolution analysis is a frame work developed by Mallat [38] and Meyer [41], we refer
to these two pioneering works or the books [18], [43] for more details, examples and proofs.
We now follow exactly the construction in [18, Section 9.3] to build the same ”periodized
wavelets” for L2(−1, 1). Notice that there are other ways besides this way (see [42], [15]).
Suppose that the scaling function φ and the wavelet ψ have reasonable decays, for example
|φ(y)|, |ψ(y)| ≤ C(1 + |y|)−2−ε, ε > 0. Define

φperj,k (y) =
∑
l∈Z

φj,k

(y
2

+ l
)

; ψperj.k (y) =
∑
l∈Z

ψj,k

(y
2

+ l
)

;

and
V per
j = Span{φperj,k , k ∈ Z}; W per

j = Span{ψperj,k , k ∈ Z}.

Similar as [18, Note 6, Chapter 9] we have∑
l∈Z

φ
(x

2
+ l
)

= 1,

which implies

φperj,k = 2−j/2
∑
l∈Z

φ(2−j−1x− k + 2−jl) = 2j/2 for j ≥ 0.

These facts mean V per
j for j ≥ 0 are one dimensional spaces of constant functions. Moreover,

similar as [18, Note 7, Chapter 9] we have∑
l∈Z

ψ
(x

2
+ l
)

= 1,

and W per
j = {0} for j ≥ 0. As a consequence, we only need to consider the spaces V per

j and
W per
j with j ≤ 0. According to the property of the multiresolution analysis Vj , Wj ⊂ Vj−1,

then V per
j , W per

j ⊂ V per
j−1. We also have that W per

j and V per
j are orthogonal∫ 1

−1
ψperj,k (y)φperj,k (y)dy

=
∑
l,l′∈Z

2|j|
∫ 1

−1
ψ(2−j−1y + 2−jl − k)φ(2−j−1y + 2−jl′ − k′)dy

10



=
∑
l,l′∈Z

2|j|
∫ 1

−1
ψ(2|j|−1y + 2|j|(l − l′)− k)φ(2|j|−1y − k′)dy

=
∑
r∈Z

2|j|
∫ 1

−1
ψ(2|j|−1y + 2|j|r − k)φ(2|j|−1y − k′)dy = 0.

Similarly, in W per
j , we have also that ψperj,k and ψperj,k′ are orthogonal. Since φper

j,k+m2|j|
= φperj,k

∀m ∈ Z, then the spaces V per
j , W per

j are spanned by the 2|j| functions obtained from

k = 0, 1, . . . , 2|j|−1.
We therefore have a ladder of multiresolution spaces

V per
0 ⊂ V per

−1 ⊂ V
per
−2 ⊂ · · · → L2(−1, 1)

with
W per

0 ⊕ V per
0 = V per

−1 . . .

and {φper0,0 } ∪ {ψ
per
j,k ; j ∈ −N, k = 0, . . . , 2|j| − 1} is an orthonormal basis of L2(−1, 1).

Define by Sjκ the orthogonal projection of a function κ in L1(−1, 1) onto Vj , similar as in
[18, Section 9.3] we then have the following remarkable property, which is not true with a
Fourier basis

‖Sjκ‖L∞(−1,1) ≤ CS‖κ‖L∞(−1,1),

where CS is a constant not depending on j and κ.
We now construct a multiresolution analysis for L2((−1, 1)3). Define

Ψper
j̄,k

(ȳ) = ψperj1,k1
(ȳ1)ψperj2,k2

(ȳ2)ψperj3,k3
(ȳ3),

and
Φper
j̄,k

(ȳ) = φperj1,k1(ȳ1)φperj2,k2(ȳ2)φperj3,k3(ȳ3),

where j̄ = (j1, j2, j3) ∈ (−N)3, k = (k1, k2, k3) ∈ {0, . . . , 2|j|−1}3, ȳ = (ȳ1, ȳ2, ȳ3) ∈ (−1, 1)3.
Then {Φper

0,0 } ∪ {Ψ
per
j̄,k
} is an orthonormal basis of L2((−1, 1)3).

Set j ∈ −N and put

V|j| = Span{Φ|j|,k(ȳ) = Φper
(j,j,j),k(ȳ), k = (k1, k2, k3) ∈ {0, . . . , 2|j| − 1}3}.

then
∪|j|∈NV|j| = L2((−1, 1)3),

which is the ladder of multiresolution spaces for L2((−1, 1)3) we need.
Define by P|j|% the orthogonal project of a function % in L2((−1, 1)3) onto V|j|, we also have
the following property

‖P|j|%‖L∞((−1,1)3) ≤ CP ‖%‖L∞((−1,1)3), (3.1)

if f ∈ L2((−1, 1)3) ∩ L∞((−1, 1)3) where CP is a constant not depending on j or %.
We also the assume that

‖P|j|%‖L1((−1,1)3) ≤ CP ‖%‖L1((−1,1)3), (3.2)

which is true for some basis like Haar basis. Notice that since φ is a positive function, the
following property is true

% ≥ 0⇒ P|j|% ≥ 0. (3.3)

11



3.2 The nonlinear approximation for the homogeneous Boltzmann equa-
tion

Definition 3.1. Let ς be a function in VN , N ∈ N and

ς =

(2N−1,2N−1,2N−1)∑
k=(0,0,0)

ςN,kΦN,k,

where

ςN,k =

∫
(−1,1)3

ςΦN,kdv̄.

Set AN to be the set of indices {k = (k1, k2, k3) | 0 ≤ k1, k2, k3 ≤ 2N − 1}, and suppose
that BN is a the set of indices k, such that the distance between the support of ΦN,k and
the boundary of (−1, 1)3 is 0. Define

FN ς =
∑

k∈AN\BN

ςN,kΦN,k.

Since FN is to remove wavelets containing the extreme points of (−1, 1)3, we can assume
that FN ς is supported in (−ζN , ζN )3 with 0 < ζN < 1 and FN1 is the characteristic func-
tion of (−ζN , ζN )3. Notice that if v̄ belongs to (−ζN , ζN )3, then v = ϕ−1(v̄) belongs to(
− ζN

1−ζN ,
ζN

1−ζN

)3
. For the sake of simplicity, we denote

∑
k∈AN\BN

=
2N−1∑
k=0

. (3.4)

We also suppose that there exist a positive constant ε∗ and an open bounded set D ⊂(
− ζN

1−ζN ,
ζN

1−ζN

)3
(for N large enough) such that

f0 > ε∗ in D, (3.5)

where we could assume that D .
Let N be a positive integer and define

hN =

(
1 +

|v̄|2

(1− |v̄|)2

)−1

FNPN

((
1 +

|v̄|2

(1− |v̄|)2

)
h

)
,

where PN is the orthogonal project onto the space VN and FN is defined in Definition 3.1.
The reason that we multiply (

1 +
|v̄|2

(1− |v̄|)2

)
with h before taking the projection PN is that∫

(−1,1)3
PN

[(
1 +

|v̄|2

(1− |v̄|)2

)
h

]
dv̄ =

∫
(−1,1)3

(
1 +

|v̄|2

(1− |v̄|)2

)
h(v̄)PN (1)dv̄

=

∫
(−1,1)3

(
1 +

|v̄|2

(1− |v̄|)2

)
h(v̄)dv̄ =

∫
R3

f(1 + |v|2)dv, (3.6)

12



which means that we want to preserve the energy of the solution through the projection.
We also denote

h̃N = FNPN

((
1 +

|v̄|2

(1− |v̄|)2

)
h

)
, PN = FNPN , η(v̄) =

(
1 +

|v̄|2

(1− |v̄|)2

)−1

.

We therefore have

∂th̃N (t, v̄)

= QN (h̃N , h̃N ) = Q+
N (h̃N , h̃N )−Q−N (h̃N , h̃N )

:= PN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
η(v̄)−1C(v̄, v̄∗, σ)h̃N

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×h̃N

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
(3.7)

×η
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×η
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− h̃N (v̄)h̃N (v̄∗)η(v̄∗)

]
dσdv̄∗

}
,

or equivalently

∂thN (t, v̄)

= QN (h̃N , h̃N ) = Q+
N (h̃N , h̃N )−Q−N (h̃N , h̃N )

:= PN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(3.8)

×hN
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
,

where PN is defined
PN (%) = ηPN (η−1%),

with some function %, and
h0N = PN (h0), hN = ηh̃N .

Suppose that

h̃N =

2N−1∑
k=0

aN,kΦN,k, where aN,k =

∫
(−1,1)3

h̃NΦN,kdv̄.

Then (3.7) and (3.8) are equivalent with the following system of ODEs for k ∈ AN\BN

∂taN,k =

∫
(−1,1)3

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

13



×

C(v̄, v̄∗, σ)

2N−1∑
l=0

aN,lΦN,l

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×

2N−1∑
l′=0

aN,l′ΦN,l′

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

)) (3.9)

×η
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×η
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
η(v̄)−1

−

2N−1∑
l=0

aN,lΦN,l(v̄)

2N−1∑
l′=0

aN,l′ΦN,l′(v̄∗)

 η(v̄∗)

 dσdv̄∗
ΦN,kdv̄.

