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Abstract

We consider an approximation of the linearised equation of the
homogeneous Boltzmann equation that describes the distribution of
quasiparticles in a dilute gas of bosons at low temperature. The corre-
sponding collision frequency is neither bounded from below nor from
above. We prove the existence and uniqueness of solutions satisfying
the conservation of energy. We show that these solutions converge to
the corresponding stationary state, at an algebraic rate as time tends
to infinity.
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1 Introduction

A kinetic equation that describes the evolution of a non equilibrium spatially
homogeneous distribution n(t, p) of quasiparticles in a dilute Bose gas below
the Bose Einstein transition temperature Tc has been obtained by several
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authors (see for example [13], [14], [15]) and reads as follows:

∂n

∂t
(t, p) =

∫
R3

∫
R3

dp1dp2 [R(p, p1, p2)−R(p1, p, p2)−R(p2, p1, p)] (1.1)

R(p, p1, p2) = |M(p, p1, p2)|2 [δ(ω(p)− ω(p1)− ω(p2))δ(p− p1 − p2)]×
× [n(p1)n(p2)(1 + n(p))− (1 + n(p1)(1 + n(p2))n(p)] (1.2)

whereM(p, p1, p2) is the transition probability, ω(p) is the so called Bogoli-
ubov dispersion law:

ω(p) =

[
gnc
m
|p|2 +

(
|p|2

2m

)2
]1/2

(1.3)

m is the mass of the particles, g is the interaction coupling constant and
nc is the density of particles in the superfluid. It is well known that the
equation (1.1)–(1.3) has a family of equilibria:

n0(p) =
1

e
ω(p)
kBT − 1

, β > 0. (1.4)

where kB is the Boltzmann’s constant and T the temperature of the quasi-
particles whose distribution is n0.

The relaxation of n towards its corresponding equilibrium is a question
that has deserved some interest by several authors (cf. [3], [10], [11], [13]).
In the more strictly mathematical literature, the convergence to equilibrium
of Boltzmann equation has been extensively studied and still is. Since the
works by T. Carleman [5] and H. Grad [12], then by L. Arkeryd [1], S. Ukai
and K. Asano [19], G. Toscani [18] and L. Desvillettes [8] until those by L.
Desvillettes and C. Villani [9] and later by Y. Guo and R. Strain [17] (cf. the
review article [20] for more detailed references). However, we do not consider
in this work the nonlinear problem (1.1)–(1.3). We only study, instead, the
relaxation process of the equation linearised around one equilibrium. Let us
then write:

n(t, p) = n0(p) + n0(p)[1 + n0(p)]Ω(t, p) (1.5)

= n0(p) +
Ω(t, p)

4 sinh2
(
ω(p)
2kBT

) (1.6)

Plugging this expression in the equation and keeping only the linear terms
in Ω we obtain:

n0(p)[1 + n0(p)]
∂Ω

∂t
(t, p) = L(Ω)(t, p) (1.7)
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L(Ω)(t, p) = −M(p) Ω(t, p) + T (Ω)(t, p) (1.8)

T (Ω)(t, p) =

∫
R3

U(p, p′)Ω(t, p′)dp′ (1.9)

where the measure U(p, p′) and the function M(p) have been calculated in
[11] and whose explicit expressions are recalled in formulas (6.7) and (6.8)
of the Appendix.

The structure of the equation (1.7)–(1.9) is the same as in other linearised
Boltzmann equations, as they may be seen for example in [4], [6], [11], [12],
[16].

The relaxation to equilibrium of the solutions of (1.30)–(1.35) has been
considered in [3], [7], [10], [11], [13].

As it is well known, the properties of the operator L crucially depend on
the range of the function M(p) and compactness properties of the integral
operator T . For the classical Boltzmann equation with hard potential the
corresponding function M is such that, for some constant M0 > 0, M(p)→
M0 as |p| → 0, M(p) → +∞ as |p| → ∞, and its range is [M0,+∞). For
soft potentials, M(p) → M0 > 0 as |p| → 0 but M(p) → 0 as |p| → ∞ and
the range is [0,M0]. In both cases the integral operator T is compact in
some suitable functional space. It was shown in [3] that the values of the
function M(p) in (1.8) range from zero to ∞ as the variable |p| goes from
zero to∞ (see Lemma 6.1 in the Appendix below). From this point of view,
the situation for equation (1.7)–(1.9) is then similar to the case of the soft
potentials for classical particles.

In the case of the spatially homogeneous linearized Boltzman equation
for classical particles with soft potential it was observed in [12] (see also [4]
and [19]) that the spectrum of the corresponding linearised operator L goes
down until the origin and no exponential rate of convergence can be expected
for the solutions. It is shown in [4] that for soft potentials and spatially
homogeneous initial data f(0, p) decaying exponentially fast as |p| → ∞,

the part of the solution f in the range of L decays in L2(R3) like e−λt
θ

for
some λ > 0 and θ ∈ (0, 1). On the other hand, for non homogeneous initial
data, the authors of [19] proved algebraic rates of decay in Lebesgue–Sobolev
mixed type spaces.

1.1 Approximation of the linearised equation.

Since the functions ω(p) and M(p, p1, p2) appearing in equation (1.7)–(1.9)
are complicated functions of their arguments, we restrict the range of our
analysis. Following [3] we consider the situation where the equilibria n0 in
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(1.7)–(1.9) is at a quite low temperature T . More precisely, we suppose that
the temperature T , the density nc of superfluid and the interaction coupling
constant g are such that kBT is much smaller than gnc. That range has
been widely considered in the physics literature, where the functions ω(p)
and M(p, p1, p2) are then approximated as follows:

ω(p) = c|p|, c =

√
gnc
m

(1.10)

|M(p, p1, p2)|2 =
9c

64π2mnc
|p||p1||p2|, (1.11)

(cf. [3], [10], [13], [2]). This approximation has an important consequence.
Indeed, if ω(p) = c|p|, then the condition ω(p) = ω(p′) + ω(p − p′) reads
|p| = |p′|+ |p−p′|. This implies that p and p′ must be parallel vectors of R3.
The domain of integration in the integral at the right hand side of equation
(1.7)–(1.9) is then reduced to the set Cp = {λ p; λ ∈ R}. More precisely, we
are approximating the equation (1.7)–(1.9) by

n0(p)[1 + n0(p)]
∂Ω

∂t
(t, p) = −M(p)Ω(t, p) +

∫
R3

Ω(t, p′)W (p, p′)dp′ (1.12)

where W (p, p′) and M(p) are defined by (6.9) and (6.10) in the Appendix.
Our goal is to study the solutions of the Cauchy problem associated to equa-
tion (1.12), their existence, uniqueness and relaxation towards equilibrium.

Due to the formulas (1.5), (1.6), and for the sake of notation we shall
use the following convention all along this article. Given p ∈ R3, we shall
denote:

k ≡ k(p) =
c|p|

2kBT
. (1.13)

Since, we will also denote |p| = r, we shall use sometimes

k =
cr

2kBT
. (1.14)

With some abuse of notations we will also write n0(p) = n0(|p|) = n0(r) and
also, by (6.11), M(p) = M(|p|) = M(r).

Proposition 1.1 Let {Y`m}`,m be the spherical harmonics on S2. For any
sequence {c`m} of real numbers such that:

∞∑
`=0

∑̀
n=−`

c2
`m <∞
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define

Θ(p) =

( ∞∑
`=0

∑̀
m=−`

c`mY`m

(
p

|p|

))
|p|.

Then:

(i) Θ ∈ L2

(
R3,

dp

sinh2 k

)
,

(ii) −M(p)Θ(p) +

∫
R3

Θ(p′)W (p, p′)dp′ = 0.

Theorem 1.1 Suppose that Ω0 ∈ L2
(
R3, dp

sinh2 k

)
. Then, there exists a

unique function Ω(t, p) such that

Ω ∈ L∞
(

0,∞;L2

(
R3,

dp

sinh2 k

))
∩ C

(
[0,∞);L2

(
R3,

dp

sinh2 k

))
,

(1.15)

Ω−Θ ∈ L2
(
0,∞;L2

(
R3,M(p)dp

))
, (1.16)

∂Ω

∂t
∈ L2

(
0,∞;L2

(
R3,

dp

M(p) sinh4 k

))
, (1.17)

satisfying the equation (1.12) in L2
(

0,∞;L2
(
R3, dp

M(p) sinh4 k

))
and taking

the initial data Ω0 in the following sense:

lim
t→0

(
||Ω(t)− Ω0||L2

(
R3, dp

M(p) sinh4 k

) + ||Ω(t)− Ω0||L2
(
R3, dp

sinh2 k

)) = 0.

(1.18)
This solution also satisfies the following conservation property:

d

dt

∫
R3

n0(p)(1 + n0(p))Ω(t, p)|p|dp = 0. (1.19)

If Ω0 satisfies also: ∫
|p|<1

|Ω0(p)|2

|p| sinh2 k
dp <∞ (1.20)

then

||Ω(t)−Θ||
L2

(
R3, dp

sinh2 k

) ≤ C

(1 + t)1/2
||Ω0 −Θ||

L2
(
R3, dp

sinh2 k

), (1.21)
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where

Θ(p) =

( ∞∑
`=0

∑̀
m=−`

c`mY`m

(
p

|p|

))
|p| (1.22)

c`m =

(
πc

2
√

15kBT

)4 ∫
R3

Ω0(p)n0(p)(1 + n0(p))Y`m

(
p

|p|

)
dp. (1.23)

Remark 1.1 The algebraic decay rate in (1.21) is not sufficient to have
the integrability in time of ||Ω(t) − Θ||2

L2
(
R3, dp

sinh2 k

) at infinity although, by

(1.16), this integrability property is true for ||Ω(t)−Θ||2L2(R3,M(p)dp).

Remark 1.2 The behaviors of the function M(p) as |p| → 0 and |p| → ∞
are given in Proposition 6.1 of the Appendix.

Remark 1.3 The system of quasiparticles described by (1.1)–(1.2) satisfies
the physical property of energy conservation. That property is expressed, in
terms of the function n(t, p) as:

d

dt

∫
R3

n(t, p)ω(p)dp = 0.

The identity (1.19) shows that this conservation of energy still holds for the
equation (1.12).

Another natural quantity for the set of quasiparticles described by (1.1)-
(1.2) is N(t) =

∫
R3 n(t, p)dp that represents the total number of particles.

That physical quantity is not conserved by the system of particles described by
(1.1)–(1.2), and the function N(t) is not preserved, even formally, by equa-
tion (1.1)-(1.2). Nevertheless, the corresponding quantity for the linearised
equation, namely M(t) =

∫
R3 n0(p)(1 + n0(p))Ω(t, p)dp is well defined for

the solutions obtained in Theorem 1.1. See also Remark 5.1 below.

