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Abstract. We introduce in this paper a new tool to prove the convergence
of the overlapping optimized Schwarz methods with multisubdomains. The
technique is based on some estimates of the errors on the boundaries of the
overlapping strips. Our guiding example is an n-dimensional linear parabolic
equation.

1. Introduction

In the pioneer work [11], [12], [13], P. L. Lions laid the foundations for
the continuous approach of Schwarz algorithms. With the development of parallel
computers, the interest in Schwarz methods have grown rapidly, as these methods
lead to inherently parallel algorithms. However, with classical Schwarz methods,
high frequency components converge very fast, while low frequency components
converge slowly and that slows down the performance of the methods. By replacing
Dirichlet transmission condition in classical Schwarz methods by Robin or higher
order transmission conditions, we can correct this weakness of Schwarz method.
The new methods are called optimized Schwarz methods and have been introduced
in [5], [6], [10]. Since then, the convergence properties of the optimized Schwarz
methods have been studied thoroughly, based on the following two main tools:
energy estimates and Laplace and Fourier transforms. Energy estimates allow us
to study the convergence of the methods in the nonoverlapping case. With energy
estimates, both linear and nonlinear problems have been studied and optimized
Schwarz methods have been proven to converge, while applying to these equations
(see for example, the papers [1], [8], [9]). On the other hand, Laplace and Fourier
transforms allow us to study the convergence of the overlapping optimized Schwarz
methods, but for only a few simple equations, where all coefficients are constants
and the second order operators are usually Laplace ones (see, for example [2], [4],
[5], [6]), and the convergence problem of the overlapping domain decomposition
methods with Robin transmission conditions still remains an open problem up to
now.

In this paper, we introduce a new tool to prove the convergence of the optimized
Schwarz methods for multisubdomains and apply it to an n-dimensional linear
parabolic equation. The idea of the technique is to estimate carefully the difference
between the values of the errors at the boundaries of the overlapping strips. The
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technique has the potential to be applied to many other kinds of partial differential
equations including nonlinear ones, with classical solutions of the equation. The
variational setting will be consider in a forth coming paper (see [14]). Our long term
goal is to construct some new tools to study the convergence problem of Schwarz
methods and this technique takes us a step closer to it.

2. Problem Description and Main Results

We consider the following parabolic equation
(2.1)


















∂u
∂t

−
∑n

i,j=1 ai,j(t)
∂2u

∂xi∂xj
+
∑n

i=1 bi(t)
∂u
∂xi

+ c(t)u = f(t, x), in (0, T )× Ω,

u(x, t) = g(x, t), on ∂Ω× (0, T ),

u(x, 0) = g(x, 0), on Ω,

where Ω = D × (α, β), D is a bounded and smooth domain in R
n−1. We impose

the following conditions on the coefficients of (2.1).
(A1) For all i, j in {1, . . . , n}, ai,j(t) = aj,i(t). There exists ν0 > 0 such that
A(t) = (ai,j(t)) ≥ ν0I for all t in (0, T ) in the sense of symmetric positive definite
matrices.
(A2) The functions ai,j , bi, c are bounded in C∞(R); f and g are bounded functions

in C∞(Ω× (0, T )).
With the conditions (A1) and (A2), Equation (2.1) has a unique bounded solution
u in C∞((0, T )×Ω). The proof of this result can be infered from Theorems 9 and
10, page 71 [3].

We now divide the domain Ω into M subdomains, with Ωi = D × (ai, bi) and
α = a1 < a2 < b1 < · · · < aM < bM−1 < bM = β. The optimized Schwarz
algorithm solves M equations in M subdomains instead of solving directly the
main problem (2.1). The iterate #k in the l-th domain, denoted by uk

l , is defined
by
(2.2)


























∂uk
l

∂t
−
∑n

i,j=1 ai,j(t)
∂2uk

l

∂xi∂xj
+
∑n

i=1 bi(t)
∂uk

l

∂xi
+ c(t)uk

l = f(t, x) in Ωl × (0, T ),

∂uk
l (·,al,·)
∂xn

+ puk
l (·, al, ·) =

∂uk−1

l−1
(·,al,·)