The resolution of this system gives an approximation of h. After solving the system (3.9),
we can get a full solution in R3 by the following mapping

fN (v) = h̃N (ϕ(v))(1 + |v|)−4η(v). (3.10)

However, system (3.9) is quite complicated and difficult to use in practical computations.
We then introduce an equivalent form of it, which is easier to implement

∂taN,k =
2N−1∑
l,l′=0

aN,laN,l′

∫
R6×S2

B(|v − v∗|, σ)× (3.11)

[
〈v〉2ΦN,l(ϕ(v′∗))

〈v′∗〉−2

(1 + |v′∗|)4
ΦN,l′(ϕ(v′))

〈v′〉−2

(1 + |v′|)4

− ΦN,l(ϕ(v∗))
〈v∗〉−2

(1 + |v∗|)4
ΦN,l′(ϕ(v))

1

(1 + |v|)4

]
ΦN,k(ϕ(v))dσdv∗dv,

which gives an approximation of f(v)(1 + |v|)4〈v〉2. As we mention above, the weight (1 +
|v|)4 is put just to make the proof simpler, therefore, in practical computations, we can
drop it to get the following equivalent system

∂taN,k =

2N−1∑
l,l′=0

aN,laN,l′

∫
R6×S2

B(|v − v∗|, σ)

[
ΦN,l(ϕ(v′∗))

〈v′∗〉2
ΦN,l′(ϕ(v′))

〈v′〉2
〈v〉2 (3.12)

−
ΦN,l(ϕ(v∗))

〈v∗〉2
ΦN,l′(ϕ(v))

]
ΦN,k(ϕ(v))dσdv∗dv, ∀k ∈ AN\BN ,

which is our spectral equation and numerical simulations could be done with this system.
The resolution of this system gives us a direct approximation

2N−1∑
k=0

aN,kΦN,k(ϕ(v)), (3.13)

of f(v)〈v〉2. This formulation also gives us a clearer understanding about the mapping ϕ:
its role is to stretch the support of ΦN,l from (−1, 1)3 to R3 to get a new ”adaptive basis”
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on the whole space, which are ”the approximants” of our nonlinear approximation. Notice
that the weight 〈v〉−2 is put to preserve the energy of the solution due to (3.6).
As we mention in the introduction, if we choose φ to be the Haar scaling function, system
(3.12) becomes a Discrete Velocity Model. However, different from classical ones, (3.12)
has an adaptive mesh thanks to the mapping ϕ: the larger |v| is, the coarser the mesh is,
moreover it preserves the convolution structure of the collision operator. In other words,
classical DVMs and Fourier-based spectral methods are in some sense non-adaptive cases
of wavelet spectral approximations. Notice that in (3.9), we take the basis created by φ, but
we can take the basis created by ψ as well and the analysis would remain the same.
The existence and uniqueness of a solution of the equivalent systems (3.9), (3.11) and
(3.12) is classical according to the theory of ODEs. The numerical resolution of (3.9)
resolves the Boltzmann equation on the entire space with the same complexity with a
normal truncated spectral method. Notice that one of the main advantages of adaptive,
nonlinear approximations is that they are cheaper ([23, 22]).

Proposition 3.1. The system (3.9) has a unique solution {aN,k} with aN,k ∈ C1(0,+∞)
∀k ∈ AN\BN .

3.3 Assumptions on the multiresolution analysis and the filter

3.3.1 Energy preserving property

Assumption 3.1. Define κ = η(v̄)−1PNχ(−1,1)3, where χ(−1,1)3 is the characteristic func-
tion of (−1, 1)3. Set κ(v) = κ(ϕ(v)), where ϕ is the change of variables mapping defined in
(2.1). In order to preserve the energy of the approximate solution, we impose the following
assumption on PN

κ(v′∗) + κ(v′)− κ(v)− κ(v∗) ≤ 0, ∀(v, v∗) ∈
(
− ζN

1− ζN
,

ζN
1− ζN

)6

. (3.14)

We now explain why this assumption is needed in order to preserve the energy of the the
approximate solution. Take η(v̄)−1 as a test function for (3.7)∫

(−1,1)3
∂thN (t, v̄)η(v̄)−1 (3.15)

=

∫
(−1,1)3

η(v̄)−1PN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
dv̄

=

∫
(−1,1)3

PN

{∫
(−1,1)3

∫
S2
η(v̄)−1B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
dv̄
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=

∫
(−1,1)3

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
−hN (v̄)hN (v̄∗)] dσdv̄∗} η(v̄)−1PNχ(−1, 1)3dv̄

=

∫
(−1,1)3

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
−hN (v̄)hN (v̄∗)] dσdv̄∗}κ(v̄)dv̄.

Define
fN (v) = hN (ϕ(v))(1 + |v|)−4,

then (3.15) is transformed into

d

dt

∫
R3

(1 + |v|2)fNdv

=

∫
R6×S2

B(|v − v∗|, σ)[f ′N∗f
′
N − fN∗fN ]κ(v)dσdv∗dv

=
1

2

∫
R6×S2

B(|v − v∗|, σ)fN∗fN [κ(v′∗) + κ(v′)− κ(v∗)− κ(v)]dσdv∗dv

≤ 0,

if the assumption 3.1 is satisfied. Notice that we only need (3.14) on
(
− ζN

1−ζN ,
ζN

1−ζN

)6
since

if (v, v∗) lies outside this interval, fN∗fN=0. A consequence of this inequality is that the
energy of the approximate solution is decreasing∫

R3

(1 + |v|2)fN (t)dv ≤
∫
R3

(1 + |v|2)fN (0)dv.

Later, we will prove that the mass, momentum and energy of the approximate solution
converge to the mass, momentum and energy of the exact solution.
We now point out an example which satisfies our assumption 3.1. Let us recall the simplest
scaling function: Haar function (see [18])

φ(y) =

{
1 for − 1

2 ≤ y ≤
1
2 ,

0 otherwise .
(3.16)

The corresponding φperj,k are φperj,k (y) = 2|j|−1χ(2−|j|(2k−1),2−|j|(2k+1)) for k = 0,±1, . . . ,±(2|j|−1 − 1),

φper
j,2|j|−1(y) = 2|j|−1χ(−1,−1+2−|j|)∪(1−2−|j|,1).

(3.17)
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Then
Φ|j|,k(ȳ) = Φper

j,k (ȳ) = φperj,k1(ȳ1)φperj,k2(ȳ2)φperj,k3(ȳ3),

where k = (k1, k2, k3) ∈ {−2|j|−1 + 1, . . . , 2|j|−1}3, j ∈ −N, and

V|j| = {Φ|j|,k(ȳ), k = (k1, k2, k3) ∈ {−2|j|−1 + 1, . . . , 2|j|−1}3}.

Let k̂|j| be 2|j|−1 − 1. Let ς be any function in V|j|, j ∈ −N and

ς =

(2|j|−1,2|j|−1,2|j|−1)∑
k=(−2|j|−1+1,−2|j|−1+1,−2|j|−1+1)

ς|j|,kΦ|j|,k =:
2|j|−1∑

k=−2|j|−1+1

ς|j|,kΦ|j|,k,

where

ς|j|,k =

∫
(−1,1)3

ςΦ|j|,kdv̄,

define the

F|j|ς =

(k̂|j|,k̂|j|,k̂|j|)∑
k=(−k̂|j|,−k̂|j|,−k̂|j|)

ς|j|,kΦ|j|,k =:

k̂|j|∑
k=−k̂|j|

ς|j|,kΦ|j|,k. (3.18)

In other words, the F|j| eliminates all of the components with indices k = (k1, k2, k3) where

max{|k1|, |k2|, |k3|} > k̂|j|.

Proposition 3.2. Let N be a positive integer. Suppose that we take the Haar function
(3.16) as the scaling function for the multiresolution analysis, {ΦN,k} is a basis for VN and
FN is defined by (3.18). Then PN = FNPN satisfies assumption 3.1.

Proof. First, we can see directly that

PNχ(−1,1)3 = χ(−1,1)3 ,

and
PNχ(−1,1)3 = χ(−2−N (2k̂N+1),2−N (2k̂N+1))3 ,

which implies
κ(v̄) = η(v̄)−1χ(−2−N (2k̂N+1),2−N (2k̂N+1))3 .

Notice that if

|v̄| =
∣∣∣∣ v

1 + |v|

∣∣∣∣ ≤ 2−N (2k̂N + 1),

then

|v| ≤ 2k̂N + 1

2N − 2k̂N − 1
.

This leads to
κ(v) = κ(ϕ(v)) = (1 + |v|2)χ(

− 2k̂N+1

2N−2k̂N−1
,

2k̂N+1

2N−2k̂N−1

)3 ,

where we recall that |v| = |(v1, v2, v3)| = max{|v1|, |v2|, |v3|}. Inequality (3.14) follows
directly from the above formula for κ(v).
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3.3.2 Coercivity preserving property

Assumption 3.2. Let N be a positive integer and ϑ, ϑ′ be two positive functions in
L2((−1, 1)3). Define

ϑN = PNϑ, and ϑ′N = PNϑ′.

Let s be a constant. We impose the following assumption on the multiresolution analysis
and FN : There exist constants N0, K1, K2, K3, K4 not depending on ϑ, ϑ′ such that

∀N > N0, K1(1− |v̄|)s ≥ PN ((1− |v̄|)s) ≥ K2(1− |v̄|)s on [−ζN , ζN ]3,

and K3ϑNϑ
′
N ≥ PN (ϑNϑ

′) ≥ K4ϑNϑ
′
N . (3.19)

We now explain the meaning of this assumption. Suppose we take η(v̄)−1hN (t, v̄)(1−|v̄|)s
as a test function for (3.8)∫

(−1,1)3
η(v̄)−1(1− |v̄|)s∂thNhN

=

∫
(−1,1)3

η(v̄)−1(1− |v̄|)shNPN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
dv̄

=

∫
(−1,1)3

PN ((1− |v̄|)shN )

{
η(v̄)−1

∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
dv̄

=

∫
(−1,1)3

PN ((1− |v̄|)shN )

{∫
(−1,1)3

∫
S2
η(v̄)−1B(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))]}
dσdv̄∗dv̄

−
∫

(−1,1)6×S2
η(v̄)−1B(v̄, v̄∗, σ)hN (v̄)hN (v̄∗)PN ((1− |v̄|)shN )dσdv̄∗dv̄.

By assumption 3.2, the last term of the above equation could be bounded in the following
way

K2

∫
(−1,1)6×S2

η(v̄)−1B(v̄, v̄∗, σ)h2
N (v̄)hN (v̄∗)(1− |v̄|)sdσdv̄∗dv̄

≤
∫

(−1,1)6×S2
η(v̄)−1B(v̄, v̄∗, σ)hN (v̄)hN (v̄∗)PN ((1− |v̄|)shN )dσdv̄∗dv̄
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≤ K1

∫
(−1,1)6×S2

η(v̄)−1B(v̄, v̄∗, σ)h2
N (v̄)hN (v̄∗)(1− |v̄|)sdσdv̄∗dv̄.

Define fN as in (3.10), we can transform the above equation into

K2

∫
R6

∫
S2
B(|v − v∗|, σ)f2

NfN∗(1 + |v|2)(1 + |v|)4−sdσdv∗dv

≤
∫

(−1,1)6×S2
η(v̄)−1B(v̄, v̄∗, σ)hN (v̄)hN (v̄∗)PN ((1− |v̄|)shN )dσdv̄∗dv̄

≤ K1

∫
R6

∫
S2
B(|v − v∗|, σ)f2

NfN∗(1 + |v|2)(1 + |v|)4−sdσdv∗dv.

This estimate is crucial in our L2 estimate for hN , since it preserves the following property
of the Boltzmann equation∫

R6

∫
S2
B(|v − v∗|, σ)f2

NfN∗(1 + |v|2)(1 + |v|)4−sdσdv∗dv

≥ C
∫
R3

f2
N (1 + |v|2)(1 + |v|)4+γ−sdv.

We will discuss about this in more details in the convergence theory of the algorithm.