The proof of theorem (1.1) is based on the following argument. Decom-
pose first Ω(t, p) in spherical harmonics:

Ω(t, p) =

∞∑
`=0

∑̀
m=−`

Ω`m(t, |p|)Y`m
(
p

|p|

)
. (1.24)

Using the decomposition of the measure W in Legendre’s polynomial (re-
called in the Appendix) we obtain for each ` and m:

n0[1 + n0]
∂Ω`m

∂t
(t, r) = −M(r)Ω`m(t, r) +
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+
1

2`+ 1

∫ ∞
0

W`(r, r
′)Ω`m(t, r′)dr′ (1.25)

where r = |p|, r′ = |p′| and:

1

2`+ 1
W`(r, r

′) =
1

2

∫ 1

−1
W (p, p′)P`(u)du, ` = 0, 1, · · · (1.26)

It follows from the expression of G(k, k′) and W (p, p′) in (6.10) and (6.9)
that

1

2`+ 1
W`(r, r

′) =
1

2

∫ 1

−1
W (p, p′)P`(u)du

=
1

2

∫ 1

−1
W (p, p′)du = G(r, r′), ` = 1, 2 · · ·

and all the coefficients W`(r, r
′) are equal. Therefore all the modes Ω`m(t, r)

satisfy the same equation:

n0(r)[1 + n0(r)]
∂Ω`m

∂t
(t, r) = L(Ω`m)(t, r) (1.27)

L(Ω`m)(t, r) = −M(r)Ω`m(t, r) +

∫ ∞
0

W0(r, r′)Ω`m(t, r′)dr′ (1.28)

for all ` = 0, 1, 2, · · · and m ∈ {−`, · · · , `}, where with some abuse of nota-
tion we denote:

n0(p) = n0(r)

and W0(r, r′) is given by formula (6.12) in the Appendix.
Let us then consider an initial data Ω0 ∈ L2(R3) and write its decompo-

sition in spherical harmonics:

Ω0(p) =
∞∑
`=0

∑̀
m=−`

Ω0,`m(|p|)Y`m
(
p

|p|

)
.

The solution to the equation (1.12) with the initial condition Ω(0, p) =
Ω0(p) is then given by the function defined by the series (1.24) where every
function Ω`m(t, r) solves the equation (1.27), (1.28), with initial data Ω0,`m,
for ` = 0, 1, 2, · · · and m ∈ {−`, · · · , `}.

It is then enough to study the solutions of the Cauchy problem for the
equation (1.27), (1.28). To this end we perform the following change of
variables:

f(t, k) =
c|p|

2kBT

Ω(t, p)

sinh
(

c|p|
2kBT

) , k =
c|p|

2kBT
(1.29)
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and obtain (cf. [3] and [21]):

∂f

∂t
(t, k) = E(f) ≡ −Γ(k) f(t, k) + T2[f ] ≡ T1[f ] + T2[f ] (1.30)

T2[f ] = 2

∫ ∞
0

K(k, k′)f(t, k′)dk′ (1.31)

Γ(k) = sinh k

∫ ∞
0

(
φ(|k − k′|)φ(k′) + φ(k + k′)φ(k′)

)
dk′ (1.32)

K(k, k′) =
(
φ(|k − k′|)− φ(k + k′)

)
k k′ (1.33)

φ(k) =
k2

sinh k
(1.34)

f(0) = f0. (1.35)

The function Γ(k) defined by (1.32) is such that:

Γ(k) ∼ k5

15
, as k → +∞ (1.36)

Γ(k) ∼ π4k

15
, as k → 0, (1.37)

(cf. [3] and Appendix below), and then, its range is [0,+∞).
We introduce the following auxiliary function that will be needed in all

the sequel:

ϕ0 =
φ

||φ||2
=

√
30

π2
ϕ. (1.38)

Then, Theorem (1.1) is a consequence of the following result.

Theorem 1.2 Suppose that f0 ∈ L2(R+) and denote

c0 =

∫ ∞
0

f0(k)ϕ0(k)dk, (1.39)

where ϕ0 is defined in (1.38). Then,
(i) there exists a unique function f such that

(f − c0ϕ0) ∈ L2((0,∞), L2(Γ)), (1.40)

f ∈ L∞((0,∞), L2(R+)) ∩ C([0,∞), L2(R+)), (1.41)

∂f

∂t
∈ L2(0,∞;L2(Γ−1)), (1.42)

that satisfies the equation (1.30) in L2((0,∞), L2(Γ−1)) and takes the initial
data f0 in the following sense:

lim
t→0

(
||f(t)− f0||L2(Γ−1) + ||f(t)− f0||2

)
= 0. (1.43)

8



This solution also satisfies

||f(t)||22 + 2C∗

∫ ∞
0
||f(t)− c0ϕ0||2L2(Γ)dt ≤ 2||f0||22 (1.44)

∣∣∣∣∣∣∣∣∂f∂t
∣∣∣∣∣∣∣∣
L2(0,∞;L2(Γ−1))

≤ (1 + 2C0)||f ||L2(0,∞;L2(Γ)), (1.45)

for some constant C0 > 0, and the conservation of energy:

∀t > 0 :
d

dt

∫ ∞
0
f(t, k)

k2 dk

sinh(k)
= 0. (1.46)

If f0 ≥ 0, then f(t, k) ≥ 0 for all t > 0 and a. e. k > 0.
(ii) If f0 also satisfies one of the two following conditions:

I =

∫ 1

0

|f0(k)|2

k
dk <∞ (1.47)

a = lim
k→0

f0(k) exists. (1.48)

there exists a positive constant C, depending on I or a respectively, such
that, for all t > 0:

‖f(t)− c0ϕ0‖2 ≤ C
||f0 − c0ϕ0||2

(1 + t)1/2
. (1.49)

where ϕ0 is defined in (1.38) and c0 is given by (1.39).

The algebraic rate of convergence in L2(R+) norm is proved using classi-
cal arguments. We first establish a coercivity property of the operator E in
a suitable functional space. Then, this coercivity is used to obtain an upper
estimate of the convergence rate. This last step uses the detailed behavior
of the kernel K and the function Γ near k = 0.

The plan of the paper is the following. We prove in Section 2 two im-
portant properties of the operator E. Section 3 is devoted to the proof of an
existence and uniqueness result for the solution of Cauchy problem (1.30)-
(1.35). In Section 4 we prove the convergence rate of the solutions of the
problem (1.30)–(1.35). In Section 5 we prove Proposition 1.1 and Theorem
1.1. We give in a final Appendix some auxiliary results, in particular the
detailed behaviors of the functions Γ and K.
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2 Properties of the operator E

In this Section we prove several important properties of the operator E. We
will be using the following spaces.

L2(Γ) =
{
u : (0,∞)→ R; measurable, such that ||u||L2(Γ) <∞

}
L2(Γ−1) =

{
u : (0,∞)→ R; measurable, such that ||u||L2(Γ−1) <∞

}
where

||u||L2(Γ) =

(∫ ∞
0
|u(k)|2Γ(k)dk

)1/2

||u||L2(Γ−1) =

(∫ ∞
0

|u(k)|2

Γ(k)
dk

)1/2

.

We shall also use the classical L2(R+) of functions of integrable square in
(0,∞), with its norm || · ||2.

Since several Hilbert spaces will be used all along this work, we want
to be careful with the notation. We denote by 〈·, ·〉 the scalar product in
L2(R+):

〈ϕ,ψ〉 =

∫ ∞
0

ϕ(k)ψ(k)dk

whenever this integral is well defined. We will also use the notation ⊥ to
denote the orthogonality with respect to the scalar product of L2(R+):

ϕ ⊥ ψ ⇐⇒
∫ ∞

0
ϕ(k)ψ(k)dk = 0

and similarly, if A is a set of measurable functions,

ϕ ∈ A⊥ ⇐⇒
∫ ∞

0
ϕ(k)ψ(k)dk = 0, ∀ψ ∈ A.

We may then have ϕ ⊥ ψ even if neither ϕ nor ψ belong to L2(R+), as long
as the integral on the right hand side is well defined and equal to zero.

Lemma 2.1 The operator E defined by (1.30)–(1.34) is linear and contin-
uous from L2(Γ) into L2(Γ−1) and, for every u ∈ L2(Γ):

||E(u)||L2(Γ−1) ≤ (1 + 2C0)||u||L2(Γ) (2.1)

where

C0 =

∫ ∞
0

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dk′dk

1/2

<∞. (2.2)
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Proof The proof that the integral defining C0 in (2.2) converges is given in
detail in the Appendix. On the other hand, for all u ∈ L2(Γ) and v ∈ L2(Γ):

〈E(u), v〉 = −
∫ ∞

0
Γ(k)u(k)v(k)dk + 2

∫ ∞
0

∫ ∞
0

K(k, k′)u(k′)v(k)dk′dk∣∣∣∣∫ ∞
0

Γ(k)u(k)v(k)dk

∣∣∣∣ ≤ (∫ ∞
0

Γ(k)|u(k)|2dk
)1/2(∫ ∞

0
Γ(k)|v(k)|2dk

)1/2

∣∣∣∣∫ ∞
0

∫ ∞
0

K(k, k′)u(k′)v(k)dk′dk

∣∣∣∣ =

=

∣∣∣∣∣
∫ ∞

0

∫ ∞
0

K(k, k′)√
Γ(k)Γ(k′)

√
Γ(k)Γ(k′)u(k′)v(k)dk′dk

∣∣∣∣∣
=

∫ ∞
0

∣∣∣∣∣√Γ(k)v(k)

∫ ∞
0

K(k, k′)√
Γ(k)Γ(k′)

√
Γ(k′)u(k′)dk′

∣∣∣∣∣ dk
≤
(∫ ∞

0
Γ(k)|v(k)|2dk

)1/2
(∫ ∞

0

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

√
Γ(k′)u(k′)dk′

∣∣∣∣∣ dk
)1/2

≤
(∫ ∞

0
Γ(k)|v(k)|2

)1/2(∫ ∞
0

Γ(k′)|u(k′)|2dk′
)1/2

×

×

∫ ∞
0

∫ ∞
0

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dk′dk

1/2

.

We have then for all u ∈ L2(Γ) and v ∈ L2(Γ):

|〈E(u), v〉| ≤ (1 + 2C0)||u||L2(Γ)||v||L2(Γ).

from where E(u) ∈ (L2(Γ))′ = L2(Γ−1) and (2.1) follows.

It was already shown in [3] that the operator E is non negative. The
precise property and its proof are given in the following Lemma for the sake
of completeness.

Lemma 2.2 For all f ∈ L2(Γ) and g ∈ L2(Γ):

〈−E(f), g〉 =

∫ ∞
0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)× (2.3)

×
[

sinh(k)f(k)

k
+

sinh(k′)f(k′)

k′
− sinh(k + k′)f(k + k′)

k + k′

]
×

×
[

sinh(k)g(k)

k
+

sinh(k′)g(k′)

k′
− sinh(k + k′)g(k + k′)

k + k′

]
dkdk′.
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Proof We first notice that by definition:

〈−Ef, g〉 =

∫ ∞
0

∫ ∞
0

sinh k
(
φ(|k − k′|)φ(k′) + φ(k + k′)φ(k′)

)
f(k)g(k)dk′dk

−2

∫ ∞
0

∫ ∞
0

(
φ(|k − k′|)− φ(k + k′)

)
k k′f(k′)g(k)dk′dk

= I1 + I2 + I3 + I4.

We now write the integrals I1, I2, I3 and I4 using the definitions and sym-
metries of the two functions Γ(k) and K(k, k′).