∂xn
+ puk−1

l−1 (·, al, ·) in D × (0, T ),

∂uk
l (·,bl,·)
∂xn

+ puk
l (·, bl, ·) =

∂uk−1

l+1
(·,bl,·)

∂xn
+ puk−1

l+1 (·, bl, ·) in D × (0, T ),

here, p is a constant and for each vector x in R
n, we denote x = (X, xn), with

X ∈ R
n−1 and xn ∈ R. Each iterate inherits the boundary conditions and the

initial values of u:

uk
l (x, t) = g(x, t) on (∂Ωj ∩ ∂Ω)× (0, T ), uk

l (x, 0) = g(x, 0) in Ωj ,

and a special treatment for the extreme subdomains,

uk
1(·, α, ·) = g(·, α, ·), uk

M (·, β, ·) = g(·, β, ·).
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A bounded initial guess h0 in C∞(Ω× (0, T )) is provided, i.e. we solve at the first
iteration Equations (2.2), with boundary data on left and right

∂u1
l (·, al, ·)

∂xn

+ pu1
l (·, al, ·) = h0(·, al, ·) in D × (0, T ),

∂u1
l (·, bl, ·)

∂xn

+ pu1
l (·, bl, ·) = h0(·, bl, ·) in D × (0, T ).

By using an induction argument and the same arguments as in Theorem 2, page 144
[3], we can see that each subproblem (2.2) in each iteration has a unique solution.
Theorem 10, page 71 [3] shows that these solutions belong to C∞(Ω× (0, T )). This
means that the algorithm is well-posed.

Denote by ekl the difference between uk
l and u, and substract Equation (2.2)

from the main equation (2.1), we get the following equation on ekl
(2.3)


























∂ekl
∂t

−
∑n

i,j=1 ai,j(t)
∂2ekl

∂xi∂xj
+
∑n

i=1 bi(t)
∂ekl
∂xi

+ c(t)ekl = 0 in Ωl × (0, T ),

∂ekl (·,al,·)
∂xn

+ pekl (·, al, ·) =
∂ek−1

l−1
(·,al,·)

∂xn
+ pek−1

l−1 (·, al, ·) in D × (0, T ),

∂ekl (·,bl,·)
∂xn

+ pekl (·, bl, ·) =
∂ek−1

l+1
(·,bl,·)

∂xn
+ pek−1

l+1 (·, bl, ·) in D × (0, T ).

Similarly, each iterate inherits the boundary conditions and the initial values of u

ekl = 0 on (∂Ωl ∩ ∂Ω)× (0, T ), ekl (·, ·, 0) = 0 in Ωl,

and the special treatment for the extreme subdomains,

ek1(·, α, ·) = 0, ekM (·, β, ·) = 0.

The following theorem states that the algorithm converges.

Theorem 2.1. Let ϕ be a strictly positive function in C1(R) such that −maxxn∈R

(

ϕ′

ϕ
(xn)

)

is large enough, the optimized Schwarz method converges in the following sense

lim
k→∞

max
l∈{1,...,M}

∥

∥

∥

∥

∥

(

∂(uk
l − u)

∂xn

exp(pxn)

)2

ϕ(t)

∥

∥

∥

∥

∥

C(Ωl×(0,T ))

= 0.

Moreover, for l in {1, . . . ,M}, the sequence {uk
l } converges point-wisely to u as k

tends to infinity.

Remark 2.2. We can see that if we choose ϕ(xn) = exp(−γxn), then if γ is large

enough, −maxxn∈R

(

ϕ′

ϕ
(xn)

)

is large enough. The condition of our theorem is

then satisfied.

Remark 2.3. Since ai,j , bi are functions of t, and the domain is divided into n-
subdomains, we cannot use Fourier and Laplace transforms. Moreover, since the
subdomains are overlapping, the energy estimate method cannot be used in our
case. In the next section, we introduce a new technique to prove the convergence
of the algorithm, the technique is based on the observation that we can estimate
the difference between the values of ekl on the boundary and in the interior.