Proposition 3.3. Let N be a positive integer. Suppose that we take the Haar function
(3.16) as the scaling function for the multiresolution analysis, {ΦN,k} is a basis for VN and
FN is the filter defined by (3.18). Then PN = FNPN satisfies assumption 3.2.

Remark 3.1. In both propositions 3.2 and 3.3, we can always take k̂N to be 2N−1− 1, and
the filter FN only removes the components containing φper−N,2N−1.

Proof. Since the supports of ΦN,k are disjoint and ΦN,kΦN,k = ΦN,k,then

ϑNϑ
′
N = PN (ϑNϑ

′).

Equation (3.19) is now equivalent with

K1(1− |v̄|)s ≥ PN ((1− |v̄|)s) ≥ K2(1− |v̄|)s on [−2−N (2k̂N + 1), 2−N (2k̂N + 1)]3. (3.20)

Set

PN [(1− |v̄|)s] =

k̂N∑
k=−k̂N

dkΦN,k,

where

dk =

∫
(−1,1)3

(1− |v̄|)sΦN,kdv̄,

we consider the coefficient dk 6= 0 of PN [(1− |v̄|)s]. Suppose that

ΦN,k(v̄) = φper−N,k1(v̄1)φper−N,k2(v̄2)φper−N,k3(v̄3),

with |k1| ≥ |k2| ≥ |k3|. Hence, |v̄| = max{|v̄1|, |v̄2|, |v̄3|} ∈ [2−N (2|k1| − 1), 2−N (2|k1| + 1)]
if k1 6= 2N−1 and |v̄| ∈ [0, 2−N ] if k1 = 2N−1. Therefore 1 − |v̄| ∈ [1 − 2−N (2|k1| + 1), 1 −
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2−N (2|k1| − 1)] if k1 6= 2N−1 and 1− |v̄| ∈ [1− 2−N , 1] if k1 = 2N−1.
Since k1 6= 2N−1 and (1− |v̄|) ∈ [(1− 2−N (2|k1|+ 1)), (1− 2−N (2|k1| − 1))].

1 ≤
max|v̄|∈[2−N (2|k1|−1),2−N (2|k1|+1)](1− |v̄|)s

min|v̄|∈[2−N (2|k1|−1),2−N (2|k1|+1)](1− |v̄|)s

≤
(

2N − 2|k1|+ 1

2N − 2|k1| − 1

)|s|
≤ 3|s|, (3.21)

which imples ∫
(−1,1)3

(1− |v̄|)sφper−N,k1(v̄1)φper−N,k2(v̄2)φper−N,k3(v̄3)dv̄

≥
∫

(−1,1)3

1

3|s|
max

1−|v̄|∈[1−2−N (2|k1|+1),1−2−N (2|k1|−1)]
(1− |v̄|)s ×

×φper−N,k1(v̄1)φper−N,k2(v̄2)φper−N,k3(v̄3)dv̄

≥ 1

3|s|
max

1−|v̄|∈[1−2−N (2|k1|+1),1−2−N (2|k1|−1)]
(1− |v̄|)s ≥ 1

3|s|
(1− |v̄|)s,

for all v̄ in the support of ΦN,k. We deduce from this inequality that

dkΦN,k ≥
1

3|s|
(1− |v̄|)s, (3.22)

for all v̄ in the support of ΦN,k. Similarly, we also get∫
(−1,1)3

(1− |v̄|)sφper−N,k1(v̄1)φper−N,k2(v̄2)φper−N,k3(v̄3)dv̄

≤
∫

(−1,1)3
3|s| min

1−|v̄|∈[1−2−N (2|k1|+1),1−2−N (2|k1|−1)]
(1− |v̄|)s ×

×φper−N,k1(v̄1)φper−N,k2(v̄2)φper−N,k3(v̄3)dv̄

≤ 3|s| min
1−|v̄|∈[1−2−N (2|k1|+1),1−2−N (2|k1|−1)]

(1− |v̄|)s ≤ 3|s|(1− |v̄|)s,

for all v̄ in the support of ΦN,k, and

dkΦN,k ≤ 3|s|(1− |v̄|)s, (3.23)

for all v̄ in the support of Φ−N,k. We deduce from inequality (3.22) and (3.23) that

3|s|(1− |v̄|)s ≥ PN ((1− |v̄|)s) ≥ 1

3|s|
(1− |v̄|)s.

4 Convergence theory of the adaptive spectral method

Consider again equation (3.8)

∂thN (t, v̄) = PN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)
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×
[
C(v̄, v̄∗, σ)hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
(4.1)

×hN
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
− hN (v̄)hN (v̄∗)

]
dσdv̄∗

}
.

Below is the plan for the proof of the convergence of hN to the solution h of (2.3) as N
tends to infinity

• The solution hN of (4.1) is positive and uniformly bounded with respect to N in L1
2

norm.

• hN has a Maxellian lower bound: for all t0 > 0, such that for all N large enough,
there exist Ĉ1, Ĉ2 > 0, and for all v̄ in the support of hN

hN (t, v̄) ≥ Ĉ1 exp

(
−Ĉ2

∣∣∣∣ |v̄|1− |v̄|

∣∣∣∣2
)
, ∀t > t0.

• hN is uniformly bounded with respect to N in L2
−4 norm.

• The approximate solution hN converges to the solution h of (2.3) as N tends to infinity.

In order to prove the positivity and boundedness of hN in L1
2 and L2

−4 norms, we consider
the approximate Boltzmann equation with a bounded collision kernel as in [2] and [24]

∂thN,λ(t, v̄) = QN,λ(hN,λ, hN,λ) = Q+
N,λ(hN,λ, hN,λ)−Q−N,λ(hN,λ, hN,λ)

:= PN

{∫
(−1,1)3

∫
S2
Bλ(|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ) (4.2)

×
[
C(v̄, v̄∗, σ)hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
−hN,λ(v̄)hN,λ(v̄∗)] dσdv̄∗} ,

with
Bλ(|u|, σ) := |(u ∧ λ)|γb(cos θ) = |min{u, λ}|γb(cos θ),

where λ is a positive constant. For the sake of simplicity, we denote

Bλ(v̄, v̄∗, σ) = Bλ
(
|ϕ−1(v̄)− ϕ−1(v̄∗)|, σ

)
.

Since (4.2) is a system of ODEs, it admits a unique strong solution which is continuous in
time. In this section we always assume that N and λ are sufficiently large. We will prove
that hN,λ is bounded in L1

2 and L2
−4 and bounded from below by a Maxwellian uniformly

with respect to λ. By Nagumo’s criterion, Dunford-Pettis theorem and Smulian theorem
(see [25] and [40]), hN is bounded in L1

2 and L2
−4 and bounded from below by a Maxwellian.

The convergence of the algorithm then follows after some technical computations.
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4.1 Positivity and L1 estimate of hN,λ

Proposition 4.1. The solution hN,λ(t) of (4.2) is positive for all time t in R+, moreover

‖hN,λ(t)‖L1(η−1) ≤ ‖h0N ‖L1(η−1),∀t ∈ R+.

Proof. First, equation (4.2) implies∫
(−1,1)3

∂t|hN,λ|η−1dv̄

≤
∫

(−1,1)3
η−1PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)

∣∣∣∣hN,λ(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))∣∣∣∣
×
∣∣∣∣hN,λ(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))∣∣∣∣
+|hN,λ(v̄)||hN,λ(v̄∗)|] dσdv̄∗} dv̄

≤
∫

(−1,1)3
η−1PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)

×
[
C(v̄, v̄∗, σ)

∣∣∣∣hN,λ(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))∣∣∣∣
×
∣∣∣∣hN,λ(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))∣∣∣∣
−|hN,λ(v̄)||hN,λ(v̄∗)|] dσdv̄∗} dv̄

+2

∫
(−1,1)3

η−1PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)|hN,λ(v̄)||hN,λ(v̄∗)|dσdv̄∗

}
dv̄

≤ 2

∫
(−1,1)3

η−1PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)|hN,λ(v̄)||hN,λ(v̄∗)|dσdv̄∗

}
dv̄,

where the last inequality follows from assumption 3.1 and (3.15).
We deduce from the above equation and (3.2) that

d

dt

∫
(−1,1)3

|hN,λ|η−1dv̄

≤ C

∫
(−1,1)3

PN

{∫
(−1,1)3

∫
S2
η−1Bλ(v̄, v̄∗, σ)|hN,λ(v̄)||hN,λ(v̄∗)|dσdv̄∗

}
dv̄

≤ C

∫
(−1,1)3

∫
(−1,1)3

∫
S2
η−1Bλ(v̄, v̄∗, σ)|hN,λ(v̄)||hN,λ(v̄∗)|dσdv̄∗dv̄

≤ C

[∫
(−1,1)3

|hN,λ|η−1dv̄

]2

,

where the last constant C depends on λ, which implies

‖hN,λ‖L1(η−1) ≤
‖h0N ‖L1(η−1)

1− C‖h0N ‖L1(η−1)t
. (4.3)
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Set M = 2‖h0N ‖L1(η−1), then put τ < 1
2C‖h0N ‖L1(η−1)

, we get

∀t ∈ [0, τ ] ‖hN,λ‖L1(η−1) ≤M.

We now prove that on [0, τ ], hN,λ is positive. Split hN,λ as hN,λ = hN,λ,+ − hN,λ,− where
hN,λ,+ = max{hN,λ, 0} and hN,λ,− = max{−hN,λ, 0}, we get

Q+
N,λ(hN,λ, hN,λ) = Q+

N,λ(hN,λ,+ − hN,λ,−, hN,λ,+ − hN,λ,−) (4.4)

≥ −Q+
N,λ(hN,λ,+, hN,λ,−)−Q+

N,λ(hN,λ,−, hN,λ,+).