I1 =

∫ ∞
0

∫ ∞
0

sinh k

(
|k − k′|2

sinh(|k − k′|)
|k′|2

sinh(k′)

)
f(k)g(k)dk′dk

I2 =

∫ ∞
0

∫ ∞
0

sinh k

(
|k + k′|2

sinh(|k + k′|)
|k′|2

sinh(k′)

)
f(k)g(k)dk′dk

I3 = −2

∫ ∞
0

∫ ∞
0

(
|k − k′|2

sinh(|k − k′|)

)
k k′f(k′)g(k)dk′dk

I4 = 2

∫ ∞
0

∫ ∞
0

(
|k + k′|2

sinh(|k + k′|)

)
k k′f(k′)g(k)dk′dk.

Let us denote for the remaining of this calculation Q[g](k) = sinh(k)g(k)
k

I1 =

∫ ∞
0

∫ ∞
0

|k − k′|2

sinh(|k − k′|)
|k′|2

sinh(k′)

|k|2

sinh(k)
Q[f ](k)Q[g](k)dk′dk

=

∫
{k>k′}

|k − k′|2

sinh(|k − k′|)
|k′|2

sinh(k′)

|k|2

sinh(k)
Q[f ](k)Q[g](k)dk′dk

+

∫
{k<k′}

|k − k′|2

sinh(|k − k′|)
|k′|2

sinh(k′)

|k|2

sinh(k)
Q[f ](k)Q[g](k)dk′dk

=

∫ ∞
0

∫ ∞
0

φ(k)φ(k′)φ(k + k′)Q[f ](k + k′)Q[g](k + k′) +

+

∫ ∞
0

∫ ∞
0

φ(k)φ(k′)φ(k + k′)Q[f ](k)Q[g](k)dk′dk. (2.4)

I2 =

∫ ∞
0

∫ ∞
0

(
|k + k′|2

sinh(|k + k′|)
|k′|2

sinh(k′)

|k|2

sinh(k)

)
sinh(k)2

|k|2
f(k)g(k)dk′dk

=

∫ ∞
0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)Q[f ](k)Q[g](k)dk′dk

=

∫ ∞
0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)Q[f ](k′)Q[g](k′)dk′dk. (2.5)
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I3 = −2

∫
{k>k′}

(
|k − k′|2

sinh(|k − k′|)

)
k k′f(k′)g(k)dk′dk

−2

∫
{k>k′}

(
|k − k′|2

sinh(|k − k′|)

)
k k′f(k)g(k′)dk′dk

= −2

∫ ∞
0

∫ ∞
0

(
|k|2

sinh(|k|)

)
(k + k′) k′f(k′)g(k + k′)dk′dk

−2

∫ ∞
0

∫ ∞
0

(
|k|2

sinh(|k|)

)
(k + k′) k′g(k′)f(k + k′)dk′dk

= −
∫ ∞

0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)
(
Q[f ](k) +Q[f ](k′)

)
Q[g](k + k′)dkdk′

−
∫ ∞

0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)
(
Q[g](k) +Q[g](k′)

)
Q[f ](k + k′)dkdk′.

(2.6)

I4 =

∫ ∞
0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)Q[f ](k)Q[g](k′)dk′dk +

+

∫ ∞
0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)Q[f ](k′)Q[g](k)dk′dk. (2.7)

Identity (2.3) follows by combining (2.4)–(2.7).

Corollary 2.1 Let φ be the function defined in (1.34). Then

E(φ) = 0. (2.8)

Conversely, if f ∈ L2(Γ) is such that E(f) = 0, then f = Cφ for some
constant C.

Proof By (2.3), 〈E(φ), g〉 = 0 for all g ∈ L2(Γ) and (2.1) follows. On
the other hand, if E(f) = 0 for some f ∈ L2(Γ), then 〈E(f), f〉 = 0 and by
(2.3): [

sinh(k)f(k)

k
+

sinh(k′)f(k′)

k′
− sinh(k + k′)f(k + k′)

k + k′

]2

= 0

for a. e. k > 0, k′ > 0. The function sinh(k)f(k)
k must then be linear, and we

must then have f = Cφ for some positive constant C.
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Corollary 2.2 For all f ∈ L2(Γ) and g ∈ L2(Γ):

|〈−E(f), g〉| ≤ 1

2
〈−E(f), f〉+

1

2
〈−E(g), g〉. (2.9)

Proof By (2.3) in Lemma 2.2:

|〈−E(f), g〉| ≤
∫ ∞

0

∫ ∞
0
|q(f)(k, k′)q(g)(k, k′)|dµ(k, k′).

where

q(h)(k, k′) =
sinh(k)h(k)

k
+

sinh(k′)h(k′)

k′
− sinh(k + k′)h(k + k′)

k + k′

and
dµ = φ(k + k′)φ(k′)φ(k)dkdk′

is a non negative measure. We deduce by Holder’s inequality

|〈−E(f), g〉| ≤ 1

2

∫ ∞
0

∫ ∞
0
|q(f)(k, k′)|2dµ+

+
1

2

∫ ∞
0

∫ ∞
0
|q(g)(k, k′)|2dµ

=
1

2
〈−E(f), f〉+

1

2
〈−E(g), g〉.

As we have seen, the operator E is continuous from L2(Γ) into L2(Γ−1).
By the Corollary 2.1, its kernel, N(E) is a one dimensional vector space
generated by the function φ.

Lemma 2.3 There exists a constant C∗ > 0 such that, for all h ∈ L2(Γ):

〈−Eh, h〉 ≥ C∗‖h− Ph‖2L2(Γ), (2.10)

where

Ph = c0(h)ϕ0, c0(h) =

∫ ∞
0

h(k)ϕ0(k)dk.

Remark 2.1 The map P is the orthogonal projection on the kernel N(E)
for the scalar product of L2(R+). Since ϕ0 ∈ L2(Γ−1) it is well defined for
all h ∈ L2(Γ).
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Proof For all h ∈ L2(Γ), we denote

h = c0(h)ϕ0 + g, c0(h)ϕ0 = Ph ∈ N(E).

Notice that,∫ ∞
0

g(k)ϕ0(k)dk =

∫ ∞
0

(h(k)− c0(h)ϕ0(k))ϕ0(k)dk = 0

and so g ∈ N(E)⊥. Moreover, by Lemma 2.2, we deduce that

〈E(g),Ph〉 = c0(h)〈E(g), ϕ0〉 = 0

and then,
〈Eh, h〉 = 〈E(g),Ph+ g〉 = 〈E(g), g〉.

Therefore, property (2.10) is equivalent to

∀g ∈ L2(Γ), Pg = 0 : 〈−Eg, g〉 ≥ C∗‖g‖2L2(Γ). (2.11)

In order to prove (2.11), we show that for all h ∈ L2(Γ):

〈−Eh, h〉+ c2
0(h) ≥ C∗‖h‖2L2(Γ). (2.12)

To this end we make a change of unknown variable and define g = αh, with
α =
√

Γ. The problem is now equivalent to prove that for all g ∈ L2(R+):∫ ∞
0
|g(k)|2dk − 2

∫ ∞
0

∫ ∞
0

K(k, k′)

α(k)α(k′)
g(k′)g(k)dk′dk (2.13)

+

∫ ∞
0

∫ ∞
0

ϕ0(k)ϕ0(k′)

α(k)α(k′)
g(k′)g(k)dk′dk ≥ C∗‖g‖2L2 .

This follows from simple spectral properties of the operator Ẽ = −I + T
with

T : g →
∫ ∞

0

2K(k, k′)

α(k)α(k′)
g(k′)dk′ −

∫ ∞
0

ϕ0(k)ϕ0(k′)

α(k)α(k′)
g(k′)dk′.

Since the two functions 2K(k,k′)
α(k)α(k′) and ϕ0(k)ϕ0(k′)

α(k)α(k′) belong to L2(R+×R+), (for

the first function this is proved in detail in Lemma 6.2 of the Appendix), the
operator T is a Hilbert Schmidt, and then a compact, operator from L2(R+)
into itself. Its spectrum is then reduced to a sequence (µj)j∈N of eigenvalues

satisfying µj → 0 as j → ∞. The spectrum of −Ẽ is then also reduced to
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a sequence (λj)j∈N of eigenvalues such that λj → 1 as j → ∞. Since the

operator −E is non negative on L2(Γ) it is easy to deduce that −Ẽ is non
negative on L2(R+), and then λj ≥ 0 for all j ∈ N. In order to prove (2.13)

we then only need to show that zero is not an eigenvalue of −Ẽ. If that was
the case, any associated eigenfunction g ∈ L2(R+) would satisfy Ẽ(g) = 0
and then, multiplying by g and integrating

−
〈
E
( g
α

)
,
g

α

〉
+

∫ ∞
0

∫ ∞
0

ϕ0(k)ϕ0(k′)

α(k)α(k′)
g(k′)g(k)dk′dk = 0.

But this would imply that, for the function h = g
α ∈ L

2(Γ), we have

〈−Eh, h〉+ c0(h)2 = 0.

Since 〈−Eh, h〉 ≥ 0 this implies that 〈−Eh, h〉 = 0 and c0(h) = 0. By
Corollary 2.1, the first condition implies that h ∈ N(E). Then we deduce
from the second that h = 0 and then g = 0. This proves that zero is not an
eigenvalue of Ẽ and we deduce that

C∗ = min
j∈N

λj > 0.

Property (2.13) follows, and then also (2.12) for all g ∈ L2(Γ) and (2.11) for
all g ∈ L2(Γ) such that Pg = 0. This concludes the proof of (2.10).

3 Existence and uniqueness of global solution.

In this Section we prove that the Cauchy problem (1.30)-(1.35) is well posed
in L2(R+). More precisely, we have the following proposition that is the
first part of Theorem 1.2.

Proposition 3.1 Suppose that f0 ∈ L2(R+). Then, the problem (1.30)–
(1.35) has a unique solution f such that

(f − P(f0)) ∈ L2((0,∞), L2(Γ)), (3.1)

f ∈ L∞((0,∞), L2(R+)) ∩ C([0,∞), L2(R+)), (3.2)

∂tf ∈ L2((0,∞), L2(Γ−1)), (3.3)

that satisfies the equation (1.30) in L2((0, T );L2(Γ−1)) for all T > 0 and
takes the initial data in the following sense:

lim
t→0

(
||f(t)− f0||L2(Γ−1) + ||f(t)− f0||2

)
= 0. (3.4)
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This solution is such that, for all ϕ ∈ L2(Γ):

d

dt

∫ ∞
0

f(t, k)ϕ(k)dk =

∫ ∞
0

∫ ∞
0

φ(k + k′)φ(k′)φ(k)× (3.5)

×
[

sinh(k)f(k)

k
+

sinh(k′)f(k′)

k′
− sinh(k + k′)f(k + k′)

k + k′

]
×

×
[

sinh(k)ϕ(k)

k
+

sinh(k′)ϕ(k′)

k′
− sinh(k + k′)ϕ(k + k′)

k + k′

]
dkdk′.

In particular, for all t > 0:

d

dt

∫ ∞
0
f(t, k)

k2dk

sinh(k)
= 0. (3.6)

Moreover, for all t > 0:

||f(t)||22 + 2C∗

∫ ∞
0
||f(t)− P(f0)||2L2(Γ)dt ≤ 2||f0||22. (3.7)

and ∣∣∣∣∣∣∣∣∂f∂t
∣∣∣∣∣∣∣∣
L2(0,∞;L2(Γ−1))

≤ (1 + 2C0)||f − P(f0)||L2(0,∞;L2(Γ)), (3.8)

where the constant C0 is defined in (2.2).
If f0 ≥ 0 then for all t > 0, f(t, k) ≥ 0 for a.e. k > 0.