Remark 2.4. The result in the theorem remains true if we let ai,j , bi be bounded
and continuous functions of t and x, but not depend on the n-th space variable xn,
as we can see in the proof in the following section.
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Remark 2.5. The idea of the proof is to transform the equations in subdomains with
Robin boundary conditions into equations with Dirichlet boundary conditions and
then to apply the maximum principle to get some boundary estimates for the errors.
However, the algorithm with Robin transmission conditions is not equivalent to the
classical algorithm with Dirichlet transmission conditions, since the transformed

equation is an equation on
∂ǫkl
∂xn

and the form of the operator of the equation is
completely changed.

3. The Convergence of the Algorithm

This section is devoted to the proof of Theorem 2.1. We divide the proof into
two steps.
Step 1: The error estimates.

For k in N and i in {1, . . . ,M}, setting ǫkl to be ekl exp(pxn), we get ekl =
ǫkl exp(−pxn). Equation (2.3) then leads to

(3.1)































































∂ǫkl
∂t

−
∑n

i,j=1 ai,j
∂2ǫkl

∂xi∂xj
+
∑n−1

i=1 (pai,n + bi)
∂ǫkl
∂xi

+ (2pan,n + bn)
∂ǫkl
∂xn

+(c− pbn − p2an,n)ǫ
k
l = 0, in Ωl × (0, T ),

∂ǫkl (·,al,·)
∂xn

=
∂ǫk−1

l−1
(·,al,·)

∂xn
in D × (0, T ),

∂ǫkl (·,bl,·)
∂xn

=
∂ǫk−1

l+1
(·,bl,·)

∂xn
in D × (0, T ),

ǫkl (·, ·, ·) = 0 on (∂Ωj ∩ ∂Ω)× (0, T ),

ǫkl (·, ·, 0) = 0 in Ωj ,

and for the extreme subdomains,

ǫk1(·, a1, ·) = 0, ǫkM (·, bM , ·) = 0.

Setting νkl =
∂ǫkl
∂xn

, we infer from Equation (3.1) that for l in {2, . . . ,M − 1}

(3.2)



























































∂νk
l

∂t
−
∑n

i,j=1 ai,j
∂2νk

l

∂xi∂xj
+
∑n−1

i=1 (pai,n + bi)
∂νk

l

∂xi
+ (2pan,n + bn)

∂νk
l

∂xn

+(c− pbn − p2an,n)ν
k
l = 0, in Ωl × (0, T ),

νkl (·, al, ·) = νk−1
l−1 (·, al, ·) in D × (0, T ),

νkl (·, bl, ·) = νk−1
l+1 (·, bl, ·) in D × (0, T ),

νkl (·, ·, ·) = 0 on (∂Ωj ∩ ∂Ω)× (0, T ),

νkl (·, ·, 0) = 0 in Ωj .

On Ωl × (0, T ), we define Φ =
(

νkl
)2

φ(xn)ϕ(t), where φ is a strictly positive

function in C2(R) to be chosen later, with the notice that −maxxn∈R

(

ϕ′

ϕ
(xn)

)

is

large enough. Our purpose is to construct an operator L of Φ, such that L(Φ) is
negative and then on L, we can apply the maximum principle to get some estimates
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on the boundaries for Φ. We now consider the following operator

L0(Φ) :=
∂Φ

∂t
−

n
∑

i,j=1

ai,j
∂2Φ

∂xi∂xj

.(3.3)

A simple calculation gives

L0(Φ) = 2νkl φϕ





∂νkl
∂t

−
n
∑

i,j=1

ai,j
∂2νkl
∂xixj



−
n
∑

i,j=1

2ai,jφϕ
∂νkl
∂xi

∂νkl
∂xj

(3.4)

−

n
∑

i=1

2ai,nφ
′ϕνkl

∂νkl
∂xi

+

(

ϕ′

ϕ
− an,n

φ′′

φ

)

φϕ(νkl )
2.