We consider the term∥∥∥Q+
N,λ(hN,λ,+, hN,λ,−)η−1

∥∥∥
L∞−4

=

∥∥∥∥∥(1− |v̄|)4PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1

×C(v̄, v̄∗, σ)

∣∣∣∣hN,λ,+(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))∣∣∣∣
×
∣∣∣∣hN,λ,−(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))∣∣∣∣ dσdv̄∗}∥∥∥∥
L∞

≤ C

∥∥∥∥∥PN [(1− |v̄|)4]PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1

×C(v̄, v̄∗, σ)

∣∣∣∣hN,λ,+(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))∣∣∣∣
×
∣∣∣∣hN,λ,−(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))∣∣∣∣ dσdv̄∗}∥∥∥∥
L∞

≤ C

∥∥∥∥∥PN
{
PN [(1− |v̄|)4]

∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1

×C(v̄, v̄∗, σ)

∣∣∣∣hN,λ,+(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))∣∣∣∣
×
∣∣∣∣hN,λ,−(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))∣∣∣∣ dσdv̄∗}∥∥∥∥
L∞

≤ C

∥∥∥∥∥(1− |v̄|)4

∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1

×C(v̄, v̄∗, σ)

∣∣∣∣hN,λ,+(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))∣∣∣∣
×
∣∣∣∣hN,λ,−(ϕ(ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))∣∣∣∣ dσdv̄∗∥∥∥∥
L∞

,

where we use assumption 3.2 and (3.1). Notice that the norms L∞ and L∞ are taken on
the support of the projection.
Similar as (3.10), set

fN,λ,−(v) = hN,λ,−(ϕ(v))(1 + |v|)−4, fN,λ,+(v) = hN,λ,+(ϕ(v))(1 + |v|)−4,
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then the above equation is now∥∥∥Q+
N,λ(hN,λ,+, hN,λ,−)η−1

∥∥∥
L∞−4

(4.5)

≤
∥∥∥∥∫

R3×S2
Bλ(|v − v∗|, σ)f ′N,λ,+∗f

′
N,λ,−(1 + |v|2)dσdv∗

∥∥∥∥
L∞

.

By Remark 3 of Theorem 2.1 [48], we have∥∥∥∥∫
R3×S2

Bλ(|v − v∗|, σ)f ′N,λ,+∗f
′
N,λ,−(1 + |v|2)dσdv∗

∥∥∥∥
L∞

≤ C‖fN,λ,+‖L1
2
‖fN,λ,−‖L∞2 ,

which is equivalent with∥∥∥∥∫
R3×S2

Bλ(|v − v∗|, σ)f ′N,λ,+∗f
′
N,λ,−(1 + |v|2)dσdv∗

∥∥∥∥
L∞

≤ C‖hN,λ,+‖L1(η)‖hN,λ,−‖L∞−2
, (4.6)

where C is some positive constant.
Inequalities (4.5) and (4.6) lead to∥∥∥Q+

N,λ(hN,λ,+, hN,λ,−)η−1
∥∥∥
L∞−4

≤ C‖hN,λ,+‖L1(η)‖hN,λ,−‖L∞−2
. (4.7)

Due to assumption 1.5, we can permute hN,λ,+ and hN,λ,− to get∥∥∥Q+
N,λ(hN,λ,−, hN,λ,+)η−1

∥∥∥
L∞−4

≤ C‖hN,λ,−‖L∞−2
‖hN,λ,+‖L1(η). (4.8)

Inequalities (4.3), (4.4), (4.7) and (4.8) lead to∥∥∥Q+
N,λ(hN,λ,−, hN,λ,+)η−1

∥∥∥
L∞−4

+
∥∥∥Q+

N,λ(hN,λ,+, hN,λ,−)η−1
∥∥∥
L∞−4

≤ C(M)‖hN,λ,−‖L∞−2
on [0, τ ], (4.9)

where C(M) is a constant depending on M .
Equation (4.4) implies the following inequality holds pointwisely

−∂thN,λ,−η−1 = Q+
N,λ(hN,λ, hN,λ)η−1 −Q−N,λ(hN,λ, hN,λ,−)η−1

≥ −Q+
N,λ(hN,λ,+, hN,λ,−)η−1 −Q+

N,λ(hN,λ,−, hN,λ,+)η−1 −Q−N,λ(hN,λ, hN,λ,−)η−1,

which means

∂thN,λ,−η
−1 ≤ Q+

N,λ(hN,λ,+, hN,λ,−)η−1 +Q+
N,λ(hN,λ,−, hN,λ,+)η−1

+Q−N,λ(hN,λ, hN,λ,−)η−1. (4.10)

Since ∥∥∥Q−N,λ(hN,λ, hN,λ,−)η−1
∥∥∥
L∞−4

≤ C(M)‖hN,λ,−‖L∞−2
,
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where C(M) is some constant depending on M . Inequalities (4.9) and (4.10) lead to

d

dt
‖hN,λ,−η−1‖L∞−4

≤ C ′(M)‖hN,λ,−‖L∞−2
on [0, τ ],

which implies

‖hN,λ,−(t)η−1‖L∞−4
≤ exp(C ′(M)t)‖h0N ,−η

−1‖L∞−4
= 0, on [0, τ ].

Hence hN,λ,− = 0 on [0, τ ], which means hN,λ ≥ 0 on [0, τ ]. As a consequence, assumption
3.1 and (3.15) imply∫

(−1,1)3
hN,λ(t)η−1dv̄ ≤

∫
(−1,1)3

h0N η
−1dv̄ on [0, τ ].

By repeating the argument for [τ, 2τ ], [2τ, 3τ ]... we conclude that hN,λ is positive and
‖hN,λ‖L1(η−1) is bounded at all time.

4.2 Maxwellian lower bound for hN,λ

In this section, we establish a Maxwellian lower bound for the solution hN,λ of (4.2). We
first formulate some inequalities of Duhamel’s type that will be the base of our estimates
to obtain a Maxwellian lower bound for hN,λ. Notice that the results in this subsection still
hold for the case λ =∞. Consider equation (4.2) on hN,λ, by assumption 3.2 we have

∂thN,λ(t, v̄)

= QN,λ(hN,λ, hN,λ) = Q+
N,λ(hN,λ, hN,λ)−Q−N,λ(hN,λ, hN,λ)

= Q+
N,λ(hN,λ, hN,λ)

−ηPN

{
η−1

∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)hN,λ(v̄)hN,λ(v̄∗)dσdv̄∗

}
≥ Q+

N,λ(hN,λ, hN,λ) (4.11)

−Cη[η−1hN,λ(v̄)]PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)hN,λ(v̄∗)dσdv̄∗

}
≥ Q+

N,λ(hN,λ, hN,λ)

−ChN,λ(v̄)PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)hN,λ(v̄∗)dσdv̄∗

}
,

notice that PN (η−1hN,λ) = η−1hN,λ. Set

H(v̄) = PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)hN,λ(v̄∗)dσdv̄∗

}
,

and

Gt2t1(v̄) = exp

(
−
∫ t2

t1

H(t, v̄)dt

)
, ∀t1, t2 > 0.
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Apply Duhamel’s representation to inequality (4.11), we get

hN,λ(t, v̄) ≥ h0N (v̄)Gt0(v̄) +

∫ t

0
Gtτ (v̄)Q+

N,λ(hN,λ(τ, .), hN,λ(τ, .))(v̄)dτ. (4.12)

In order to come back to the original formulation of the Boltzmann equation, we define

fN,λ(t, v) = hN,λ(t, ϕ(v))(1 + |v|)−4, (4.13)

and accordingly
f0N (v) = h0N (ϕ(v))(1 + |v|)−4.

With this new function, H becomes

PN
{∫

R3×S2
Bλ(|v − v∗|, σ)fN,λ(v∗)dσdv∗

}
,

where for the sake of simplicity, we still denote by PN the orthogonal project from L2((−1, 1)3)
onto VN but with the new variable v.
By proposition 4.1, we can see that∫

R3

∫
S2
Bλ(|v − v∗|, σ)fN,λ(v∗)dσdv̄∗ ≤ C(1 + |v|)γ ,

then ∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)hN,λ(v̄∗)dσdv̄∗ ≤ C(1− |v̄|)−γ ,

which means

H = PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)hN,λ(v̄∗)dσdv̄∗

}
≤ CPN

{
(1− |v̄|)−γ

}
,

with the notice that PN is a positive projection and C is a constant not depending on N
and λ.
Define

G̃t2t1(v̄) = exp
(
−C(t2 − t1)PN [(1− |v̄|)−γ ]

)
,

we get
Gt2t1(v̄) ≥ G̃t2t1(v̄).

Using this inequality in (4.12), we obtain

hN,λ(t, v̄) ≥ h0N (v̄)G̃t0(v̄) +

∫ t

0
G̃tτ (v̄)Q+

N,λ(hN,λ(τ, .), hN,λ(τ, .))(v̄)dτ. (4.14)

From (4.14), we deduce the following two inequalities, which will be used several times in
the rest of this subsection

hN,λ(t, v̄) ≥
∫ t

0
G̃tτ (v̄)Q+

N,λ(h0N G̃
τ
0 , h0N G̃

τ
0)(v̄)dτ, (4.15)

and

hN,λ(t, v̄) (4.16)
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≥
∫ t

0
G̃tτ (v̄)Q+

N,λ

(∫ τ

0
G̃ττ1(v̄)Q+

N,λ(h0N G̃
τ1
0 , h0N G̃

τ1
0 )(v̄)dτ1, h0N G̃

τ
0

)
(v̄)dτ.

With the notation
Ĝtτ (v) = G̃tτ (ϕ(v)),

where ϕ is defined in (2.1) and

Q+
λ (F2, F1)(v) =

∫
R3

∫
S2
Bλ(|v − v∗|, cos θ)F1

′F2
′
∗dσdv∗,

for all measurable functions F1 and F2, we have

fN,λ(t, v) ≥
∫ t

0
Ĝtτ (v)PNQ+

λ (f0N Ĝ
τ
0 , f0N Ĝ

τ
0)(v)dτ, (4.17)

and

fN,λ(t, v) (4.18)

≥
∫ t

0
Ĝtτ (v)PNQ+

λ

(∫ τ

0
Ĝττ1(v)PNQ+

λ (f0N Ĝ
τ1
0 , f0N Ĝ

τ1
0 )(v)dτ1, f0N Ĝ

τ
0

)
(v)dτ,

where (4.18) follows from assumption 3.2.

Lemma 4.1. There are constants R, α, ε0 and Ō ∈ R3 such that for N , λ sufficiently
large, we have fN,λ(t, v) > ε0 for all |v − Ō| < α, |Ō| < R. Moreover ε0 = O(t2) for small
t.

Proof. We suppose that
∫
R3 f0 = 1. Let R be a positive constant and divide KR = (−R,R)3

into
(

2R
r

)3
cubes, centred at Oi and of length r. If R is large enough, we have∫

KR

f0dv >
1

2
.

Since f0N = PN (f0)

lim
N→∞

∫
KR

|f0N − f0|dv = 0,

there exists N0 such that for N > N0∫
KR

f0Ndv >
1

2
.

Since
∫
R3 f0 = 1, we can infer that for r sufficiently small depending on f0∫

Ki

f0dv <
1

4.33
,

for all i. Therefore, no set of 27 subcubes can contain more than half of the mass contained
in KR, which means there exist two subcubes K1, K2 with |O1 −O2| ≥ 2

√
3r satisfying∫

Ki

f0 ≥
1

4(2R/r)3
, i = 1, 2.
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Since

lim
N→∞

∫
Ki

|f0N − f0|dv = 0,∀i,

there exists a constant, still denoted by N0 such that for all N > N0∫
Ki

f0Ndv <
1

4.33
, and

∫
Ki

f0N ≥
1

8(2R/r)3
, i = 1, 2.

