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1 Introduction

During the last two decades many domain decomposition algorithms have
been constructed and lot of techniques have been developed to prove the con-
vergence of the algorithms at the continuous level. Among the techniques used
to prove the convergence of classical Schwarz algorithms, the first technique
is the maximum principle used by Schwarz. Adopting this technique M. Gan-
der and H. Zhao proved a convergence result for n-dimensional linear heat
equation in Gander and Zhao [2002]. The second technique is that of the or-
thogonal projections, used by P. L. Lions in Lions [1988], and his convergence
results are for linear Laplace equation and linear Stokes equation. In the same
paper, P. L. Lions also proved that the Schwarz sequences for linear elliptic
equations are related to classical minimization methods over product spaces
and this technique was then used by L. Badea in Badea [1991] for nonlinear
monotone elliptic problems. Another technique is the Fourier and Laplace
transforms used in the papers Giladi and Keller [2002], Gander and Stuart
[1998] for some 1-dimensional evolution equations, with constant coefficients.
In Lui [2002], Lui [2001], S. H. Lui used the idea of upper-lower solutions
methods to study the convergence problem for some PDEs, with initial guess
to be an upper or lower solution of the equations and monotone iterations.

For nonoverlapping optimized Schwarz methods, P. L. Lions in Lions
[1989] proposed to use an energy estimate argument to study the conver-
gence of the algorithm. The energy estimate technique was then developed in
Benamou and Desprès [1997] for Helmholtz equation and it has then become
a very powerful tool to study nonoverlapping problems. J.-H. Kimn in Kimn
[2005] proved the convergence of an overlapping optimized Schwarz method
for Poisson’s equation with Robin boundary data and S. Loisel and D. B.
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Szyld in Loisel and Szyld [2010] extended the technique of J.-H. Kimn to
linear symmetric elliptic equation. Another technique is to use semiclassical
analysis, which works for overlapping optimized Schwarz methods with rect-
angle subdomains, linear advection diffusion equations on the half plane (see
Nataf and Nier [1998]).

This paper is devoted to the study of the convergence of Schwarz methods
at the continuous level. We give a sketch of the proof of the convergence of
optimized Schwarz methods for semilinear parabolic equations, with multiple
subdomains. Complete convergence proofs for both classical and optimized
Schwarz methods, both semilinear parabolic and elliptic equations, with mul-
tiple subdomains could be found in Tran [2012].

2 Convergence for Semilinear Parabolic Equations

Consider the following parabolic equation

∂u
∂t (x, t)−

∑n
i,j=1 ai,j(x) ∂2u

∂xi∂xj
(x, t) +

∑n
i=1 bi(x) ∂u∂xi

(x, t)

+ c(x)u(x, t) = F (x, t, u(x, t)), in Ω × (0,∞),

u(x, t) = g(x, t), on ∂Ω × (0,∞),

u(x, 0) = g(x, 0), on Ω,
(1)

where Ω is a bounded and smooth enough domain in Rn. The following
conditions are imposed on (1).
(A1) For all i, j in {1, . . . , I}, ai,j(x) = aj,i(x). There exist strictly positive
numbers λ, Λ such that A = (ai,j(x)) ≥ λI in the sense of symmetric positive
definite matrices and ai,j(x) < Λ in Ω.
(A2) The functions ai,j , bi, c are in C∞(Rn) and g is in C∞(Rn+1).
(A3) There exists C > 0, such that
∀ t ∈ R, ∀ x ∈ Rn, |F (x, t, z)− F (x, t, z′)| ≤ C|z − z′|, ∀ z, z′ ∈ R.
We now describe the way that we decompose the domain Ω: The domain

Ω is divided into I smooth overlapping subdomains {Ωl}l∈{1,I}:

(∂Ωl\∂Ω) ∩ (∂Ωl′\∂Ω) = Ø, ∀ l, l′ ∈ {1, . . . , I}, l 6= l′;

∀l ∈ {1, . . . , I},∀l′, l′′ ∈ Jl, l′′ 6= l′, Ωl′ ∩Ωl′′ = Ø,

where
Jl = {l′|Ωl′ ∩Ωl 6= Ø};

∪nl=1Ωl = Ω.