We observe that the second term on the right hand side of the previous inequality
is negative, it directly leads to

L0(Φ) ≤ 2νkl φϕ





∂νkl
∂t

−

n
∑

i,j=1

ai,j
∂2νkl
∂xixj





−

n
∑

i=1

2ai,nφ
′ϕνkl

∂νkl
∂xi

+

(

ϕ′

ϕ
− an,n

φ′′

φ

)

φϕ(νkl )
2.(3.5)

We now replace (3.2) into (3.5) and get the following bound for L0(Φ)

2νkl φϕ

(

−

n−1
∑

i=1

(pai,n + bi)
∂νkl
∂xi

− (2pan,n + bn)
∂νkl
∂xn

− (c− pbn − p2an,n)ν
k
l

)

−

n
∑

i=1

2ai,nφ
′ϕνkl

∂νkl
∂xi

+

(

ϕ′

ϕ
− an,n

φ′′

φ

)

φϕ(νkl )
2.(3.6)

Substituting

∂Φ

∂xi

= 2φϕνkl
∂νkl
∂xi

, for i ∈ {1, . . . , n− 1},

and

∂Φ

∂xn

= 2φϕνkl
∂νkl
∂xn

+ φ′ϕ(νkl )
2,

into (3.6), we get

∂Φ

∂t
−

n
∑

i,j=1

ai,j
∂2Φ

∂xi∂xj

+

(

2pan,n + bn + an,n
φ′

φ

)

∂Φ

∂xn

(3.7)

+

n−1
∑

i=1

(

pai,n + bi + ain
φ′

φ

)

∂Φ

∂xi

≤ φϕ(νkl )
2

(

ϕ′

ϕ
− ann

φ′′

φ
+ an,n

φ′2

φ2
− 2(c− pbn − p2an,n) + (2pan,n + bn)

φ′

φ

)

.
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We now get the formula for L

L(Φ) :=
∂Φ

∂t
−

n
∑

i,j=1

ai,j
∂2Φ

∂xi∂xj

+ (2pan,n + bn + ann
φ′

φ
)
∂Φ

∂xn

(3.8)

+

n−1
∑

i=1

(

pai,n + bi + ain
φ′

φ

)

∂Φ

∂xi

,

then if we choose ϕ such that −maxxn∈R

(

ϕ′

ϕ
(xn)

)

is large enough, since an,n, bn,

c, φ′

φ
, φ′′

φ
are all bounded in C(R), we can obtain a negative sign on the right hand

side of (3.7), which means L(Φ) is negative.
Since L(Φ) ≤ 0, the maximum of Φ can only be attained on the boundary of

Ωl × (0, T ). Using the fact that Φ = 0 on ∂Ωl ∩ ∂Ω and on Ω × {0}, we have the
following three estimates.

Estimate 1: 1 ≤ l ≤ M .
The maximum value of Φ can be achieved on both D × {al} × [0, T ] and D ×

{bl} × [0, T ]

(νkl (X, xn, t))
2φ(xn)ϕ(t) ≤(3.9)

≤ max{ max
D̄×[0,T ]

{(νkl (X, al, t))
2φ(al)ϕ(t)}, max

D̄×[0,T ]
{(νkl (X, bl, t))

2φ(bl)ϕ(t)}}.

Estimate 2: l = 1.
The maximum value of Φ can be achieved on both D × {a1} × [0, T ] and D ×

{b1} × [0, T ]. If the maximum of Φ is achieved on D × {a1} × [0, T ], then at the
maximum point, we need that ∂Φ

∂n
> 0 due to Hopf’s Lemma. We compute

∂Φ

∂n
(., a1, t) = −

∂νk1
∂xn

νk1φ(a1)ϕ(t)− (νk1 )
2φ′(a1)ϕ(t)

= −φ(a1)ϕ(t)

[

∂2ǫk1
∂x2

n

∂ǫk1
∂xn

+

(

∂ǫk1
∂xn

)2
φ′(a1)

φ(a1)

]

.

Since

∂ǫk1
∂t

(., a1, .)−

n
∑

i,j=1

ai,j
∂2ǫk1

∂xi∂xj

(., a1, .) +

n−1
∑

i=1

(pai,n + bi)
∂ǫk1
∂xi

(., a1, .)