We define Ō = (O1+O2)/2 and α = (|O1−O2|−
√

6r)/(4
√

2) then α > (2
√

3−
√

6)r/(4
√

2).
Let w1, w2 be in K1 and K2 and define Sw1,w2 to be the sphere taking the segment w1, w2

as its diagonal. We can see that the ball with center Ō and radius 2α lies entirely inside
Sw1,w2 . Define χ1, χ2 and χR to be the characteristic functions of K1, K2 and KR. Set

F1 = f0Nχ1; F2 = f0Nχ2; F3 = f0NχR,

and use these functions in (4.18), we get

fN,λ(t, v) (4.19)

≥
∫ t

0
Ĝtτ (v)PNQ+

λ

(∫ τ

0
Ĝττ1(v)PNQ+

λ (f0N Ĝ
τ1
0 , f0N Ĝ

τ1
0 )(v)dτ1, f0N Ĝ

τ
0

)
(v)dτ

≥
∫ t

0
Ĝtτ (v)PNQ+

λ

(∫ τ

0
Ĝττ1(v)PNQ+

λ (F2Ĝ
τ1
0 , F1Ĝ

τ1
0 )(v)dτ1, F3Ĝ

τ
0

)
(v)dτ.

Since F1, F2, F3 are all supported in KR, then Ĝt2t1(v) could be considered as being supported
in {v : |v| < 2R} and

Ĝt2t1(v) = exp (−C(t2 − t1)PN ((1 + |v|)γ) ≥ exp (−C(t2 − t1)PN ((1 + 2R)γ)) ,

then

F1Ĝ
τ1
0 ≥ exp (−Cτ1((1 + 2R)γ)) f0Nχ1, F2Ĝ

τ1
0 ≥ exp (−Cτ1((1 + 2R)γ)) f0Nχ2,

F3Ĝ
τ
0 ≥ exp (−Cτ((1 + 2R)γ)) f0NχR,

which, together with (4.19) implies

fN,λ(t, v) ≥
∫ t

0

∫ τ

0
exp(−C((1 + 2R)γ)(t+ τ + τ1))dτ1dτ (4.20)

×PNQ+
λ

(
PNQ+

λ (F2, F1), F3

)
(v),

where C is some constant not depending on N and λ.
We assume without loss of generality that b(cos θ) is bounded from below by a constant b0.
By Carleman’s representation,

Q+
λ (PNQ+

λ (F2, F1), F3)(v) (4.21)

=

∫
R3

F3(v′)
(|v − v′| ∧ λ)γ

|v − v′|2

∫
Ev,v′

PNQ+
λ (F2, F1)(v′∗)b(cos θ)dE(v′∗)dv

′,
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where Ev,v′ is the plane containing v and perpendicular to v′−v and dE(v′∗) is the Lebesgue
measure on Ev,v′ . Since

F1(v) =

∫
R3

F1(w)δ(v − w)dw and F2(v) =

∫
R3

F2(w)δ(v − w)dw,

denote v′ and v′∗ by u and w we have∫
Ev,v′

PNQ+
λ (F2, F1)(v′∗)b(cos θ)dE(v′∗)

≥
∫
Ev,u

PN [Q+
λ (F2, F1)(w)b0]dE(w)

≥
∫
Ev,u

PN
[∫

R3×S2
(|w − w∗| ∧ λ)γb0

2F ′1F2
′
∗dσdw∗

]
dE(w)

≥
∫
Ev,u

PN [

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2 (4.22)

×δ(w′ − w1)δ(w′∗ − w2)dσdw∗dw1dw2]dE(w)

≥
∫
Ev,u

PN [

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2

×δ1(w′)δ2(w′∗)dσdw∗dw1dw2]dE(w)

where
δ1(v′) = δ(v′ − w1), and δ2(v′∗) = δ2(v′∗ − w2).

Let χε be the characteristic function of {w|dist(w,Ev,u) < ε}, then∫
Ev,u

PN [

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2

×δ1(w′)δ2(w′∗)dσdw∗dw1dw2]dE(w)

= lim
ε→0

1

2ε

∫
R3

PN [

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2

×δ1(w′)δ2(w′∗)dσdw∗dw1dw2]χεdw

= lim
ε→0

1

2ε

∫
R3

[

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2 (4.23)

×δ1(w′)δ2(w′∗)dσdw∗dw1dw2]PN (χε(1 + |w|)4)(1 + |w|)−4dw

≥ lim
ε→0

1

2ε

∫
R3

[

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2

×δ1(w′)δ2(w′∗)dσdw∗dw1dw2]PN (χεPN (1 + |w|)4)(1 + |w|)−4dw

≥ lim
ε→0

C

2ε

∫
R3

[

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2

×δ1(w′)δ2(w′∗)dσdw∗dw1dw2]PNχεPN (1 + |w|)4)(1 + |w|)−4dw

≥ lim
ε→0

C

2ε

∫
R3

[

∫
R6

F1(w1)F2(w2)

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2

×δ1(w′)δ2(w′∗)dσdw∗dw1dw2]PNχεdw,
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where the last inequalities follow from assumption 3.2. Moreover, we have that

lim
ε→0

C
1

2ε

∫
R3

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2δ1(w′)δ2(w′∗)PNχε(w)dσdw∗dw

= lim
ε→0

C
1

2ε

∫
R3

∫
R3×S2

(|w − w∗| ∧ λ)γb0
2δ1(w)δ2(w∗)PNχε(w′)dσdw∗dw

= lim
ε→0

C
1

2ε

(|w1 − w2| ∧ λ)γ

|w1 − w2|2

∫
Sw1,w2

b20
cos θ

PNχε(w′)dñ, (4.24)

where the first equality follows from the change of variables dw∗dw → dw′∗dw
′ and the

second one is Carleman’s change of variables (see [10], [59]), ñ denotes the measure on the
surface of the sphere. Since for λ > 2R

lim
ε→0

C
1

2ε

(|w1 − w2| ∧ λ)γ

|w1 − w2|2

∫
Sw1,w2

b20
cos θ

χε(w
′)dñ

= lim
ε→0

C
1

2ε
|w1 − w2|γ−2

∫
Sw1,w2

b20
cos θ

χε(w
′)dñ

≥ Cπ|w1 − w2|γ−1b20

. ≥ Cπmin{(2R)γ−1, (2r)1−γ}b20,

then we can have for λ > 2R, N sufficiently large

lim
ε→0

C
1

2ε

(|w1 − w2| ∧ λ)γ

|w1 − w2|2

∫
Sw1,w2

b20
cos θ

PNχε(w′)dñ ≥ C.

Combine (4.21), (4.22), (4.23), (4.24) and (4.25), we get

fN,λ(t, v) ≥ C̄

∫ t

0

∫ τ

0
exp(−C((1 + 2R)γ)(t+ τ + τ1))dτ1dτ (4.25)

×
∫
R3

F3(u)
(|v − u| ∧ λ)γ

|v − u|2

∫
R6

F1(w1)F2(w2)dw1dw2du

≥
∫ t

0

∫ τ

0
exp(−C((1 + 2R)γ)(t+ τ + τ1))dτ1dτ

×C̄(2R)γ−2 1

2

(
1

8(2R/r)3

)2

,

which leads to the conclusion of the lemma.

Lemma 4.2. Suppose that there is Ō ∈ R3, such that F (v) > ε for |v− Ō| < α, then there
exist C, ς, ε > 0, which do not depend on λ, such that

Q+
λ (F, F )(v) > Cα3+γς5/2ε2, (4.26)

for all v, |v − Ō| < α
√

2(1− ς).

Proof. Without loss of generality, we can assume that Ō is the origin. According to Carle-
man’s representation, we have the following scaling property

Q+
λ (F, F )(βv)
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=

∫
R3

F (u)
(|u− βv| ∧ λ)γ

|u− βv|2

∫
Eβv,u

b(cos θ)F (w)dE(w)du

= β3

∫
R3

F (βu)
βγ−2(|u− v| ∧ (λ/β))γ

|u− v|2

∫
Eβv,βu

b(cos θ)F (w)dE(w)du

= β3

∫
R3

F (βu)
βγ−2(|u− v| ∧ (λ/β))γ

|u− v|2
β2

∫
Ev,u

b(cos θ)F (βw)dE(w)du

= βγ+3

∫
R3

F (βu)
(|u− v| ∧ (λ/β))γ

|u− v|2

∫
Ev,u

b(cos θ)F (βw)dE(w)du,

where we still use the notation of the previous lemma u = v′ and w = v′∗. This scaling
property means that we can suppose α to be 1 and since we only consider λ sufficiently large,
we can still keep λ instead of changing it into λ/β. Suppose without loss of generality that
F is the characteristic function of the ball {w | |w| < 1} and assume by a rotation of the
coordinate that v = (0, 0, z), 1 ≤ z <

√
2. Use polar coordinates for u with v to be the origin,

i.e. u− v = (r sin$ cos$′, r sin$ sin$′, r cos$′) then du = r2dσ = r2 sin$d$d$′dr and

Q+
λ (F, F )(v) =

∫
R3

F (u)
(|u− v| ∧ λ)γ

|u− v|2

∫
Ev,u

b(cos θ)F (w)dE(w)du

≥ b02π

∫ π

0

∫ ∞
0

F (u)
(r ∧ λ)γ

r2

∫
Ev,u

F (w)dE(w) sin$d$r2dr.

≥ b02π

∫ π

0

∫ ∞
0

F (u)(r ∧ λ)γ
∫
Ev,u

F (w)dE(w) sin$d$dr.

Since F is the characteristic function of {|w| < 1}, we can suppose that |u| ≤ 1 and |w| ≤ 1.