Proof Step 1: Uniqueness. We first prove that if there is a solution of
(1.30)-(1.35) satisfying (3.2)-(3.3), then it is unique. Since the equation is
linear it is sufficient to prove that the only solution of (1.30)-(1.35) satisfying
(3.2)-(3.3) with initial data f0 = 0 is the function such that f(t) = 0 for all
t > 0. To this end, we multiply the equation (1.30) by f and integrate on
k > 0 to obtain:

1

2

d

dt
||f(t)||22 = 〈E(f), f〉.

Since c0 = 0 by hypothesis, we deduce using (2.12):

1

2

d

dt
||f(t)||22 ≤ −C∗||f(t)||2L2(Γ).

If we now integrate this in time:

||f(t)||22 + 2C∗

∫ t

0
||f(s)||2L2(Γ)ds ≤ 0
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since ||f(0)||22 = ||f0||22 by the continuity of the application t 7→ ||f(t)||2 and
uniqueness then follows.
Step 2. We define the following truncation of the operator E and the initial
data f0:

En[h] ≡ −Γn(k)h(k) + Tn2[h], (3.9)

Γn(k) = Γ(k)χn(k), (3.10)

Tn2[h] = 2

∫ ∞
0

Kn(k, k′)h(k′)dk′, (3.11)

Kn(k, k′) = χn(k)χn(k′)K(k, k′), (3.12)

f0,n(k) = χn(k)f0(k). (3.13)

χn(k) = χ{1/n<|k|<n},

where χA is the characteristic function of the set A.
For every n ∈ N, En is now a linear and bounded operator from L2(R+)

into itself. Therefore, the linear problem

∂f

∂t
(t, k) = En(f)(t, k), t > 0, k > 0, (3.14)

f(0, k) = f0,n(k), k > 0, (3.15)

has a solution:

fn(t, k) = etEn(f0,n)

satisfying

fn ∈ C([0,∞);L2(R+)) ∩ C∞(0,∞;L2(R+)). (3.16)

The same argument as in Step 1 shows that fn is unique. If moreover
f0 ≥ 0, then f0,n ≥ 0 and then fn(t) ≥ 0 for all t > 0.

Since supp(f0,n) ⊂ (1/n, n), supp(Γn) ⊂ (1/n, n) and supp(Kn) ⊂ (1/n, n)×
(1/n, n), we have supp(fn(t)) ⊂ (1/n, n) for all t > 0, and therefore:

Enfn = (Efn)χn(k),

where χ(1/n,n) is the characteristic function of (1/n, n). The function fn
solves then:

∂fn
∂t

= (Efn)χn(k) (3.17)

fn(0) = f0,n (3.18)
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Multiplying (3.17) by fn we obtain, after integration on (0, t)× R+:

‖fn(t)‖22 − ‖f0,n‖22 = 2

∫ t

0
〈(Efn(s))χn, fn(s)〉dt. (3.19)

Since for all s > 0 supp(fn(s)) ⊂ (1/n, n) we notice first that:

〈(Efn(s))χn, fn(s)〉 = 〈Efn(s), fn(s)〉

and second, that fn(t) ∈ L2(Γ). Then, by (2.12) in the proof of Lemma 2.3,
we deduce, for all T > 0:

||fn(T )||22 + 2C∗

∫ T

0
||fn(t)− Pfn(t)||2L2(Γ)dt ≤ ‖f0,n‖22. (3.20)

It first follows from (3.20) that for all t ≥ 0

||fn(t)||22 ≤ ‖f0‖22. (3.21)

Using (3.21) we obtain that for all t > 0:

||Pfn(t)||2L2(Γ) =

(∫ ∞
0

fn(t, k)ϕ0(k)dk

)2

||ϕ0||2L2(Γ)

≤ ||fn(t)||22||ϕ0||2L2(Γ) ≤ ‖f0‖22||ϕ0||2L2(Γ)

and then, using this in (3.20):

||fn(T )||22 + C∗

∫ T

0
||fn(t)||2L2(Γ)dt ≤ ‖f0‖22

(
1 + 2C∗T ||ϕ0||2L2(Γ)

)
∫ T

0
||fn(t)||2L2(Γ)dt ≤

‖f0‖22
C∗

(
1 + 2C∗T ||ϕ0||2L2(Γ)

)
. (3.22)

By (3.22), the sequence (fn)n∈N is then bounded in L2(0, T ;L2(Γ)) for
all T > 0. We prove now that it is also a Cauchy sequence in that space.

To this end, let n,m be two positive integers such that for example
m > n. By (3.14):

∂

∂t
(fn − fm) = Enfn − Emfm (3.23)

fn(0)− fm(0) = f0,n − f0,m (3.24)
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After multiplication by fn − fm and integration over (0,∞) we deduce as
usual

‖fn(t)− fm(t)‖22 − ‖f0,n − f0,m‖22 = 2

∫ t

0
(〈Enfn, fn − fm〉

− 〈Emfm, fn − fm〉) dt. (3.25)

We decompose the function fm as follows:

fm(t, k) = fm,n(t, k) + ϕm,n(t, k) (3.26)

fm,n(t, k) = fm(t, k)χn(k) (3.27)

ϕm,n(t, k) = fm(t, k) (χm(k)− χn(k)) (3.28)

and use this to rewrite the two right hand side terms of (3.25). We have
first:

〈Enfn, fn − fm〉 = −
∫ ∞

0
Γn(k)fn(k)(fn(k)− fm(k))dk + (3.29)

+

∫
R2

+

Kn(k, k′)fn(k′)(fn(k)− fm(k))(k)dk′dk = J1 + J2.

Since the supports of fn and ϕm,n are disjoint we have:

J1 = −
∫ ∞

0
Γn(k)fn(k)(fn(k)− fm(k))dk

= −
∫ ∞

0
Γn(k)fn(k)(fn(k)− fm,n(k))dk

= −
∫ ∞

0
Γ(k)fn(k)(fn(k)− fm,n(k))dk (3.30)

Using that for any k′ > 0 the supports of Kn(·, k′) and ϕm,n are also disjoints
we obtain:

J2 =

∫
R2

+

Kn(k, k′)fn(k′)(fn(k)− fm(k))(k)dk′dk

=

∫
R2

+

Kn(k, k′)fn(k′)(fn(k)− fm,n(k))(k)dk′dk

=

∫
R2

+

K(k, k′)fn(k′)(fn(k)− fm,n(k))(k)dk′dk (3.31)

By (3.30) and (3.31), we deduce from (3.29) that

〈Enfn, fn − fm〉 = 〈Efn, fn − fm,n〉 . (3.32)
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On the other hand,

〈Emfm, fn − fm〉 = −
∫
R+

Γm(k)fm(k)(fn(k)− fm(k))dk +

+

∫
R2

+

Km(k, k′)fm(k′)(fn(k)− fm(k))(k)dk′dk = L1 + L2. (3.33)

We have now

L1 = −
∫ ∞

0
Γm(k)(fm,n(k) + ϕm,n(k))(fn(k)− fm,n(k)− ϕm,n(k))dk

= −
∫ ∞

0
Γm(k)fm,n(k)(fn(k)− fm,n(k))dk +

+

∫ ∞
0

Γm(k)fm,n(k)ϕm,n(k)dk

−
∫ ∞

0
Γm(k)ϕm,n(k)(fn(k)− fm,n(k))dk +

+

∫ ∞
0

Γm(k)ϕm,n(k)ϕm,n(k)dk. (3.34)

Using the properties of the support of the functions fn, fm,n, Γn and ϕm,n
we deduce as above that the second and third terms in the right hand side
of (3.34) are zero, from where:

L1 = −
∫ ∞

0
Γ(k)fm,n(k)(fn(k)− fm,n(k))dk +

+

∫ ∞
0

Γ(k)ϕm,n(k)ϕm,n(k)dk (3.35)

Consider now L2, that may be written as follows:

L2 =

∫
R2

+

Km(k, k′)(fm,n(k′) + ϕm,n(k′))(fn(k)− fm,n(k)− ϕm,n(k))dk′dk

=

∫
R2

+

Km(k, k′)fm,n(k′)(fn(k)− fm,n(k))dk′dk

−
∫
R2

+

Km(k, k′)fm,n(k′)ϕm,n(k)dk′dk +

+

∫
R2

+

Km(k, k′)ϕm,n(k′)(fn(k)− fm,n(k))dk′dk

−
∫
R2

+

Km(k, k′)ϕm,n(k′)ϕm,n(k)dk′dk. (3.36)
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We rewrite L2 as follows:

L2 =

∫
R2

+

K(k, k′)fm,n(k′)(fn(k)− fm,n(k))dk′dk

−
∫
R2

+

K(k, k′)ϕm,n(k′)ϕm,n(k)dk′dk +Rm,n(t), (3.37)

Rm,n(t) =

∫
R2

+

Km(k, k′)ϕm,n(k′)(fn(k)− fm,n(k))dk′dk

−
∫
R2

+

Km(k, k′)fm,n(k′)ϕm,n(k)dk′dk. (3.38)

It follows from (3.33), (3.35) and (3.37) that:

〈Emfm, fn − fm〉 = −
∫ ∞

0
Γ(k)fm,n(k)(fn(k)− fm,n(k))dk +

+

∫ ∞
0

Γ(k)ϕm,n(k)ϕm,n(k)dk +

+

∫
R2

+

K(k, k′)fm,n(k′)(fn(k)− fm,n(k))dk′dk

−
∫
R2

+

K(k, k′)ϕm,n(k′)ϕm,n(k)dk′dk +Rm,n(t, k)

and then

〈Emfm, fn − fm〉 = 〈Efm,n, fn − fm〉 − 〈Eϕm,n, ϕm,n〉+Rm,n(t). (3.39)

We deduce, using (3.32) and (3.39) that

〈Enfn, fn − fm〉 − 〈Emfm, fn − fm〉 = 〈E(fn − fm,n), fn − fm〉+

+ 〈Eϕm,n, ϕm,n〉+Rm,n(t). (3.40)

By (2.10) in Lemma 2.3 we deduce

〈Enfn, fn − fm〉 − 〈Emfm, fn − fm〉 ≤ −C∗‖(I− P)(fn − fm,n)‖2L2(Γ)

−C∗‖(I− P)ϕm,n‖2L2(Γ) + |Rm,n(t)|, (3.41)

where I is the identity operator.
On the other hand, since

‖(I− P)(fn − fm)‖2L2(Γ) ≤ ‖(I− P)(fn − fm,n)‖2L2(Γ) + ‖(I− P)ϕm,n‖2L2(Γ)
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it follows that

〈Enfn, fn − fm〉 − 〈Emfm, fn − fm〉 ≤ −C∗‖(I− P)(fn − fm)‖2L2(Γ)

+|Rm,n(t)|. (3.42)

We now estimate Rm,n given by (3.38). Since K(k, k′) = K(k′, k) for all
k > 0, k′ > 0 it is easy to check that this term may be written as follows