+(2pan,n + bn)
∂ǫk1
∂xn

(., a1, .) + (c− pbn − p2an,n)ǫ
k
1(., a1, .) = 0, in D × (0, T ).

and ǫkl (., a1, .) = 0 on D × (0, T ), we deduce

−
∂2ǫk1
∂x2

n

(., a1, .) +

(

2p+
bn

an,n

)

∂ǫk1
∂xn

(., a1, .) = 0,

and as a consequence, we can write ∂Φ
∂n

in a different way

∂Φ

∂n
(., a1, .) = −φ(a1)ϕ(t)

(

∂ǫk1
∂xn

)2 [(

2p+
bn

an,n

)

+
φ′(a1)

φ(a1)

]

.

Choosing φ such that
(

2p+
bn(t)

an,n(t)

)

+
φ′(a1)

φ(a1)
> 0,
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we can see that
∂Φ

∂n
(., a1, .) < 0;

which means that the maximum of Φ can be achieved only on D × {b1} × [0, T ],
then

(νk1 (X, xn, t))
2φ(xn)ϕ(t) ≤ max

D̄×[0,T ]
{(νk1 (X, b1, t))

2φ(b1)ϕ(t)}.(3.10)

Estimate 3: l = M .
The maximum value(s) of Φ can be achieved on both D × {aM} × [0, T ] and

D × {bM} × [0, T ]. If the maximum of Φ is achieved on D × {bM} × [0, T ], then
at the maximum point, we need that ∂Φ

∂n
> 0 due to Hopf’s Lemma. Similar as in

Estimate 2, we can get

∂Φ

∂n
(., bM , t) =

∂νk1
∂xn

νk1φ(bM )ϕ(t) + (νk1 )
2φ′(bM )ϕ(t)

= φ(bM )ϕ(t)

(

∂ǫk1
∂xn

)2 [(

2p+
bn

an,n

)

+
φ′(bM )

φ(bM )

]

.

With the function φ satisfying
(

2p+
bn(t)

an,n(t)

)

+
φ′(bM )

φ(bM )
< 0,

we can see that
∂Φ

∂n
(., bM , .) < 0;

which means the maximum of Φ can be achieved only on D × {aM} × [0, T ], then

(νkM (X, xn, t))
2φ(xn)ϕ(t) ≤ max

D̄×[0,T ]
{(νkM (X, aM , t))2φ(aM )ϕ(t)}.(3.11)

Step 2: Proof of convergence,

lim
k→∞

max
l∈{1,...,M}

∥

∥

∥

(

νkl
)2

ϕ(t)
∥

∥

∥

C(Ωl×(0,T ))
= 0.

In the proof of convergence, we will use the three estimates (3.9), (3.10) and

(3.11) by fixing ϕ and replacing φ by appropriate functions φi, φ̃i, φ∗, φ̃∗ (i ∈
{1, . . . ,M}) in each subdomain. We define

Ek = max
l∈{1,...,M}

||(νkl )
2φϕ||

C(Ωl×(0,T )).

Step 2.1: Estimate of the right boundaries of the sub-domains.
Consider the M -th domain, at the k-th step, (3.11) implies

(νkM (X, xn, t))
2φM (xn)ϕ(t) ≤ max

D̄×[0,T ]
{(νkM (X, aM , t))2φM (aM )ϕ(t)},

where φM is a strictly positive function and will be chosen later.
Replacing xn by bM−1, we get

(νkM (X, bM−1, t))
2φM (bM−1)ϕ(t) ≤ max

D̄×[0,T ]
{(νkM (X, aM , t))2φM (aM )ϕ(t)}.
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Since νkM (X, bM−1, t) = νk+1
M−1(X, bM−1, t),

(νk+1
M−1(X, bM−1, t))

2φM (bM−1)ϕ(t) ≤ max
D̄×[0,T ]

{(νkM (X, aM , t))2φM (aM )ϕ(t)}.

The inequality becomes

(νk+1
M−1(X, bM−1, t))

2ϕ(t) ≤
φM (aM )

φM (bM−1)
max

D̄×[0,T ]
{(νkM (X, aM , t))2ϕ(t)}.

We can choose φM such that
φM (aM )

φM (bM−1)
< 1, and deduce

(3.12) (νk+1
M−1(X, bM−1, t))

2ϕ(t) ≤
φM (aM )

φM (bM−1)
Ek.