Then |u|2 = r2 sin2$ + |z + r cos$|2 < 1, which leads to z cos$ −
√

1− z2 sin2$ ≤ r ≤
z cos$ +

√
1− z2 sin2$ and z cos$ > 1 or arccos(1/z) ≤ $. Moreover the fact that

1 ≥ z2 sin2$ implies $ ≤ arcsin(1/z). Applying the change of variables y = z cos$ with
dy = z sin$d$ gives

Q+
λ (F, F )(v) ≥ 2π2b0

z

∫ 1

√
z2−1

∫ y+
√

1−z2+y2

y−
√

1−z2+y2
|r ∧ λ|γdr(1− y2)dy (4.27)

≥ 2π2b0
z

∫ 1

√
z2−1

∫ y+
√

1−z2+y2

y−
√

1−z2+y2
|r|γdr(1− y2)dy,

the last inequality follows when we take λ > 10 > y +
√

1− z2 + y2. Notice that we
need to prove (4.26) for |v − Ō| < α

√
2(1 − ς), we now need to estimate the integral near

z =
√

2. Put y′ = 1− y and z =
√

2(1− ς), then the integral of r becomes
√

1− z2 + y2 =√
4ς − 2ς2 − 2y′ + |y′|2 v 2

√
4ς − 2y′ + O(ς3/2). Moreover 1

z = 1 + O(ς),
√
z2 − 1 v 2ς +

O(ς2) and the right hand side of (4.27) could be bounded from below by

8π2b0(1 +O(ς))

∫ 2ς+O(ς2)

0

(√
2ς − y′ +O(ς3/2)

)
y′(1 +O(ς))dy′

= 8π2b0(1 +O(ς))(2ς)5/2

∫ 1+O(ς)

0

(√
1− y′′ +O(ς)

)
(y′′ +O(ς))dy′′
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=
64
√

2π2

15
ς5/2 +O(ς7/2),

where the first equality follows from the change of variables y′ = 2y′′.

Proposition 4.2. There exist positive constants C̃1, C̃2 independent of N and λ, such that
for all v̄ in the support of hN,λ

hN,λ(v̄, t) ≥ C̃1 exp

(
−C̃2

∣∣∣∣ |v̄|1− |v̄|

∣∣∣∣2
)
.

The constants C̃1 and C̃2 depend on t, however, they could be chosen uniformly for all
t > t0, where t0 is an arbitrary positive time.

Proof. We now proceed the proof by a classical iteration process as in [59]. By lemma 4.1,
there exists a ball |v − Ō| < α such that fN,λ(t0, v) > ε0. By (4.17)

fN,λ(t0 + t1, v) ≥
∫ t0+t1

t0

Ĝt0+t1
τ (v)PNQ+

λ (fN,λ(t0)Ĝτt0 , fN,λ(t0)Ĝτt0)(v)dτ. (4.28)

Now, for v near the given ball and lies in the support of fN,λ,

Ĝτ2τ1 ≥ exp(−(τ2 − τ1)c(1 + 2|Ō|γ + 21+γ/2αγ)).

Plug this inequality into (4.28) and use lemma 4.2

fN,λ(t0 + t1, v) ≥ t1 exp(−t1C(1 + 2|Ō|β + 21+γ/2αγ))α3+γς
5/2
1 ε20

≥ t1 exp(−Ct121+γ/2αγ)α3+γς
5/2
1 ε20,

and this holds with |v − Ō| <
√

2(1 − ς1)α and v ∈ (− ζN
1−ζN ,

ζN
1−ζN )3. Now, we take the

iteration

fN,λ(t0 + t1 + t2, v) ≥ (t1 exp(−t1C21+γ/2αγ)α3+γς
5/2
1 ε20)2

×t2 exp(−t2C21+2γ/2αγ)(21/2(1− ς1)α)3+γς
5/2
2 ,

for |v − Ō| < 2(1− ς1)(1− ς2)α and v ∈ (− ζN
1−ζN ,

ζN
1−ζN )3. At the n− th step

fN,λ(t0 + t1 + · · ·+ tn, v)

> ε2
n

0 (Cα3+γ)2n−1(21/2(1− ς1))(3+γ)2n−1−1
. . . (2k/2(1− ς1) . . . (1− ςk))(3+γ)2n−1−k

. . . (t1ς
5/2
1 )2n−1

. . . (tkς
5/2
k )2n−k . . . (tnς

5/2
n )20

exp(−Ct1αγ21+γ/22n−1) . . . exp(−Ctkαγ21+γk/22n−k) . . . exp(−Ctnαγ21+γn/22n−n),

for |v−Ō| < 2n/2(1−ς1) . . . (1−ςn)α and v ∈ (− ζN
1−ζN ,

ζN
1−ζN )3, which leads to the conclusion

of the proposition.
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4.3 L2
−4 estimate for hN,λ

Define
Υλ(v) = [1 + (|v| ∧ λ)]γ , (4.29)

we now prove a technical lemma on

Q+
λ (F, F )(v) =

∫
R3

∫
S2
Bλ(|v − v∗|, cos θ)F ′∗F

′dσdv∗,

before going to the L2
−4 estimate for hN,λ.

Lemma 4.3. Let ν, δ and k be three constants satisfying ν, δ ≥ −γ and k > γ. There
exist positive constants C and ι, such that the following estimate holds for all ε > 0 and all
measurable function F∣∣∣∣∫

R3

Q+
λ (F, F )Fdv

∣∣∣∣ ≤ Cε−ι‖F‖L10/7
δ

‖F‖L2
−δ
‖F‖L1

2|δ|
(4.30)

+ε‖F‖L2(Υγ+νλ )‖F‖L2(Υ−νλ )‖F‖L1
|k+ν|+|ν|

.

In particular, if we take δ = 0 and ν = −γ/2∣∣∣∣∫
R3

Q+
λ (F, F )Fdv

∣∣∣∣ ≤ Cε−ι‖F‖L2‖F‖L10/7‖F‖L1 + ε‖F‖2
L2(Υ

1/2
λ )
‖F‖L1

|k|
. (4.31)

Remark 4.1. Notice that the lemma is still valid for the case λ =∞.

Proof. By similar arguments as in [48], we can suppose that b ∈ C∞c (−1, 1). Let Θ : R3 → R
be a radial C∞ function such that suppΘ ⊂ B(0, 1) and

∫
R3 Θ = 1. Let µ be a constant

smaller than λ and define the regularizing function

Θµ(x) = µ3Θ(µx) (x ∈ R3).

Define
ΦS = Φ ∗ (Θ1Aµ), ΦR = Φ− ΦS ,

where Aµ is the annulus Aµ = {x ∈ R3; 2
µ ≤ |x| ≤ µ}.

Set
Bλ(|v|, σ) = BS(|v|, σ) +BR(|v|, σ),

where
BS(|v|, σ) := ΦS(v)b(cos θ).

Set
Q+
λ = Q+

S +Q+
R,

with

Q+
S (F, F )(v) =

∫
R3

∫
S2
BS(|v − v∗|, cos θ)F ′∗F

′dσdv∗.

By Corollary 3.2 [48], the first term Q+
S could be bounded in the following way∣∣∣∣∫

R3

Q+
S (F, F )Fdv

∣∣∣∣ ≤ C(δ, b)‖F‖
L
10/7
δ

‖F‖L2
−δ
‖F‖L1

2|δ|
. (4.32)
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Now, we will estimate the second term Q+
R. For all test function % the following equality

holds ∫
R3

Q+
R(F, F )%dv =

∫
R6

F (v∗)F (v)

[∫
S2
BR(|v − v∗|, σ)%(v′)dσ

]
dv∗dv.

By defining

S%(v) =

∫
S2
BR(|v|, σ)%

(
v + |v|σ

2

)
dσ,

we have ∫
R3

Q+
R(F, F )%dv =

∫
R3

F (v∗)

(∫
R3

F (v)(Tv∗S(T−v∗%))(v)dv

)
dv∗,

where Thf(v) = f(v− h). Let ξ1, ξ2 be two non-negative constants. Consider the weighted
L∞ norm of S%, since |v+| ≤ |v|

‖S%‖
L∞(Υ

−ξ1−ξ2
λ )

≤ C‖b‖L1(S2)‖%‖L∞(Υ
−ξ2
λ )
‖ΦR‖L∞(Υ

−ξ1
λ )

,

where C is some positive constant.
Now, consider the weighted L1 norm of S2%

‖S%‖
L1(Υ

−ξ1−ξ2
λ )

≤
∫
R3

∫
S2

ΦR(v)Υ−ξ1−ξ2−1
λ (v)b(cos θ)

∣∣∣∣%(v + |v|σ
2

)∣∣∣∣ dσdv
≤ ‖ΦR‖L∞(Υ

−ξ1
λ )

∫
R3

∫
S2

Υ−ξ2λ (v)b(cos θ)

∣∣∣∣%(v + |v|σ
2

)∣∣∣∣ dσdv
≤ C‖ΦR‖L∞(Υ

−ξ1
λ )

∫
R3

∫
S2
b(cos θ)Υ−ξ2λ (v+)|%(v+)|dσdv.

The last inequality follows from the fact that |v+| ≤ |v| and ξ2 ≥ 0.

Apply the change of variables v → v+, whose Jacobian is 1
8

(
1 +

〈
v
|v| , σ

〉)
= cos2(θ/2)

4 we

obtain

‖S%‖
L1(Υ

−ξ1−ξ2
λ )

≤ ‖ΦR‖L∞(Υ
−ξ1
λ )
×∫

R3

∫
S2

4b(cos θ)

cos2(θ/2)
Υ−ξ2λ (v+)|%(v+)|dσdv+

≤ C(θb, ξ)‖ΦR‖L∞(Υ
−ξ1
λ )
‖b‖L1(S2)‖%‖L1(Υ

−ξ2
λ )

,

with the notice that θ ∈ [0, θb]. By the Riesz-Thorin interpolation theorem, the above
estimates on the weighted L1 and L∞ norms of S% lead to

‖S%‖
L2(Υ

−ξ1−ξ2
λ )

≤ C(θb, ξ)‖ΦR‖L∞(Υ
−ξ1
λ )
‖b‖L1(S2)‖%‖L2(Υ

−ξ2
λ )

.