Rm,n(t) =

∫
R2

+

K(k, k′)χm(k′)(χm(k′)− χn(k′))fm(k′)fn(k)dk′dk

−2

∫
R2

+

K(k, k′)χn(k)(χm(k′)− χn(k′))fm(k′)fm(k)dk′dk. (3.43)

from where we deduce the following estimate:

|Rm,n(t)| ≤
∫
R2

+

K(k, k′)χm(k′)(χm(k′)− χn(k′))|fm(k′)||fn(k)|dk′dk

+2

∫
R2

+

K(k, k′)χm(k′)(χn(k′)− χm(k′))|fm(k′)||fm(k)|dk′dk

≤ ρn,m

(
||fn||L2(Γ)||fm||L2(Γ) + 2||fm||2L2(Γ)

)
(3.44)

ρn,m =

∥∥∥∥K(k, k′)(χm(k′)− χn(k′))√
Γ(k)
√

Γ(k′)

∥∥∥∥
L2(R2

+)

(3.45)

Using now that K(k,k′)√
Γ(k)
√

Γ(k′)
∈ L2(R2

+) and the dominated convergence The-

orem, it is easy to check that

lim
n→∞,m>n

ρ(n,m) = 0 (3.46)

Combining now (3.25) and (3.42):

‖fn(t)− fm(t)‖22 + 2C∗

∫ t

0
‖(I− P)(fn − fm)‖2L2(Γ)ds ≤

≤ ‖f0,n − f0,m‖22 +

∫ t

0
|Rm,n(s)|ds. (3.47)

On the other hand, since

||P(fn(t)− fm(t))||2L2(Γ) ≤ ||fn(t)− fm(t)||22||ϕ0||2L2(Γ),
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we have by (3.47):

||P(fn(t)− fm(t))||2L2(Γ) ≤
(
‖f0,n − f0,m‖22 +

∫ t

0
|Rm,n(s)|ds

)
||ϕ0||2L2(Γ).

Integrating both sides of this inequality with respect to t, we deduce∫ t

0
||P(fn(t)− fm(t))||2L2(Γ)ds ≤ t

(
‖f0,n − f0,m‖22+

+

∫ t

0
|Rm,n(s)|ds

)
||ϕ0||2L2(Γ),

and then,

‖fn(t)− fm(t)‖22 + 2C∗

∫ t

0
‖(fn − fm)‖2L2(Γ)ds ≤ (1 + 2C∗t||ϕ0||L2(Γ))×

×
(
‖f0,n − f0,m‖22 +

∫ t

0
|Rm,n(s)|ds

)
. (3.48)

By (3.44),∫ t

0
|Rm,n(s)|ds ≤ 3ρn,m

∫ t

0

(
||fn||2L2(Γ) + ||fm||2L2(Γ)

)
. (3.49)

Since the sequence (fn)n∈N is bounded in L2(0, T ;L2(Γ)) for all T > 0
and ρn,m satisfies (3.46), we deduce that (fn)n∈N is a Cauchy sequence in
L2(0, T ;L2(Γ)) for all T > 0.

Then, there exists f ∈ L2(0, T ;L2(Γ)) for all T > 0, and a subsequence,
that we still denote fn, satisfying

lim
n→∞

||fn − f ||L2(0,T ;L2(Γ)) = 0, ∀T > 0, (3.50)

lim
n→∞

fn(t, k) = f(t, k), a.e. t > 0, k > 0. (3.51)

On the other hand, it also follows from (3.46), (3.48) and (3.49) that (fn)n∈N
is now a Cauchy sequence in C([0, T );L2(R+)). We then deduce that, for
all T > 0:

f ∈ L∞((0, T );L2(R+)) ∩ C([0, T );L2(R+)), (3.52)

lim
n→∞

||fn − f ||L∞(0,T ;L2(R+)) = 0. (3.53)

We now take the limit in (3.20) as n→∞ to obtain:

||f(T )||22 + 2C∗

∫ T

0
||f(t)− Pf(t)||2L2(Γ)dt ≤ ‖f0‖22, ∀T > 0,
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and then,

||f(t)||22 + 2C∗

∫ ∞
0
||f(t)− Pf(t)||2L2(Γ)dt ≤ 2‖f0‖22 (3.54)

Let us show now that ∂tf ∈ L2(0, T ;L2(Γ−1)) and f satisfies the equation
(1.30) in L2(0, T ;L2(Γ−1)), for all T > 0. To this end we notice that for all
u ∈ L2(0, T ;L2(Γ)) and v ∈ L2(0, T ;L2(Γ)):∣∣∣∣∫ T

0

∫ ∞
0

E(u)(s, k)v(s, k)dkds

∣∣∣∣ ≤ (1 + 2C0)||u||L2(0,T ;L2(Γ))||v||L2(0,T ;L2(Γ))

Then, the linear operator:

T : v →
∫ T

0

∫ ∞
0

E(u)(s, k)v(s, k)dkds

is linear and bounded from L2(0, T ;L2(Γ)) to R. It belongs then to
(L2(0, T ;L2(Γ)))′. We deduce the existence of ω ∈ L2(0, T ;L2(Γ)) such that,
for all v ∈ L2(0, T ;L2(Γ)):

T (v) =

∫ T

0

∫ ∞
0

E(u)(t, k)v(t, k)dkdt =

∫ T

0

∫ ∞
0

ω(t, k)v(t, k)Γ(k)dkdt.

Then,

E(u)(t, k) = ω(t, k)Γ(k), for a.e. t ∈ (0, T ), and a.e. k > 0.

This implies that E(u) ∈ L2(0, T ;L2(Γ−1)) and we have:

||E(u)||L2(0,T ;L2(Γ−1)) ≤ (1 + 2C0)||u||L2(0,T ;L2(Γ)). (3.55)

On the other hand, we know by (3.7) that f − P(f) ∈ L2(0,∞;L2(Γ)). But
we also have P(f)(t) ∈ L∞(0,∞;L2(Γ)) since , for all t > 0:

||P(f)(t)||L2(Γ) = |〈f(t), ϕ0〉|||ϕ0||L2(Γ) ≤ ||f0||2||ϕ0||L2(Γ)

we deduce, that f ∈ L2(0, T ;L2(Γ)), then E(f) ∈ L2(0, T ;L2(Γ−1)) and by
(3.50), for a new subsequence still denoted (fn):

||E(fn)− E(f)||L2(0,T ;L2(Γ−1)) ≤ (1 + 2C0)||fn − f ||L2(0,T ;L2(Γ)) → 0(3.56)

as n→∞ and

lim
n→∞

E(fn)(t, k) = E(f)(t, k), a.e. t ∈ (0, T ), k > 0. (3.57)
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We then deduce, passing to the limit in (3.17), that ∂tf ∈ L2(0, T ;L2(Γ−1))
and f satisfies the equation (1.30) in L2(0, T ;L2(Γ−1)), for all T > 0. More-
over, by (3.55):∣∣∣∣∣∣∣∣∂f∂t

∣∣∣∣∣∣∣∣
L2((0,T ),L2(Γ−1))

≤ (1 + 2C0)||f ||L2((0,T ),L2(Γ)), ∀T > 0. (3.58)

We leave the proof of (3.8) until the end of the proof of Proposition 3.1.
In order to prove (3.5) we first notice that, using ∂tf ∈ L2(0, T ;L2(Γ−1))

and Lemma 2.1, we can multiply the equation (1.30) by any function ϕ ∈
L2(Γ) to obtain:

d

dt
〈f, ϕ〉 = 〈E(f), ϕ〉.

By Lemma 2.2, identity (3.5), and then (3.6) follows.
From (3.6) we now deduce that,

P(f)(t) = 〈f(t), ϕ0〉ϕ0 = 〈f0, ϕ0〉ϕ0 = P(f0) ∀t > 0,

and by (3.54), (3.7) immediately follows. We then easily deduce (3.1), (3.2).
We prove now (3.4). Since fn satisfies (3.16), (3.17) and (3.18), we obtain

after integration on (0, t):

fn(t, k)− f0,n(k) =

∫ t

0
E(fn)(s, k)ds, ∀n > 0, ∀t > 0, ∀k > 0. (3.59)

Using now (3.56) we notice that, for all t > 0:∥∥∥∥∫ t

0
(E(fn)(s)− E(f)(s)) ds

∥∥∥∥
L2(Γ−1)

≤ C0

√
t ‖fn − f‖L2(0,t;L2(Γ)).

We deduce that

lim
n→0

∥∥∥∥∫ t

0
E(fn)(s)ds−

∫ t

0
E(f)(s)ds

∥∥∥∥
L2(Γ−1)

= 0

and then, up to a new subsequence still denoted (fn):

lim
n→0

∫ t

0
E(fn)(s)ds =

∫ t

0
E(f)(s)ds = 0, a.e. k > 0 (3.60)

Using now (3.51), (3.57) and (3.60) we first pass to the limit in (3.59) as
n→∞ for almost every t ∈ (0, T ) and k > 0 and deduce that:

f(t, k) = f0(k) +

∫ t

0
E(f)(s, k)ds, a.e. t ∈ (0, T ), k > 0.
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Therefore,

lim
t→0
||f(t)− f0||L2(0,t;L2(Γ−1)) ≤ C0

∫ t

0
||f(s)||L2(Γ)

≤ C0

√
t ||f ||L2(0,t;L2(Γ)).

Since, on the other hand, f ∈ C([0, T );L2(R+)), (3.4) follows.
If we assume that f0 ≥ 0, we have seen that, for every n, fn(t) ≥ 0 for

all t > 0. We deduce by (3.51) that f(t, k) ≥ 0 for all t > 0 and a. e. k > 0.
Finally, in order to prove the estimate we argue as follows. Consider

the function g(t, k) = f(t, k)− P(f0). By (3.6), g satisfies all the properties
that have been already proved for the function f . Moreover, by construction
P(g)(t) = 0 for all T ≥ 0. Therefore, using (3.58):∣∣∣∣∣∣∣∣∂g∂t

∣∣∣∣∣∣∣∣2
L2((0,T ),L2(Γ−1))

≤ (1 + 2C0)2||g||2L2((0,T ),L2(Γ))

and then,∣∣∣∣∣∣∣∣∂f∂t
∣∣∣∣∣∣∣∣2
L2((0,T ),L2(Γ−1))

≤ (1 + 2C0)2||f(t)− P(f0)||2L2((0,T ),L2(Γ)), ∀T > 0

(3.61)
from where (3.8) follows.

4 Rate of decay

In this Section we prove the algebraic rate of convergence of the solutions
obtained in Section 3 towards the corresponding equilibrium. To this end
we first need the following Lemma.

Lemma 4.1 Let f0 ∈ L2(R+) such that
∫∞

0 f0(k)ϕ0(k)dk = 0 and satisfies
(1.47) or (1.48). Suppose that there exist C∗ > 0, ω > 0 and τ > 0 such
that, the solution f of (1.30)–(1.35) obtained in Proposition 3.1 satisfies:

‖f(t)‖2 ≤ C∗‖f0‖2(t+ 1)−ω ∀t ≥ τ. (4.1)

Then, there exist θ1 > 0, κ1 > 0 and κ2 > 0, where κ1 and κ2 are indepen-
dent on θ1, such that, for all 0 < θ < θ1 and for all t > max{1, τ}∫ ∞

0
|f(t, k)|2Γ(k)dk ≥ κ1θ

∫ ∞
0
|f(t, k)|2dk − κ2

(
θ2

(t+ 1)2ω
+

θ

(t+ 1)

)
.