This decomposition means that we do not consider cross-points in this paper.
Denote by Γl,l′ , for l′ ∈ Jl, the set (∂Ωl\∂Ω)∩Ωl′ . The transmission operator
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Bl,l′ is of Robin type Bl,l′v =
∑n
i,j=1 ai,j

∂v
∂xi

nl,l′,j + pl,l′v and nl,l′,j is the
j-th component of the outward unit normal vector of Γl,l′ ; pl,l′ is positive
and belongs to L∞(Γl,l′). The iterate #k in the l-th domain, denoted by ukl
of the Schwarz waveform relaxation algorithm is defined by:

∂uk
l

∂t −
∑n
i,j=1 ai,j

∂2uk
l

∂xi∂xj
+
∑n
i=1 bi

∂uk
l

∂xi
+ cukl = F (t, x, ukl ), in Ωl × (0,∞),

Bl,l′u
k
l = Bl,l′u

k−1
l′ , on Γl,l′ × (0,∞),∀l′ ∈ Jl,

(2)
where

ukl (x, t) = g(x, t) on (∂Ωl ∩ ∂Ω)× (0,∞), ukl (x, 0) = g(x, 0) in Ωl.

The initial guess u0 is bounded in C∞(Ω × (0,∞)); and at step 0, the Equa-
tions (2) is solved with boundary data

Bl,l′u
1
l (x, t) = u0(x, t) on Γl,l′ × (0,∞),∀l′ ∈ Jl.

A compatibility condition on u0(x, t) is also assumed

Bl,l′g(x, 0) = u0(x, 0) on Γl,l′ ,∀l′ ∈ Jl.

By an induction argument, the algorithm is well-posed. Let ekl be ukl − u
∂ekl
∂t −

∑n
i,j=1 ai,j(x)

∂2ekl
∂xi∂xj

+
∑n
i=1 bi(x)

∂ekl
∂xi

+ c(x)ekl = F (t, x, ukl )− F (t, x, u), in Ωl × (0,∞),

Bl,l′e
k
l (x, t) = Bl,l′e

k−1
l′ (x, t), on Γl,l′ × (0,∞),∀l′ ∈ Jl.

(3)
Moreover,

ekl (x, t) = 0 on (∂Ωl ∩ ∂Ω)× (0,∞), ekl (x, 0) = 0 in Ωl.

For any function f in L2(0,∞), define∫ ∞
0

f(x) exp(−yx)dx.

For any fixed positive number α, define

|f |α = sup
α′>α

[∫ α′+1

α′

(∫ ∞
0

f(x) exp(−yx)dx

)2

dy

] 1
2

,

and
L2
α(0,∞) = {f : f ∈ L2(0,∞), |f |α <∞}.
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Thus (L2
α(0,∞), |.|α) is a normed subspace of L2(0,∞).

Theorem 1. Consider the Schwarz algorithm with Robin transmission con-
ditions and the initial guess u0 in C∞c (Ω × (0,∞)). There exists a constant
α large enough such that

lim
k→∞

I∑
l=1

∫
Ωl

|ekl |2αdx = 0.

Proof. Let gl be a function bounded and greater than 1 in C∞(Rn,R), α be
a positive constant, we define

Φkl (x) :=

(∫ ∞
0

ekl exp(−αt)dt
)
gl(x),

then Φkl (x) belongs to H1(Ωl).
Let Bli and Cl be functions in L∞(Rn) defined by

Bli := bi +

n∑
j=1

(
ai,j

∂jgl
gl

)
,

Cl =

α
2

+

n∑
i,j=1

(
−ai,j

2∂igl∂jgl
(gl)2

− ∂jai,j
∂ig

g
+ ai,j

∂i,jgl
gl

)
−

n∑
i=1

bi
∂igl
gl

 .
Define

LlR(Φkl ) = −
n∑

i,j=1

∂j(ai,j∂iΦ
k
l ) +

n∑
i=1

Bli∂iΦ
k
l + ClΦkl

+

{∫ ∞
0

[(α
2

+ c
)
ekl − F (ukl ) + F (u)

]
exp(−αt)dt

}
gl.

It is possible to suppose α to be large such that Cl belongs to (α4 , α).