Now, we will estimate the term ∫
R3

Q+
R(F, F )Fdv,

by using the above bound on ‖S1%‖L2(Υ
−ξ1−ξ2−1
λ )

. In order to do this, we separate F into

large and small velocities:
F = Fr + F cr , with r < λ,
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Fr = Fχ{|v|≤r} and F cr = Fχ{|v|>r},

where χ{|v|≤r} and χ{|v|>r} are the characteristic functions of the sets {|v| ≤ r} and {|v| > r}.
Let ν be a positive constant. We make the following separation∫

R3

Q+
R(F, F )Fdv =

∫
R3

Q+
R(F, F cr )Fdv +

∫
R3

Q+
R(F, Fr)Fdv. (4.33)

Estimating the first term on the right hand side of (4.33), we get∫
R3

Q+
R(F, F cr )Fdv

≤
∫
R3

|F cr (v∗)|
∫
R3

|F (v)||T−v∗S(Tv∗F )(v)|dvdv∗

≤
∫
R3

|F cr (v∗)|‖F‖L2(Υγ+νλ )‖T−v∗S(Tv∗F )‖L2(Υ−γ−νλ )dv∗

≤
∫
R3

|F cr (v∗)|‖F‖L2(Υγ+νλ ) < v∗ >
|γ+ν| ‖S(Tv∗F )‖L2(Υ−γ−νλ )dv∗

≤ C

∫
R3

|F cr (v∗)|‖F‖L2(Υγ+νλ ) < v∗ >
|γ+ν| ‖Tv∗F‖L2(Υ−νλ )dv∗‖ΦR‖L∞(Υ−γλ )

≤ C

∫
R3

|F cr (v∗)|‖F‖L2(Υγ+νλ ) < v∗ >
|γ+ν|+|ν| ‖F‖L2(Υ−νλ )dv∗ (4.34)

≤ Crγ−k‖F‖L2(Υγ+νλ )‖F‖L2(Υ−νλ )‖F‖L1((1+|v|)|k+ν|+|ν|),

with k > γ.
We estimate the second term on the right hand side of (4.33)∫

R3

Q+
R(F, Fr)Fdv

≤
∫
R3

|F (v∗)|
∫
R3

|Fr(v)||T−v∗S(Tv∗F )(v)|dvdv∗

≤
∫
R3

|F (v∗)|‖Fr‖L2(Υ
(k+ν)
λ )

‖T−v∗S(Tv∗F )‖
L2(Υ

−(k+ν)
λ )

dv∗

≤
∫
R3

|F (v∗)|‖Fr‖L2(Υ
(k+ν)
λ )

< v∗ >
|k+ν| ‖S(Tv∗F )‖

L2(Υ
−(k+ν)
λ )

dv∗

≤ C

∫
R3

|F (v∗)|‖Fr‖L2(Υ
(k+ν)/γ
λ )

< v∗ >
|k+ν| ‖Tv∗F‖L2(Υ−νλ )dv∗

×‖ΦR‖L∞(Υ−kλ ) (4.35)

≤ C

(
1

µ

)min{γ,k−γ} ∫
R3

|F (v∗)|‖Fr‖L2(Υ
(k+ν)
λ )

< v∗ >
|k+ν| ‖Tv∗F‖L2(Υ−νλ )dv∗

≤ C

(
1

µ

)min{γ,k−γ}
‖Fr‖L2(Υ

(k+ν)
λ )

‖F‖L2(Υ−νλ )‖F‖L1
|k+ν|+|ν|

≤ Crk−γ
(

1

µ

)min{γ,k−γ}
‖F‖

L2(Υ
(γ+ν)
λ )

‖F‖L2(Υ−νλ )‖F‖L1
|k+ν|+|ν|

,

with k > γ. Combine (4.33), (4.34) and (4.35), we get∫
R3

Q+
R(F, F )Fdv (4.36)
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≤

(
rγ−k + Crk−γ

(
1

µ

)min{γ,k−γ}
)
‖F‖

L2(Υ
(γ+ν)/γ
λ )

‖F‖
L2(Υ

−ν/γ
λ )

‖F‖L1
|k+ν|+|ν|

.

We deduce from (4.32) and (4.36) that∣∣∣∣∫
R3

Q+
λ (F, F )Fdv

∣∣∣∣
≤ C(δ, b)‖F‖

L
10/7
δ

‖F‖L2
−δ
‖F‖L1

2|δ|
(4.37)

+

(
rγ−k + Crk−γ

(
1

µ

)min{γ,k−γ}
)
‖F‖

L2(Υ
(γ+ν)/γ
λ )

‖F‖
L2(Υ

−ν/γ
λ )

‖F‖L1
|k+ν|+|ν|

.

For suitable choices of r and µ, we have the conclusions of the lemma .

Proposition 4.3. For all t0 > 0, there exist constants C, N0, λ0 such that the solution
hN,λ of (4.2) is globally bounded in the following sense

∀N ∈ N, N > N0,∀λ > λ0 sup
t≥t0
‖hN,λ‖L2−4

< C. (4.38)

Moreover, if h0N ∈ L2
−4, then there exist constants C ′, λ0 such that

∀λ > λ0 sup
t≥0
‖hN,λ‖L2−4

< C ′.

Proof. Use (1− |v̄|)6η−1hN,λ as a test function for (4.2), we get∫
(−1,1)3

(1− |v̄|)6η−1∂thN,λhN,λdv̄

=

∫
(−1,1)3

PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1 (4.39)

×
[
C(v̄, v̄∗, σ)hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
−hN,λ(v̄)hN,λ(v̄∗)] dσdv̄∗} (1− |v̄|)6hN,λdv̄.

Define as in (4.13)
fN,λ(v) = hN,λ(ϕ(v))(1 + |v|)−4, v ∈ R3,

the left hand side of (4.39) becomes∫
(−1,1)3

(1− |v̄|)6η−1∂thN,λhN,λdv̄ =

∫
R3

∂tfN,λ(1 + |v|2)fN,λ(1 + |v|)−2dv

=
1

2

d

dt

∫
R3

|fN,λ|2(1 + |v|2)(1 + |v|)−2dv. (4.40)

Consider the right hand side of (4.39)∫
(−1,1)3

PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1
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×
[
C(v̄, v̄∗, σ)hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
−hN,λ(v̄)hN,λ(v̄∗)] dσdv̄∗} (1− |v̄|)6hN,λ(v̄)dv̄

=

∫
(−1,1)3

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1 (4.41)

×
[
C(v̄, v̄∗, σ)hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
−hN,λ(v̄)hN,λ(v̄∗)] dσdv̄∗}PN [(1− |v̄|)6hN,λ(v̄)]dv̄

≤ C1

∫
(−1,1)6×S2

Bλ(v̄, v̄∗, σ)C(v̄, v̄∗, σ)η−1(1− |v̄|)6hN,λ(v̄)

×hN,λ
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
dσdv̄∗dv̄

−C2

∫
(−1,1)6×S2

Bλ(v̄, v̄∗, σ)η−1(1− |v̄|)6|hN,λ(v̄)|2hN,λ(v̄∗)dσdv̄∗dv̄,

where the last inequality follows from assumption 3.2 and C1, C2 are some positive constants.
We deduce from (4.41) that∫

(−1,1)3
PN

{∫
(−1,1)3

∫
S2
Bλ(v̄, v̄∗, σ)η−1

×
[
C(v̄, v̄∗, σ)hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN,λ

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
(4.42)

−hN,λ(v̄)hN,λ(v̄∗)] dσdv∗} (1− |v̄|)6hN,λ(v̄)dv̄

≤ C1

∫
R6×S2

Bλ(|v − v∗|, σ)fN,λ(v′∗)fN,λ(v′)fN,λ(v)(1 + |v|2)(1 + |v|)−2dσdv∗dv

−C2

∫
R6×S2

Bλ(|v − v∗|, σ)fN,λ(v∗)|fN,λ(v)|2(1 + |v|2)(1 + |v|)−2dσdv∗dv.

Combine (4.40) and (4.42), we get

1

2

d

dt

∫
R3

|fN,λ|2(1 + |v|2)(1 + |v|)−2dv (4.43)

≤ C1

∫
R6×S2

Bλ(|v − v∗|, σ)fN,λ(v′∗)fN,λ(v′)fN,λ(v)(1 + |v|2)(1 + |v|)−2dσdv∗dv

−C2

∫
R6×S2

Bλ(|v − v∗|, σ)fN,λ(v∗)|fN,λ(v)|2(1 + |v|2)(1 + |v|)−2dσdv∗dv.
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According to lemma 4.3, the first term on the right hand side of (4.43) could be bounded
by

C1

∫
R6×S2

Bλ(|v − v∗|, σ)fN,λ(v′∗)fN,λ(v′)fN,λ(v)(1 + |v|2)(1 + |v|)−2dσdv∗dv

≤ Cε−ι‖fN,λ‖L2‖fN,λ‖L10/7‖fN,λ‖L1 + ε‖fN,λ‖2
L2(Υ

1/2
λ )
‖fN,λ‖L1

|k|
, (4.44)

where C is some positive constant.
By the inequality

(|v − v∗| ∧ λ)γ ≥ 1

4
(|v| ∧ λ)γ − |v∗|γ ,

we have ∫
R3×S2

Bλ(|v − v∗|, σ)fN,λ(v∗)dσdv∗

= C

∫
R3×S2

(|v − v∗| ∧ λ)γb(cos(θ))fN,λ(v∗)dσdv∗ (4.45)

≥ C

∫
R3×S2

b(cos(θ))

(
1

4
(|v| ∧ λ)γ − |v∗|γ

)
fN,λ(v∗)dσdv∗

≥ C(|v| ∧ λ)γ − C‖fN,λ‖L1
γ
≥ C(|v| ∧ λ)γ − C‖f0‖L1

2
,

where the last inequality follows from the L1
2 boundedness of fN,λ.

Combine (4.43), (4.44) and (4.45), and choose ε small enough, we get

d

dt
‖fN,λ‖2L2 ≤ Cε−ι‖fN,λ‖L2‖fN,λ‖L10/7‖fN,λ‖L1 − (C − ε)‖fN,λ‖2

L2(Υ
1/2
λ )

, (4.46)

where C is some positive constant varying from lines to lines. By a classical argument as
[48], there exist constants C, N0 such that

∀s ≥ 0, ∀t0 > 0,∀N > N0 sup
t≥t0
‖fN,λ‖L2 < C.

4.4 The convergence analysis

Theorem 4.1. Suppose that assumptions 3.1 and 3.2 are satisfied. The solution hN of
(3.8) is positive and uniformly bounded with respect to N in L1

2 and L2
−4 norms, i.e. for all

t0 > 0 there exist constants C, N0 such that

∀N ∈ N, N > N0 sup
t≥t0
‖hN‖L12 < C,

and
∀t0 > 0,∀N ∈ N, N > N0 sup

t≥t0
‖hN‖L2−4

< C.

Moreover there are positive constants Ĉ1, Ĉ2, such that for all v̄ in the support of hN

hN (v̄, t) ≥ Ĉ1 exp

(
−Ĉ2

∣∣∣∣ |v̄|1− |v̄|

∣∣∣∣2
)
.
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Proof. Since the sequence {hN,λ} is uniformly bounded with respect to N and λ in L1
2 and

L2
−4 norms, the proof is direct and similar to the proofs of classical cases (for example

theorem 3.2 [2]). First we observe that since h0N is a sum of finite compactly supported
wavelets not containing the extreme points of −1 and 1, then h0N belongs to L2

−4. Hence
the sequence {hN,λ} is uniformly bounded with respect to λ (but not N) in L1

2 and L2
−4

norms for all time. By Nagumo’s criterion, Dunford-Pettis theorem and Smulian theorem
(see [25] and [40]) there exists a subsequence {hN,λj}∞j=1 converging weakly to a positive

function ȟN in L1, which is a solution of (3.8). According to proposition 3.1, the linear
ODEs (3.8) has a unique solution, then hN ≡ ȟN ≥ 0. Since the proofs of propositions 4.3
and 4.1 are still valid when λ = +∞, we infer that hN is uniformly bounded with respect
to N in L1

2 and L2
−4 norms and it is also bounded from below by a Maxwellian truncated

in its support.