Moreover, on the (M − 1)-th domain, at the (k + 1)-th step, (3.9) leads to

(νk+1
M−1(X, xn, t))

2φM−1(xn)ϕ(t) ≤

max{ max
D̄×[0,T ]

{(νk+1
M−1(X, bM−1, t))

2φM−1(bM−1)ϕ(t)},

max
D̄×[0,T ]

{(νk+1
M−1(X, aM−1, t))

2φM−1(aM−1)ϕ(t)}},

where φM−1 is a strictly positive function that will be chosen later.

Since νk+1
M−1(X, bM−2, t) = νk+2

M−2(X, bM−2, t),

(νk+2
M−2(X, bM−2, t))

2φM−1(bM−2)ϕ(t) ≤

max{ max
D̄×[0,T ]

{(νk+1
M−1(X, bM−1, t))

2φM−1(bM−1)ϕ(t)},

max
D̄×[0,T ]

{(νk+1
M−1(X, aM−1, t))

2φM−1(aM−1)ϕ(t)}}.

Hence

(νk+2
M−2(X, bM−2, t))

2ϕ(t) ≤

max

{

φM−1(bM−1)

φM−1(bM−2)
max

D̄×[0,T ]
{(νk+1

M−1(X, bM−1, t))
2ϕ(t)},

max
D̄×[0,T ]

(

φM−1(aM−1)

φM−1(bM−2)
(νk+1

M−1(X, aM−1, t))
2ϕ(t)

)}

.

Combining this inequality with (3.12), we get

(νk+2
M−2(X, bM−2, t))

2ϕ(t) ≤ max

{

φM−1(bM−1)

φM−1(bM−2)

φM (aM )

φM (bM−1)
Ek,

φM−1(aM−1)

φM−1(bM−2)
Ek+1

}

.

Choosing φM−1 such that

φM−1(bM−1)

φM−1(bM−2)

φM (aM )

φM (bM−1)
=

φM−1(aM−1)

φM−1(bM−2)
< 1,

we get

(3.13) (νk+2
M−2(X, bM−2, t))

2ϕ(t) ≤
φM−1(aM−1)

φM−1(bM−2)
max{Ek, Ek+1}.
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Using the same techniques as the ones we use to achieve (3.12) and (3.13), we
can prove that

(3.14) (νk+j
M−j(X, bM−j , t))

2ϕ(t) ≤
φM−j+1(aM−j+1)

φM−j+1(bM−j)
max{Ek, . . . , Ek+j−1},

where φM−j+1 is a strictly positive function satisfying

φM−j+1(aM−j+1)

φM−j+1(bM−j)
< 1,

with j ∈ {1, . . . ,M − 1}.
Now, with (3.10), we can choose a strictly positive function φ∗ such that

φ∗(bM ) > φ∗(aM ), then

(νkM (X, bM , t))2φ∗(bM )ϕ(t) ≤ max
D̄×[0,T ]

{(νkM (X, aM , t))2φ∗(aM )ϕ(t)},

and as a result

(νkM (X, bM , t))2φ∗(bM )ϕ(t) ≤ max
D̄×[0,T ]

{(νk−1
M−1(X, aM , t))2φ∗(aM )ϕ(t)},

which implies

(3.15) (νkM (X, bM , t))2ϕ(t) ≤
φ∗(aM )

φ∗(bM )
Ek−1.

Step 2.2: Estimate of the left boundaries of the sub-domains.
Consider the first domain, at the k-th step, (3.11) implies

(νk1 (X, xn, t))
2φ̃1(xn)ϕ(t) ≤ max

D̄×[0,T ]
{(νk1 (X, b1, t))

2φ̃1(b1)ϕ(t)},

where φ̃1 is a strictly positive function that will be chosen later.
Replacing xn by a2, we get

(νk1 (X, a2, t))
2ϕ(t) ≤

φ̃1(b1)

φ̃1(a2)
max

D̄×[0,T ]
{(νk1 (X, b1, t))

2ϕ(t)}.

Since νk1 (X, a2, t) = νk+1
2 (X, a2, t), then

(νk+1
2 (X, a2, t))

2ϕ(t) ≤
φ̃1(b1)

φ̃1(a2)
max

D̄×[0,T ]
{(νk1 (X, b1, t))

2ϕ(t)}.