Lemma 1. Choose gl, gl′ such that ∇gl = ∇gl′ = 0 on Γl,l′ and gl′
gl
> 1 on

Γl,l′ , for all l′ in Jl. Φ
k
l is then a solution of the following equation{

LlR(Φkl ) = 0, in Ωl × (0,∞),

βlBl,l′(Φ
k
l ) = Bl,l′(Φ

k−1
l′ ) on Γl,l′ × (0,∞),∀l′ ∈ Jl.

(4)

where βl = gl′
gl

on Γl,l′ , for all l′ in Jl.

For all l in {1, I}, denote by Ω̃l the open set Ωl\∪l′∈JlΩl′ . For all l in I such
that ϕk+1

l = ϕkl′ on Γl,l′ for all l′ in Jl, let ϕkl and ϕk+1
l be functions in H1(Ω̃l)

and H1(Ωl) . Use the test functions ϕk+1
l and ϕkl , and take the sum (with

respect to l in {1, I}) of
∫
Ω̃l

LlR(Φk+1
l )ϕk+1

l and
∫
Ω̃l

LlR(Φkl )ϕkl to get
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−
I∑
l=1

{∫
Ω̃l

ClΦkl ϕ
k
l dx+

+

∫
Ω̃l

n∑
i,j=1

ai,j∂iΦ
k
l ∂jϕ

k
l dx+

n∑
i=1

∫
Ω̃l

Bli∂iΦ
k
l ϕ

k
l dx−

∑
l′∈Jl

∫
Γl′,l

pl′,lΦ
k
l ϕ

k
l dσ

+

∫
Ω̃l

{∫ ∞
0

[(α
2

+ c
)
ekl − F (ukl ) + F (u)

]
exp(−αt)dt

}
glϕ

k
l dx

}
(5)

=

I∑
l=1

βl

{∫
Ωl

ClΦk+1
l ϕk+1

l dx+

+

∫
Ωl

n∑
i,j=1

ai,j∂iΦ
k+1
l ∂jϕ

k+1
l dx+

∑
l′∈Jl

∫
Γl,l′

pl,l′Φ
k+1
l ϕk+1

l dσ

+

∫
Ωl

n∑
i=1

Bli∂iΦ
k+1
l ϕk+1

l dx+

+

∫
Ωl

{∫ ∞
0

[(α
2

+ c
)
ek+1
l − F (uk+1

l ) + F (u)
]

exp(−αt)dt
}
glϕ

k+1
l dx

}
.

In (5), choose ϕk+1
l to be Φk+1

l , then there exists ϕkl , such that for all l′ in

Jl ϕ
k
l = ϕk+1

l′ on Γl,l′ and

||ϕkl ||H1(Ωl) ≤ C
∑
l′∈Jl

||ϕk+1
l′ ||H1(Ωl′ )

and ||ϕkl ||L2(Ωl) ≤ C
∑
l′∈Jl

||ϕk+1
l′ ||L2(Ωl′ )

,

where C is a positive constant.
The right hand side of (5) is then greater than or equal to

I∑
l=1

βl

{∫
Ωl

λ|∇Φk+1
l |2dx−

n∑
i=1

∫
Ωl

||Bli||L∞(Ωl)

∣∣∂iΦk+1
l

∣∣ |Φk+1
l |dx

}
.

≥
I∑
l=1

βl

{∫
Ωl

λ

2
|∇Φk+1

l |2dx+
α

8

∫
Ωl

|Φk+1
l |2

}
. (6)

Similarly, the left hand side of (5) is less than or equal to
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I∑
l=1

{∫
Ω̃l

Λ|∇Φkl ||∇ϕkl |dx+

n∑
i=1

∫
Ω̃l

||Bli||L∞(Ω̃l)

∣∣∂iΦkl ∣∣ |ϕkl |dx
+
∑
l′∈Jl

||pl′,l||L∞(Γl′,l)
(||Φkl ||2H1(Ω̃l)

+ ||ϕkl ||2H1(Ω̃l)
)

}

≤
I∑
l=1

M1

{
1

2
(||∇Φkl ||2L2(Ω̃l)

+ ( max
i∈{1,I}

||Bli||L∞(Ω̃l)
)2||ϕkl ||2L2(Ω̃l)