Theorem 4.2. Suppose that assumptions 3.1 and 3.2 are satisfied. If f0 ∈ L1
2+γ, the

solution of (3.8) tends to the solution of (2.6) in the energy sense

sup
t∈[0,T ]

lim
N→∞

‖hN (t)− h(t)‖L12 = 0,∀T ∈ R,

which implies the limits of the mass and momentum

sup
t∈[0,T ]

lim
N→∞

‖hN (t)− h(t)‖L1 = 0,∀T ∈ R,

sup
t∈[0,T ]

lim
N→∞

‖hN (t)− h(t)‖L11 = 0,∀T ∈ R.

Proof. Take the difference between (3.8) and (2.6), multiply both sides with η−1, we get

∂t(hN − PNh)η−1 (4.47)

= PN

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)C(v̄, v̄∗, σ)η−1

× hN
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
dσdv̄∗

−
∫

(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1hN (v̄)hN (v̄∗)dσdv̄∗

−
∫

(−1,1)3

∫
S2
B(v̄, v̄∗, σ)C(v̄, v̄∗, σ)η−1

× h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
dσdv̄∗

+

∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1h(v̄)h(v̄∗)dσdv̄∗

}
.
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We deduce from (4.47) that

d

dt

∫
(−1,1)3

|hN − PNh|η−1dv̄

=

∫
(−1,1)3

{∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)C(v̄, v̄∗, σ)η−1 (4.48)

× hN
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×hN

(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
dσdv̄∗

−
∫

(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1hN (v̄)hN (v̄∗)dσdv̄∗

−
∫

(−1,1)3

∫
S2
B(v̄, v̄∗, σ)C(v̄, v̄∗, σ)η−1

× h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
− σ |ϕ

−1(v̄)− ϕ−1(v̄∗)|
2

))
×h
(
ϕ

(
ϕ−1(v̄) + ϕ−1(v̄∗)

2
+ σ
|ϕ−1(v̄)− ϕ−1(v̄∗)|

2

))
dσdv̄∗

+

∫
(−1,1)3

∫
S2
B(v̄, v̄∗, σ)η−1h(v̄)h(v̄∗)dσdv̄∗

}
PN [sign(hN − PNh)]dv̄,

where sign(hN −PNh) = 1 if hN −PNh > 0, sign(hN −PNh) = −1 if hN −PNh < 0 and
sign(hN − PNh) = 0 if hN − PNh = 0. Set

fN (v) = hN (ϕ(v))(1 + |v|)−4,

ϑ(v) = (1 + |v|2)PN (sign(fN − f̃N )(v)) := (1 + |v|2)PN (sign(fN − PNf)(v)),

we transform equation (4.48) into

d

dt

∫
R3

|fN − f̃N |(1 + |v|2)dv

=

∫
R6×S2

B(|v − v∗|, σ)[f ′N∗f
′
N − fN∗fN ]ϑ(v)dσdv∗dv (4.49)

−
∫
R6×S2

B(|v − v∗|, σ)[f ′∗f
′ − f∗f ]ϑ(v)dσdv∗dv

=
1

2

∫
R6×S2

B(|v − v∗|, σ)[fN∗fN − f∗f ][ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

=
1

2

∫
R6×S2

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ][ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

+
1

2

∫
R6×S2

B(|v − v∗|, σ)[f̃N∗ f̃N − f∗f ][ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

=
1

2

∫
{(fN−f̃N )(fN∗−f̃N∗ )>0}

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ]

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv
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+

∫
{(fN−f̃N )>0>(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ]

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

+

∫
{(fN−f̃N )>0=(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ]

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

+

∫
{(fN−f̃N )=0>(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ]

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

+
1

2

∫
R6×S2

B(|v − v∗|, σ)[f̃N∗ f̃N − f∗f ][ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv.

On the set I1 = {(fN − f̃N )(fN∗ − f̃N∗) > 0}, then ϑ(v) = 1 + |v|2 and ϑ(v∗) = 1 + |v∗|2 or
ϑ(v) = −1− |v|2 and ϑ(v∗) = −1− |v∗|2; we can see that

[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]sign(fN − f̃N ) ≤ 0 on I1.

Therefore ∫
{(fN−f̃N )(fN∗−f̃N∗ )>0}

B(|v − v∗|, σ) (4.50)

×[fN∗fN − f̃N∗ f̃N ][ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv ≤ 0.

On the set I2 = {(fN − f̃N ) > 0 > (fN∗ − f̃N∗)}, ϑ(v∗) = −(1 + |v∗|2) and ϑ(v) = (1 + |v|2).
Hence

−2(1 + |v|2) ≤ ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v) ≤ 2(1 + |v∗|2) on I2,

which leads to ∫
{(fN−f̃N )>0>(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ] (4.51)

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

=

∫
{(fN−f̃N )>0>(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN − f̃N ]fN∗

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

+

∫
{(fN−f̃N )>0>(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗ − f̃N∗ ]f̃N

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

≤ C

∫
R6×S2

B(|v − v∗|, σ)|fN − f̃N |f̃N∗(1 + |v∗|)2dσdv∗dv

+C

∫
R6×S2

B(|v − v∗|, σ)|fN∗ − f̃N∗ |f̃N (1 + |v|)2dσdv∗dv

≤ C‖fN − f̃N‖L1
2
.

On the set I3 = {(fN − f̃N ) > 0 = (fN∗ − f̃N∗)}, ϑ(v∗) = 0 and ϑ(v) = (1 + |v|2). Hence

ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v) ≤ (1 + |v∗|2) on I3,
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which leads to∫
{(fN−f̃N )>0=(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ] (4.52)

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

=

∫
{(fN−f̃N )>0=(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN − f̃N ]f̃N∗

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

=

∫
{(fN−f̃N )>0=(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN − f̃N ]f̃N∗(1 + |v∗|2)dσdv∗dv

≤ C‖fN − f̃N‖L1
2
.

On the set I4 = {(fN − f̃N ) = 0 > (fN∗ − f̃N∗)}, ϑ(v∗) = −(1 + |v∗|2) and ϑ(v) = 0. Hence

−(1 + |v|2) ≤ ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v) on I4,

which leads to ∫
{(fN−f̃N )=0>(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗fN − f̃N∗ f̃N ] (4.53)

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

=

∫
{(fN−f̃N )=0>(fN∗−f̃N∗ )}

B(|v − v∗|, σ)[fN∗ − f̃N∗ ]f̃N

×[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv

≤ C

∫
R6×S2

B(|v − v∗|, σ)|fN∗ − f̃N∗ |f̃N (1 + |v|)2dσdv∗dv

≤ C‖fN − f̃N‖L1
2
.

Therefore (4.49), (4.50), (4.51), (4.52), (4.53) imply

d

dt
‖fN − f̃N‖L1

2
(4.54)

≤ C‖fN − f̃N‖L1
2

+
1

2

∫
R6×S2

B(|v − v∗|, σ)[f̃N∗ f̃N − f∗f ][ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dv,

where C is a constant varying from lines to lines.
Apply Gronwall’s inequality to (4.54), we get

‖fN (T )− f̃N (T )‖L1
2

(4.55)

≤
∫ T

0

∫
R6×S2

eC(T−t)

2
B(|v − v∗|, σ)[f̃N∗ f̃N − f∗f ]×

[ϑ(v′∗) + ϑ(v′)− ϑ(v∗)− ϑ(v)]dσdv∗dvdt+ eCT ‖fN (0)− f̃N (0)‖L1
2
.

Inequality (4.55) implies that the accuracy of the method is indeed the accuracy of the
orthogonal projection onto the subspaces created by the wavelets.
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5 Conclusion

For the last two decades, nonlinear approximation based on wavelets has become one of the
most important theories in scientific computing and the theory for elliptic equations has
been fully developed ([23, 22, 19, 13, 17]). This paper is trying to make a bridge between
the two important theories: kinetic and nonlinear approximation. The strategy is based
on a new way of constructing an adaptive non-uniform mesh. The non-uniform mesh is
created by a wavelet ’support-stretching’ technique: we stretch supports of wavelets defined
in a bounded domain to the entire space to get a new ’nonlinear basis’, which are ’the
approximants’ of our nonlinear approximation and solve the problem on the whole space.
In our approximation, the lower-upper Maxwellian bounds play the role of a preconditioning
technique. We have provided a complete convergence theory for the method. Our nonlinear
approximation solves the equation without having to impose non-physics conditions on
the equation. In the second part [61], we introduce a filtering technique to preserve the
propagation of polynomial and exponential moments of the approximate solution. Our
wavelet filtering technique designed to preserve the properties of propagation of polynomial
and exponential moments is inspired by Zuazua’s Fourier filtering technique in Control
Theory ([65, 66]). The third part of the work [62] is devoted to the practical and numerical
aspects of the theory.
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Math., 60(1):91–146, 1933.

[12] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The mathematical theory of
dilute gases, volume 106 of Applied Mathematical Sciences. Springer-Verlag, New York,
1994.

[13] Albert Cohen. Adaptive methods for PDEs: wavelets or mesh refinement? In Proceed-
ings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages
607–620, Beijing, 2002. Higher Ed. Press.

[14] Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Adaptive wavelet methods for
elliptic operator equations: convergence rates. Math. Comp., 70(233):27–75, 2001.

[15] Albert Cohen, Ingrid Daubechies, Björn Jawerth, and Pierre Vial. Multiresolution
analysis, wavelets and fast algorithms on an interval. C. R. Acad. Sci. Paris Sér. I
Math., 316(5):417–421, 1993.

[16] Albert Cohen, Ronald DeVore, and Ricardo H. Nochetto. Convergence rates of AFEM
with H−1 data. Found. Comput. Math., 12(5):671–718, 2012.

[17] Wolfgang Dahmen. Multiscale techniques—some concepts and perspectives. In Pro-
ceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994),
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[24] R. J. DiPerna and P.-L. Lions. On the Cauchy problem for Boltzmann equations:
global existence and weak stability. Ann. of Math. (2), 130(2):321–366, 1989.

[25] R. E. Edwards. Functional analysis. Theory and applications. Holt, Rinehart and
Winston, New York, 1965.

[26] M. Escobedo and J. J. L. Velázquez. Classical non-mass-preserving solutions of coag-
ulation equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 29(4):589–635, 2012.
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cinétique des gaz. In Séminaire Goulaouic-Schwartz (1975/1976), Équations aux
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