(4.2)
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Proof By hypothesis:

∂f

∂t
= −Γ(k)f(t, k) +

∫ ∞
0

K(k, k′)f(t, k′)dk′.

Multiply both sides of the above equation by 2f , we get

∂f2

∂t
= −2Γ(k)f2(t, k) + 2

∫ ∞
0

K(k, k′)f(t, k′)dk′f(t, k).

Using (6.1) and (6.4) in the Appendix we deduce, that there exist two
positive constants θ0 < 1 and CK such that, for all k ∈ (0, θ0):

(i) Γ(k) ≥ k

2
,

(ii)

∫ ∞
0

K(k, k′)f(t, k′)dk′ ≤ ||f(t)||2||K(k, ·)||2 ≤
CK
2

k||f(t)||2.

Therefore, for θ ∈ (0, θ0) and all t > 0:

∂f2

∂t
(t, k) ≤ −kf2(t, k) + CKk||f(t)||2|f(t, k)| a.e.k ∈ (0, θ).

Using now (4.1) we deduce, for θ ∈ (0, θ0) and all t > τ :

∂f2

∂t
(t, k) + kf2(t, k) ≤ CKk||f(t)||2|f(t, k)| ≤ CKC∗k(t+ 1)−ω|f(t, k)|||f0||2

∂

∂t

(
f2(t, k)ekt

)
≤ CKC∗k(t+ 1)−ωekt|f(t, k)|||f0||2.

Since

∂

∂t

(
f2(t, k)ekt

)
=

∂

∂t

((
f(t, k)e

k
2
t
)2
)

= 2
∣∣∣f(t, k)e

k
2
t
∣∣∣ ∂
∂t

∣∣∣f(t, k)e
k
2
t
∣∣∣ for a. e. k,

then

∂

∂t

(
|f(t, k)|e

k
2
t
)
≤ CKC

∗

2
k||f0||2(t+ 1)−ωe

k
2
t

|f(t, k)|e
k
2
t ≤ |f0(k)|+ CKC

∗

2
||f0||2k

∫ t

0
(s+ 1)−ωe

k
2
sds.

By lemma 6.3 with ρ = k/2 and θ = ω:∫ t

0
(s+ 1)−ωe

ks
2 ds ≤ Cω[(t+ 1)−ω + e−

kt
6 ]
e
k
2
t

k
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for all ω > 0, and t > 0, where we can take Cω = 6× 2ω. Then, for all t > τ
and θ ∈ (0, θ0):

|f(t, k)|e
k
2
t ≤ |f0(k)|+ CKC

∗Cω
2

||f0||2
[
(t+ 1)−ω + e−

kt
6

]
e
k
2
t

|f(t, k)| ≤ |f0(k)|e−
kt
2 +

CKC
∗Cω

2
||f0||2

[
(t+ 1)−ω + e−

kt
6

]
|f(t, k)|2 ≤ 2|f0(k)|2e−kt +A||f0||22

[
(t+ 1)−2ω + e−

kt
3

]
A = (CKC

∗Cω)2.

As a consequence, if 0 < θ ≤ θ0:∫ θ

0
|f(t, k)|2dk ≤ 2

∫ θ

0
f2

0 (k)e−kt +A||f0||22
(

θ

(1 + t)2ω
+

3

t

)
. (4.3)

If we now assume that f0 satisfies (1.47):

I =

∫ 1

0

|f0(k)|2

k
dk <∞,

then we obtain, for all t ≥ max{1, τ}:∫ θ

0
|f(t, k)|2dk ≤ 2I

(t+ 1)
+A||f0||22

[
θ

(t+ 1)2ω
+

3

1 + t

]
. (4.4)

On the other hand, by (6.1) and (6.2) it easily follows that there exists a
positive constant κ > 0 such that for all k > 0 we have Γ(k) ≥ κ k. We then
have: ∫ ∞

0
|f(t, k)|2Γ(k)dk =

∫ θ

0
|f(t, k)|2Γ(k)dk +

∫ ∞
θ
|f(t, k)|2Γ(k)dk

≥ κ θ

∫ ∞
θ
|f(t, k)|2dk

= −κ θ
∫ θ

0
|f(t, k)|2dk + κ θ

∫ ∞
0
|f(t, k)|2dk

≥ −κθ
(

2I

(t+ 1)
+ (CKC

∗Cω||f0||2)2

[
θ

(t+ 1)2ω
+

3

1 + t

])
+

+κθ

∫ ∞
0
|f(t, k)|2dk.

Then, condition (4.2) is satisfied with

κ1 = κ, (4.5)
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κ2 = κ
(
2I + 4A||f0||22

)
. (4.6)

for all t ≥ max{1, τ}.
If, on the other hand, the initial data f0 satisfies (1.48) then, by Lebesgue

convergence Theorem:

lim
t→∞

t

∫ θ

0
f2

0 (k)e−ktdk = lim
t→∞

∫ θt

0
f2

0

(x
t

)
e−xdx = a2

Notice that if the limit a exists, then the function f0 is bounded in a neigh-
borhood of the origin, from where, for all x ∈ (0, tθ), x/t ∈ (0, θ) and f(x/t)
is bounded if θ0 is sufficiently small. We then deduce by (4.3) that∫ θ

0
|f(t, k)|2dk ≤ 2a2

(t+ 1)
+A||f0||22

[
θ

(t+ 1)2ω
+

3

1 + t

]
. (4.7)

Arguing as above we deduce that condition (4.2) is now satisfied with

κ1 = κ, (4.8)

κ2 = κ
(
2a2 + 4A||f0||22

)
. (4.9)

Remark 4.1 The constants θ0 and CK are determined by the behavior of
Γ(k) and ||K(k, ·)||2 respectively as k → 0. The value of κ is determined by
the global behavior of the function Γ. The constants κ1 and κ2 given by (4.5)
and (4.6) or (4.8) and (4.9) depend on the global behavior of the function

Γ, but also on the quantities
∫ 1

0
|f0(k)|2

k dk or a respectively.

The algebraic convergence rate of the solution of problem (1.30)–(1.35)
follows as a consequence of Lemma 4.1, using the following result.

Lemma 4.2 Suppose that f0 ∈ L2(R+) is such that P(f0) = 0 and satisfies
(1.47) or (1.48). Then, there exists a positive constant C, that does not
depend on ‖f0‖2 such that for all t > 0:

‖f(t)‖2 ≤ C‖f0‖2(1 + t)−1/2. (4.10)

Proof Since equation (1.30) is linear, we may suppose without any loss
of generality that ||f0||2 = 1. We divide the proof into two steps.
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Step 1. We first apply Lemma 4.1 with ω = 0. To this end we multiply
the equation (1.30) by f and integrate over R+ and obtain, using Lemma
2.3:

d

dt
‖f‖22 = 〈E(f), f〉 ≤ −C∗

∫ ∞
0
|
√

Γ(k)f(k)|2dk.

Since the solution that we have obtained is such that ||f(t)||2 ≤ ||f0||2 for
all t > 0, condition (4.1) holds with ω = 0, τ = 0 and C∗ = 1. Then, by
Lemma 4.1, there exist three positive constants θ0, κ1 and κ2, with κ1 and
κ2 independent of θ0, such that for all θ ∈ (0, θ0) and for all t > 1:

d

dt
‖f‖22 ≤ −C∗κ1θ‖f‖22 + C∗κ2

(
θ2 +

θ

(t+ 1)

)
.

This leads to

d

dt

(
‖f‖22 exp(C1θt)

)
≤ C2

(
θ2 +

θ

(t+ 1)

)
exp(C1θt), (4.11)

with: C1 = max{1, C∗κ1}, C2 = C∗κ2. (4.12)

Thus, for all t > 1:

‖f(t)‖22 ≤ exp(−C1θt) + C2

∫ t

0

(
θ2 +

θ

(s+ 1)

)
exp(−C1θ(t− s))ds.

and, by (6.6) in Lemma 6.3:

‖f(t)‖22 ≤ exp(−C1θt) + C2θ
2t+ C2

[
2

1 + t
+ 3e−

C1θt
3

]
(4.13)

for all θ ∈ (0, θ0) and t ≥ 1.
We fix now a constant δ such that

2

3
< δ < 1, (4.14)

and define

T0 =

(
1

C1θ0

)δ
. (4.15)

Then for all t ≥ T0, we have t−δC−1
1 ≤ T−δ0 C−1

1 = θ0. We may therefore
choose θ = (t+ 1)−δC−1

1 in (4.13) to obtain that, for all t ≥ max{1, T0}:
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‖f(t)‖22 ≤ exp(−C1t(1 + t)−δ) +
C−2

1 C2t

(1 + t)2δ
+

+C2

[
2

1 + t
+ 3e−

t(1+t)−δ
3

]
≤ exp(−C1t(1 + t)−δ) + C−2

1 C2(1 + t)1−2δ +

+C2

[
2

1 + t
+ 3e−

t(1+t)−δ
3

]
(4.16)

≤ (1 + 3C2)e−
t(1+t)−δ

3 + C−2
1 C2(1 + t)1−2δ +

2C2

1 + t
. (4.17)

Since δ < 1, there is a unique positive number T1 such that

(1 + 3C2)e−
T1(1+T1)−δ

3 = C−2
1 C2(1 + T1)1−2δ. (4.18)

Then, if t ≥ T2 = max{1, T0, T1},

(1 + 3C2)e−
t(1+t)−δ

3 ≤ C−2
1 C2(1 + t)1−2δ

and

‖f(t)‖22 ≤ 2C−2
1 C2(1 + t)1−2δ +

2C2

1 + t
.

Since δ ∈ (2/3, 1), if we call ω0 = 2δ−1
2 we have ω0 ∈ (1/6, 1/2) and then

‖f(t)‖22 ≤ 2C2(1 + C−2
1 )(1 + t)−2ω0 ∀t ≥ T2. (4.19)

Step 2. Using the estimate (4.19) we may apply now Lemma 4.1 with ω = ω0,
τ = T2 and 2C2(1 +C−2

1 ) in the role of C∗. Let us call 2C2(1 +C−2
1 ) = C∗∗.

Arguing as above we first write that, by Lemma 4.1, there exists three
positive constants θ′0, κ′1 and κ′2 with κ′1 and κ′2 independent of θ′0, such that
for all θ ∈ (0, θ′0) and for all t > T2:

d

dt
‖f(t)‖22 ≤ −C∗κ′1θ‖f(t)‖22 + C∗κ

′
2

(
θ2

(1 + t)2ω0
+

θ

(t+ 1)

)
.

Then, for all t ≥ T2:

‖f(t)‖22 ≤ ‖f0‖22e−C
′
1θt + C ′2

∫ t

0

(
θ2

(s+ 1)2ω0
+

θ

(s+ 1)

)
e−C

′
1θ(t−s)ds.
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where
C ′1 = C∗C

∗∗κ′1, C
′
2 = C∗κ

′
2.