We choose φ̃1 such that

φ̃1(b1)

φ̃1(a2)
< 1,

and deduce

(3.16) (νk+1
2 (X, a2, t))

2ϕ(t) ≤
φ̃1(b1)

φ̃1(a2)
Ek.

Second, on the second domain, at the (k + 1)-th step, (3.11) leads to

(νk+1
2 (X, xn, t))

2φ̃2(xn)ϕ(t) ≤

max{ max
D̄×[0,T ]

{(νk+1
2 (X, b2, t))

2φ̃2(b2)ϕ(t)},

max
D̄×[0,T ]

{(νk+1
2 (X, a2, t))

2φ̃2(a2)ϕ(t)}},
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where φ̃2 is a strictly positive function and will be chosen later.
Since νk+1

2 (X, a3, t) = νk+2
3 (X, a3, t), then

(νk+2
3 (X, a3, t))

2φ̃2(a3)ϕ(t) ≤

max{ max
D̄×[0,T ]

{(νk+1
2 (X, b2, t))

2φ̃2(b2)ϕ(t)},

max
D̄×[0,T ]

[(νk+1
2 (X, a2, t))

2φ̃2(a2)ϕ(t)]}.

Hence

(νk+2
3 (X, a3, t))

2ϕ(t) ≤

max

{

φ̃2(b2)

φ̃2(a3)
max

D̄×[0,T ]
{(νk+1

2 (X, b2, t))
2ϕ(t)} ,

φ̃2(a2)

φ̃2(a3)
max

D̄×[0,T ]
[(νk+1

2 (X, a2, t))
2ϕ(t)]

}

.

Combining this with (3.16), we get

(νk+2
3 (X, a3, t))

2ϕ(t) ≤ max

{

φ̃2(b2)

φ̃2(a3)
Ek+1,

φ̃2(a2)

φ̃2(a3)

φ̃1(b1)

φ̃1(a2)
Ek

}

.

Choosing φ̃2 such that

φ̃2(b2)

φ̃2(a3)
=

φ̃2(a2)

φ̃2(a3)

φ̃1(b1)

φ̃1(a2)
< 1,

we then obtain

(3.17) (νk+2
3 (X, a3, t))

2ϕ(t) ≤
φ̃2(b2)

φ̃2(a3)
max{Ek, Ek+1}.

Using the same techniques as the ones that we use to derive (3.16) and (3.17),
we can prove that

(3.18) (νk+j−1
j (X, aj , t))

2ϕ(t) ≤
φ̃j−1(bj−1)

φ̃j−1(aj)
max{Ek, . . . , Ek+j−2},

where φ̃j−1 is a strictly positive function satisfying

φ̃j−1(bj−1)

φ̃j−1(aj)
< 1,

with j ∈ {1, . . . ,M − 1}.

Now, with (3.11), we can choose a strictly positive function φ̃∗ such that

φ̃∗(b1) < φ̃∗(a1), and get

(νk1 (X, a1, t))
2φ̃∗(a1)ϕ(t) ≤ max

D̄×[0,T ]
{(νk1 (X, b1, t))

2φ̃∗(b1)ϕ(t)},

which is equivalent to

(νk1 (X, a1, t))
2φ̃∗(a1)ϕ(t) ≤ max

D̄×[0,T ]
{(νk−1

2 (X, b1, t))
2φ̃∗(b1)ϕ(t)}.
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That implies

(3.19) (νkM (X, a1, t))
2ϕ(t) ≤

φ̃∗(b1)

φ̃∗(a1)
Ek−1.

Step 2.3: Convergence result.
From (3.14), (3.15), (3.18) and (3.19), there exists γ in (0, 1) such that

(νk+M
l (X, al, t))

2ϕ(t) ≤ γmax{Ek, . . . , Ek+M−1}, for l ∈ {1, . . . ,M},(3.20)

and

(νk+M
l (X, bl, t))

2ϕ(t) ≤ γmax{Ek, . . . , Ek+M−1}, for l ∈ {1, . . . ,M}.(3.21)

Using (3.9) for φ ≡ 1, we have that

(νkl (X, xn, t))
2ϕ(t) ≤(3.22)

≤ max{ max
D̄×[0,T ]

{(νkl (X, al, t))
2ϕ(t)}, max

D̄×[0,T ]
{(νkl (X, bl, t))

2ϕ(t)}}.