)

+

∫
Ω̃l

2α|Φkl ||ϕkl |dx+
∑
l′∈Jl

∫
Γl′,l

pl′,l|Φkl ||ϕkl |dσ (7)

+Λ
(
||∇Φkl ||2L2(Ω̃l)

+ ||∇ϕkl ||2L2(Ω̃l)

)
+
α

2
||Φkl ||2L2(Ω̃l)

+
α

2
||ϕkl ||2L2(Ω̃l)

}
,

where M1 depends only on {Ωl}l∈{1,I} and the equation (3). Choose α such

that α > (maxi∈{1,I} ||Bli||L∞(Ω̃l)
)2, there exists M2 positive, depending only

on {Ωl}l∈{1,I} and (3) such that the right hand side of (7) is dominated by

I∑
l=1

M2

{∫
Ω̃l

(
λ

2
|∇Φkl |2dx+

α

8
|Φkl |2 +

λ

2
|∇Φk+1

l |2 +
α

8
|Φk+1
l |2

)
dx

}
(8)

≤
I∑
l=1

M2

(
λ

2
||∇Φkl ||2L2(Ωl)

+
α

8
||Φkl ||2L2(Ωl)

+
λ

2
||∇Φk+1

l ||2L2(Ωl)
+
α

8
||Φk+1

l ||2L2(Ωl)

)
.

Define

Ek :=

I∑
l=1

(
λ

2
||∇Φkl ||2L2(Ωl)

+
α

8
||Φkl ||2L2(Ωl)

)
, (9)

then (6), (7) and (8) imply

(β −M2)Ek+1 ≤M2Ek, (10)

where β = min{β1, . . . , βI}.
Since M2 depends only on {Ωl}l∈{1,I} and (3), β can be chosen such that

M3 :=
M2

β −M2
< 1.

We get

Ek ≤ Mk
3E0

≤ Mk
3

I∑
l=1

(
λ

2
||∇Φ0

l ||2L2(Ωl)
+
α

8
||Φ0

l ||2L2(Ωl)

)
.
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That deduces

||Φkl ||2L2(Ωl)
≤Mk

3

I∑
l=1

(
4λ

α
||∇Φ0

l ||2L2(Ωl)
+ ||Φ0

l ||2L2(Ωl)

)
. (11)

Since (11) still holds if M3 and λ are fixed, and α is replaced by y > α, then

I∑
l=1

∫
Ωl

(∫ ∞
0

ekl exp(−yt)dtgl
)2

dx (12)

≤ Mk
3

[
4λ

y

I∑
l=1

∫
Ωl

(∫ ∞
0

|∇e0l | exp(−yt)dt
)2

g2l dx

+
4λ

y

I∑
l=1

∫
Ωl

(∫ ∞
0

e0l exp(−yt)dt
)2

|∇gl|2dx

+

I∑
l=1

∫
Ωl

(∫ ∞
0

e0l exp(−yt)dt
)2

g2l dx

]
.

Let α′ be a constant larger than or equal to α, (12) implies

I∑
l=1

∫
Ωl

∫ α′+1

α′

(∫ ∞
0

ekl exp(−yt)dt
)2

g2l dydx (13)

≤ Mk
3

[
I∑
l=1

∫
Ωl

∫ α′+1

α′

4λ

y

(∫ ∞
0

|∇e0l | exp(−yt)dt
)2

g2l dydx

+

I∑
l=1

∫
Ωl

∫ α′+1

α′

4λ

y

(∫ ∞
0

e0l exp(−yt)dt
)2

|∇gl|2dydx

+

I∑
l=1

∫
Ωl

∫ α′+1

α′

(∫ ∞
0

e0l exp(−yt)dt
)2

g2l dydx

]
.

Since u0 belongs to C∞c (Ω × (0,∞)), the right hand side of (13) is
bounded by a constant Mk

3M4(α). The fact that gl is greater than 1 implies

I∑
l=1

∫
Ωl

∫ α′+1

α′

(∫ ∞
0

ekl exp(−yt)dt
)2

dydx ≤Mk
3M4(α). (14)

Inequality (14) deduces

lim
k→∞

I∑
l=1

∫
Ωl

|ekl |2αdx = 0. (15)
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