Using (6.6):∫ t

0

(
θ2

(s+ 1)2ω0
+

θ

(s+ 1)

)
eC
′
1θsds ≤

≤ θ
(

4ω0(t+ 1)−2ω0 + 3e−C
′
1θt/3

) eC′1θt
C ′1

+

+
(

2(t+ 1)−1 + 3e−C
′
1θt/3

) eC′1θt
C ′1

from where we deduce that for all θ ∈ (0, θ′0) and t ≥ T2:

||f(t)||22 ≤ e−C
′
1θt + (4.20)

+
C ′2
C ′1

(
4ω0θ

(t+ 1)2ω0
+ 3θe−C

′
1θt/3 +

2

(t+ 1)
+ 3e−C

′
1θt/3

)
≤

(
1 + 6

C ′2
C ′1

)
e−C

′
1θt/3 +

C ′2
C ′1

22ω0θ

(t+ 1)2ω0
+
C ′2
C ′1

2

(t+ 1)
. (4.21)

(where we have used that ||f0||2 ≤ 1). We define now

T3 =

(
1

C ′1θ
′
0

)δ
. (4.22)

Then, if t > max{T2, T3}, t−δC ′1
−1 ≤ T−δ3 C ′1

−1 = θ′0. We may therefore
choose θ = (t+ 1)−δC ′1

−1 in (4.21) and obtain

||f(t)||22 ≤
(

1 + 6
C ′2
C ′1

)
e−

t(1+t)−δ
3 +

C ′2
C ′1

2

4ω0

(t+ 1)2ω0+δ
+
C ′2
C ′1

2

(t+ 1)

for all t ≥ max{T2, T3}. We now call T4 the positive number such that(
1 + 6

C ′2
C ′1

)
e−

T4(1+T4)−δ
3 =

C ′2
C ′1

2

4ω0

(T4 + 1)2ω0+δ

then, for all t ≥ max{T2, T3, T4},

||f(t)||22 ≤ 2
C ′2
C ′1

2

4ω0

(t+ 1)2ω0+δ
+
C ′2
C ′1

2

(t+ 1)
.
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Since δ > 2/3 and 2ω0 > 1/3, 2ω0 + δ > 1 and for all t ≥ max{T2, T3, T4}:

||f(t)||22 ≤ 2

(
C ′24ω0

C ′1
2 +

C ′2
C ′1

)
1

(t+ 1)
.

Since on the other hand, ||f(t)||22 ≤ ||f0||22 = 1 for all t ≥ 0 we deduce (4.10)
for some positive constant C and for all t > 0. If the initial data is such
that ||f0||2 ≥ 1, we apply the previous argument to the function f(t)/||f0||2
and (4.10) by the linearity of the equation (1.30)–(1.34).

We may state now the following Corollary that follows from Lemma 4.2
and Lemma 4.1.

Corollary 4.1 For any solution f of (1.30)–(1.35) given by Proposition 3.1
such that the initial data f0 satisfies (1.47) or (1.48), there exists a positive
constant C, depending the behavior of Γ(k) on [0,∞), of ||K(k, ·)||2 as k → 0

and on
∫ 1

0
|f0(k)|2

k dk or a respectively, such that, for all t > 0:

||f(t)− c0ϕ0||2 ≤ C
||f0 − P(f0)||2

(1 + t)1/2
. (4.23)

Proof If c0 =
∫∞

0 f0(k)ϕ0(k)dk = 0, the conclusion follows from Lemma
4.1. Suppose that c0 6= 0. Consider then the initial data

g0 = f0 − P(f0).

By the properties of ϕ0 and the hypothesis on f0, it easily follows that g0

satisfies all the hypothesis of Lemma 4.2 and Lemma 4.1. The solution g of
the problem (1.30)–(1.35) with initial data g0 satisfies then

‖g(t)‖2 ≤ C(1 + t)−
1
2 ||g0||2. (4.24)

Notice on the other hand that the function

G(t, k) = f(t, k)− P(f0)

is also a solution of (1.30)–(1.35) with initial data g0 satisfying properties
(3.1)–(3.3). Then, by the uniqueness of solution to (1.30)–(1.35) proved in
Proposition 3.1, g = f − P(f0) and (4.23) follows from (4.24).

Proof of Theorem 1.2. The point (i) follows from Proposition 3.1. The
point (ii) follows from Corollary 4.1.
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We do not know if the rate of convergence obtained in Theorem 1.2 is
optimal. One may also wonder whether it is necessary to impose one of the
conditions (1.47), (1.48) in order to have the algebraic decay (1.49). We
do not know neither if these conditions are optimal in any sense. But we
show in the next Lemma that it is not possible to have any convergence
rate uniform for all the functions in L2(R+) ∩ L2(Γ), without any other
restriction. More precisely, we have the following.

Lemma 4.3 There is no function ρ(t) ≥ 0 satisfying limt→∞ρ(t) < 1 and
such that, for all data f0 ∈ L2(R+) ∩ L2(Γ), the solution of (1.30)–(1.35)
given by Proposition 3.1 satisfies:

‖f(t)− P(f0)‖2 ≤ ρ(t)‖f0 − P(f0)‖2, ∀t > 0. (4.25)

Proof Suppose by contradiction that such a function ρ do exists. Let us
call, g(t, k) = f(t, k)−P(f0)(k). From (4.25) we deduce that, for any T > 0:

‖g0‖22 − C‖g0‖22 ρ(T ) ≤ ‖g0‖22 − ‖g(T )‖22 = −
∫ T

0
〈E(g), g〉dt. (4.26)

By (4.26), there exists δ > 0 and T0 > 0 such that if T > T0,

δ‖g0‖22 ≤ ‖g0‖22 − ‖g(T )‖22 ≤ −
∫ T

0
〈E(g), g〉dt. (4.27)

In order to estimate the right hand side of (4.27) we consider the norm of
‖g(T )− g0‖22:

‖g(T )− g0‖22 = 2

∫ T

0
〈∂tg, g − g0〉 dt

=

∫ T

0
2 〈E(g), g − g0〉 dt

= 2

∫ T

0
〈E(g), g〉dt− 2

∫ T

0
〈E(g), g0〉 dt

≤
∫ T

0
〈E(g), g〉dt−

∫ T

0
〈E(g0), g0〉dt.

where, in the last step, we have used (2.9) in Corollary 2.2.
We then have:

−
∫ T

0
〈E(g), g〉dt ≤ −T 〈E(g0), g0〉, (4.28)
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Since g0 ∈ L2(Γ), by (2.2):

−〈E(g0), g0〉 ≤ C0‖g0‖2L2(Γ) = C0‖
√

Γg0‖22. (4.29)

We deduce from (4.27), (4.28) and (4.29) that, for all g0 ∈ L2(R+) ∩ L2(Γ):

‖g0‖22 ≤
TC0

δ
‖
√

Γg0‖22 (4.30)

By property (6.1) of the function Γ this is not possible if g0 ∈ L2(R+)∩L2(Γ)
with support in an interval (k1, k2), with 0 < k1 < k2 sufficiently small.

Remark 4.2 The results in the Appendix say that

Γ(k) ∼ πk

15
, k → 0,

||K(k, ·)||2 ≤
2π3k√

21
, 0 < k << 1.

This suggest that a very rough approximation of the equation (1.30) near
k = 0 could be given by

d

dt
f(t, k) = −Ckf(t, k), for t > 0, k small

f(0, k) = f0(k) for k small,

for some constant C. By the positivity of the operator E it seems reasonable
to have C > 0. Since the solution f of that simple equation is

f(t, k) = e−Cktf0(k), ∀t > 0,

we have ∫ k0

0
|f(t, k)|2dk =

∫ k0

0
|f0(k)|2e−2Cktdk, ∀t > 0.

Therefore, if f0 satisfies (1.47),∫ k0

0
|f(t, k)|2dk ≤ 1

2Ct

∫ k0

0

|f0(k)|2

k
dk, ∀t > 0.

If on the other hand, f0 is continuous at k = 0,

t

∫ k0

0
|f(t, k)|2dk =

1

2C

∫ 2Ck0t

0

∣∣∣f0

( x

2Ct

)∣∣∣2 e−xdx.
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Since, by (1.48),

lim
t→∞

t

∫ k0

0
|f(t, k)|2dk =

a2

2C

we deduce ∫ k0

0
|f(t, k)|2dk =

a2

2Ct
+ o

(
1

t

)
, as t→∞.

The convergence rate (1.49) seems then in some sense optimal.

5 Proofs of Proposition 1.1 and Theorem 1.1.

We give in this Section the proofs of Proposition 1.1 and of Theorem 1.1.
These follow easily from the results that have been proved in Sections 2, 3
and 4. We begin with the proof of the Proposition.

Proof of Proposition 1.1. Point (i) follows immediately from the
orthogonality property of the spherical harmonic functions and the fact that

|p| ∈ L2
(
R+, dp

sinh2(k)

)
. In order to prove point (ii) let us notice first of all

that, if f(k) is such that f ∈ L2(R+), respectively f ∈ L2(Γ), and we
consider the function g defined by the change of variables (1.29):

g(p) ≡ g(|p|) =
sinh(k)

k
f(k), k =

c|p|
2kBT

then g ∈ L2
(
R+, k2

sinh2(k)
dr
)

, respectively g ∈ L2
(
R+, k

2Γ(k)

sinh2(k)
dr
)

. More-

over, by definition

L(g)(|p|) = (k sinh k)E(f)(k),

where L is defined in (1.28). Then, if f ∈ L2(Γ), we have E(f) ∈ L2(Γ−1)

by Lemma (2.1), and therefore L(g) ∈ L2
(
R+, k

2 sinh2(k)dr
Γ(k)

)
.

We then deduce that L(|p|) ∈ L2
(
R+, k

2 sinh2(k)dr
Γ(k)

)
and therefore

Λ(p) = −M(p)Θ(p) +

∫
R3

Θ(p′)W (p, p′)dp′ ∈ L2

(
sinh2(k)dp

Γ(k)

)
It is then enough to check that all the components Λ`m of the function Λ in
the spherical harmonic basis are zero. Using the orthonormality properties
of the spherical harmonic functions Y`m and the definitions of the Legendre’s
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polynomial we readily check that these components are, up to a constant
factor:

Λ`m(|p|) = −M(|p|)Θ`m(|p|) +
1

2`+ 1

∫ ∞
0

Θ`m(r′)W`(|p|, r′)dr′

Since, by Corollary 2.1, the function φ(k) satisfies E(φ) = 0 and the
function Θ`m(r) = c`mr is obtained from φ(k) through the change of vari-
ables (1.29), it follows that Λ`m(|p|) = 0 for all ` and m.

Proof of Theorem 1.1. We decompose the initial data Ω0 that by

hypothesis belongs to L2
(
R3, dp

sinh2(k)

)
using the basis of L2(S2) of spherical

harmonics:

Ω0(p) =

∞∑
`=0

∑̀
m=−`

Ω0,`m(|p|)Y`m
(
p

|p|

)
.