Combining (3.20), (3.21) and (3.22), we get

Ek+M ≤ γmax{Ek, . . . , Ek+M−1}.(3.23)

Hence, Ek tends to 0 as k tends to infinity.
Step 3: Proof of convergence: for l in {1, . . . ,M}, the sequence {ekl } converges

point-wisely to 0 as k tends to infinity.
Since for l in {1, . . . ,M},

lim
k→∞

∥

∥

∥

(

νkl
)2

ϕ(t)
∥

∥

∥

C(Ωl×(0,T ))
= 0,

the sequence

{

(

∂ǫkl
∂xn

)2

ϕ(t)

}

converges to 0 point-wisely and the sequence is bounded

by a constantM0. Since ϕ is strictly positive on [0, T ], there exist positive constants

M1, M2 such that M1 < ϕ < M2. That means the sequence
{∣

∣

∣

∂ǫkl
∂xn

∣

∣

∣

}

converges to

0 point-wisely and is bounded by a constant M3.
For l = 1, with a fixed value of (X, t), we get from the Lebesgue Dominated

Convergence Theorem that for xn in [a1, b1],
∫ xn

a1

∂ǫk1
∂xn

(X, ζ, t)dζ converges to 0 as

k tends to infinity. Hence the sequence {ǫk1(X, xn, t) − ǫk1(X, a1, t)} converges to
0 as k tends to infinity. Since ǫk1(X, a1, t) = 0, the sequence {ǫk1} converges to 0
point-wisely.

For l = 2, with a fixed value of (X, t), again by the Lebesgue Dominated Con-
vergence Theorem, for xn in [a2, b2], the sequence

{∫ xnt

a2

∂ǫk2
∂xn

(X, ζ, t)dζ

}

converges to 0 as k tends to infinity. Hence the sequence
{

ǫk2(X, xn, t)− ǫk2(X, a2, t)
}

converges to 0 as k tends to infinity. Since

∂ek2
∂xn

(X, a2, t) + pek2(X, a2, t) =
∂ek−1

1

∂xn

(X, a2, t) + pek−1
1 (X, a2, t),

and the sequences {ek1},
{∣

∣

∣

∂ǫkl
∂xn

∣

∣

∣

}

converge to 0 point-wisely for l in {1, . . . ,M}, we

can deduce that ǫk2(X, xn, t) converges to 0 as k tends to infinity.
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By similar processes, we can prove that for l in {1, . . . ,M}, the sequence {ekl }
converges point-wisely to 0 as k tends to infinity. This concludes the proof.

4. Numerical Results

We give here some numerical results to illustrate the convergence of the method.
Here we use the Python module Optimism developed by Loic Gouarin [7]. This
code uses the MPI library to solve domain decomposition problems and can handle
any number of subdomains. The problem in our example is the following

∂u

∂t
−△u+∇ · u+ u = 0, in (0, T )× Ω,

where Ω = (0, 1)× (0, 1). The initial and boundary data are 0.
The code uses the finite element method to solve the problem and a triangular mesh
is used. The discretization steps in space and time are dx = dy = dt = 0.01. We
look only at the first iteration in time such that T = dt.
In our example, there are four subdomains (M = 4) and the decomposition in
subdomains follows the x -direction. The overlapping length is 2 dx. It means that
the first subdomain is [0, 0.26]× [0, 1], the second one is [0.24, 0.51]× [0, 1], the third
one is [0.49, 0.76]× [0, 1], and the fourth one is [0.74, 1]. We use random initial data
h0 on the boundaries al and bl.
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We consider the performance of the algorithm for several values of p including
small and large ones: 1, 2, 10, 20, 55. On the same figure, we also plot the
performance of the algorithm with Dirichlet transmission condition. According to
this test, the algorithm with Robin transmission conditions reach the errors of 10−6
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after at most 9 iterations while the one with Dirichlet transmission conditions needs
15 iterations to reach this error.
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