Using the orthonormality of the basis {Y`m} we deduce

||Ω0||2
L2

(
R3, dp

sinh2(k)

) =

∫
R3

∣∣∣∣∣
∞∑
`=0

∑̀
m=−`

Ω0,`m(|p|)Y`m
(
p

|p|

)∣∣∣∣∣
2

dp

sinh2(k)

=

∫
S2

dσ

∫ ∞
0

∣∣∣∣∣
∞∑
`=0

∑̀
m=−`

Ω0,`m(|p|)Y`m (σ)

∣∣∣∣∣
2
|p|2d|p|
sinh2(k)

=
∞∑
`=0

∑̀
m=−`

∫ ∞
0
|Ω0,`m(|p|)|2 |p|

2d|p|
sinh2(k)

,

and then:

Ω`m ∈ L2

(
R+;

|p|2d|p|
sinh2(k)

)
, ∀` ∈ N,m ∈ {−`,−`+ 1, · · · , `− 1, `}

Therefore, if we define:

f0,`,m(k) = k
Ω0,`m(|p|)

sinh k
, k =

c|p|
2kBT

(5.1)

it follows that f0,`,m ∈ L2(R+). Let then be f`,m the solution of the equation
(1.30) with initial data f0,`m given by Theorem 1.2 and define:

Ω`m(t, r) = f`,m(t, k)
sinh k

k
, k =

cr

2kBT
. (5.2)
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It follows from (1.44) that:

||Ω`m(t)||2
L2

(
R+; r2

sinh2 k

) ≤ 2||Ω0,`m||2
L2

(
R+; r2

sinh2 k

) ∀t > 0. (5.3)

We deduce that

∞∑
`=0

∑̀
m=−`

||Ω`m(t)||2
L2

(
R+; r2

sinh2 k

) ≤ 2

∞∑
`=0

∑̀
m=−`

||Ω0,`m||2
L2

(
R+; r2

sinh2 k

)
= 2 ||Ω0||2

L2
(
R3, dp

sinh2 k

) (5.4)

and the following function is then well defined in L2
(
R3, dp

sinh2 k

)
for all

t > 0:

Ω(t, p) =
∞∑
`=0

∑̀
m=−`

Ω`m(|p|)Y`m
(
p

|p|

)
.

It follows from (5.3), (5.4) and (3.2) that Ω satisfies (1.15).
Similarly, by (1.44) and (1.45):∣∣∣∣∣∣∣∣∂f`m∂t

∣∣∣∣∣∣∣∣
L2(0,∞;L2(Γ−1(k)dk))

≤ 1 + 2C0√
C∗

||f0,`m||L2

and then∣∣∣∣∣∣∣∣∂Ω`m

∂t

∣∣∣∣∣∣∣∣
L2

(
0,∞;L2

(
r2

Γ(k) sinh2 k

)) ≤ 1 + 2C0√
C∗
||Ω0,`m||2

L2
(
R+; r2

sinh2 k

)

Using that M(p) ≡M(r) = Γ(k)n0(p)(1+n0(p)) and n0(p)(1+n0(p)) =
1/(4 sinh2 k) we have:∣∣∣∣∣∣∣∣∂Ω`m

∂t

∣∣∣∣∣∣∣∣
L2

(
0,∞;L2

(
r2

M(r) sinh4 k

)) ≤ 1 + 2C0√
C∗
||Ω0,`m||2

L2
(
R+; r2

sinh2 k

),
and

∞∑
`=0

∑̀
m=−`

∣∣∣∣∣∣∣∣∂Ω`m

∂t

∣∣∣∣∣∣∣∣2
L2

(
0,∞;L2

(
r2

M(r) sinh4 k

)) ≤ (1 + 2C0)2

C∗
×

×
∞∑
`=0

∑̀
m=−`

||Ω0,`m||2
L2

(
R+; r2

sinh2 k

) =
(1 + 2C0)2

C∗
||Ω0||2

L2
(
R3, dp

sinh2(k)

).
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The following function:

∞∑
`=0

∑̀
m=−`

∂Ω`m

∂t
(|p|)Y`m

(
p

|p|

)

is then well defined in L2
(
R3, dp

M(|p|) sinh4 k

)
for all t > 0 and

∂Ω

∂t
(t, p) =

∞∑
`=0

∑̀
m=−`

∂Ω`m

∂t
(|p|)Y`m

(
p

|p|

)
.

Since f`m(t, k) satisfies the equation (1.30)–(1.34) in L2((0,∞), L2(Γ−1)),
and M(p) ≡ M(r) = Γ(k)n0(p)(1 + n0(p), n0(p)(1 + n0(p)) = 1/(4 sinh2 k),

the function Ω`m satisfies equation (1.27), (1.28) in L2
(
R+, r2dr

M(r) sinh4 k

)
.

One easily deduces that Ω satisfies equation (1.12) in L2
(
R3, dp

M(p) sinh4 k

)
.

The two properties in (1.18) are deduced from those in (3.4) using similar
arguments.

We wish to prove the uniqueness of solutions of (1.12) in the sense of

L2
(

0,∞;L2
(
R3, dp

M(p) sinh4 k

))
, satisfying (1.15)–(1.17) and such that

lim
t→0
||Ω(t)− Ω0||L2

(
R3, dp

sinh2 k

) = 0. (5.5)

To this end we suppose that Ω1 and Ω2 are two such solutions and call Ω̃ =

Ω1−Ω2. It is then also a solution of (1.12) in L2
(

0,∞;L2
(
R3, dp

M(p) sinh4 k

))
,

satisfying (1.15)–(1.17) and (5.6) with Ω0 = 0. It then follows that the modes
Ω̃`m of Ω̃ satisfy equation (1.27)-(1.28) with initial data Ω̃`m(0) = 0. By
the uniqueness part of Theorem (1.2) it follows that Ω̃`m = 0 for each ` and
m and then Ω̃ ≡ 0.

Suppose now that Ω0(p) also satisfies (1.20). Then, for every ` and m,
the function f0,`m(k), defined in (5.2), satisfies (1.47). By Theorem 1.2 we
then have:

||f`m(t)− c0,`mϕ0||2 ≤ C
||f0,`m − c0,`mϕ0||2

(1 + t)1/2
(5.6)

where

c0,`m =

∫ ∞
0

f0,`m(k)ϕ0(k)dk. (5.7)
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Therefore, using (5.2) we deduce∫ ∞
0
|Ω`m(t, r)− c`mr|2

r2dr

sinh2 k
≤ C

1 + t

∫ ∞
0
|Ω0,`m(r)− c`mr|2

r2dr

sinh2 k

where
c`m =

c

2kBT ||φ||2
c0,`m.

If we sum now with respect to ` and m we obtain

||Ω(t)−Θ||2
L2

(
R3, dp

sinh2 k

) =

∞∑
`=0

∑̀
m=−`

∫
R3

|Ω`m(t, |p|)− c`m|p||2
dp

sinh2 k

≤ C

1 + t

∞∑
`=0

∑̀
m=−`

∫
R3

|Ω0,`m(|p|)− c`m|p||2
dp

sinh2 k

=
C

1 + t
||Ω(0)−Θ||2

L2
(
R3, dp

sinh2 k

).
Since

c`m =
c

2kBT ||φ||2

∫ ∞
0

f0,`m(k)ϕ0(k)dk

=

(
c

2kBT

)4 1

||φ||22

∫ ∞
0

Ω0,`m(r)

sinh2 k
r2dr

=

(
c

2kBT

)4 4

||φ||22

∫
R3

Ω0(p)Y`m

(
p

|p|

)
n0(p)(1 + n0(p))dp

and ||φ||22 = π4/30, this concludes the proof of (1.21)-(1.23).

Remark 5.1 The total number of particles in the physical system described
by equation (1.1)-(1.2) is given by

N(t) =

∫
R3

n(t, p)dp.

The corresponding quantity in the linear approximation that we consider in
this work is:

M(t) =

∫
R3

n0(p)dp+

∫
R3

n0(p)(1 + n0(p))Ω(t, p)dp,
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It follows from Theorem 1.1 that, if the initial data Ω0 ∈ L2(R3) satisfies
(1.20) then:

lim
t→∞

M(t) =

∫
R3

n0(p)dp+

∫
R3

n0(p)(1 + n0(p))Θ(p)dp ≡M∞.

where Θ is defined by (1.22) (1.23). It is easy to see that M∞ may be greater
or smaller than M(0). If we choose the initial data Ω0 = Θ + g0 then,

M(0) =

∫
R3

n0(p)dp+

∫
R3

n0(p)(1 + n0(p))Ω0(p)dp

=

∫
R3

n0(p)dp+

∫
R3

n0(p)(1 + n0(p))Ω0(p)dp+

∫
R3

n0(p)(1 + n0(p))g0(p)dp

= M∞ +

∫
R3

n0(p)(1 + n0(p))g0(p)dp.

The sign of M(0)−M∞ is then given by the sign of
∫
R3 n0(p)(1+n0(p))g0(p)dp

and may be positive or negative.

6 Appendix

In this Appendix we recall the definition of Legendre’s polynomials, we de-
scribe the formal approximation argument leading to the simplified equation
(1.27)-(1.28) and present some auxiliary results on the functions Γ and K
that appear in the operator E defined in (1.30).

6.1 The functions Γ and K.

We present in this Appendix some auxiliary results, in particular several
properties of the functions Γ and K that are needed in the proof of our
main results. They have already been obtained in [3] and we state and
prove them here just for the sake of completeness.

Lemma 6.1 The function Γ defined in (1.32), (1.34) satisfies Γ ∈ C(0,∞)
and Γ(k) > 0 for all k > 0. Moreover,

lim
k→0

Γ(k)

k
=
π4

15
(6.1)

lim
k→∞

Γ(k)

k5
=

1

15
. (6.2)
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Proof The continuity of Γ follows immediately from the integrability prop-
erties of the integrand in (1.32). The strict positivity of Γ(k) for k > 0 is
deduced from the fact that the integrand in (1.32) is non negative. In order
to prove (6.1) and (6.2) we first notice that, by a simple change of variables,
the function Γ may be written as:

Γ(k) = sinh k

∫ k

0
φ(k − k′)φ(k′)dk′ + 2 sinh k

∫ ∞
0

φ(k + k′)φ(k′)dk′ (6.3)

By Lebesgue’s convergence Theorem it follows that

lim
k→0

∫ k

0
φ(k − k′)φ(k′)dk′ = 0

and

lim
k→0

∫ ∞
0

φ(k + k′)φ(k′)dk′ =

∫ ∞
0

x4

sinh2 x
dx =

π4

30

from where (6.1) follows.
On the other hand,

sinh k

∫ k

0
φ(k − k′)φ(k′)dk′ = k5 sinh k

∫ 1

0

z2(1− z)2

sinh(k(1− z)) sinh(kz)
dz

But,

sinh k
z2(1− z)2

sinh(k(1− z)) sinh(kz)
=

1− e−2k

2

ekz2(1− z)2

ek−kz−ekz−k
2

ekz−e−kz
2

=
2(1− e−2k)z2(1− z)2

(e−kz − ekz−2k)(ekz − e−kz)
=

2(1− e−2k)z2(1− z)2

1− e−2kz − e−2k(1−z) + e−2k

= 2(1− e−2k)
z2

(1− e−2kz)

(1− z)2

(1− e−2k(1−z))
.

And we observe that,

x2

1− e−Ax
≤ x2

1− e−1/2
, ∀x ∈

(
1

2A
, 1

)
.

When Ax ∈ (0, 1/2), 1− e−Ax ≥ Ax/2 so,

x2

1− e−Ax
≤ 2x

A
∀x ∈

(
0,

1

2A

)
,
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and then, for A > 1:

x2

1− e−Ax
≤ 2x, ∀x ∈ (0, 1)

since 2(1− e−1/2) < 1. This gives

sinh k
z2(1− z)2

sinh(k(1− z)) sinh(kz)
≤ 8(1− e−2k)z(1− z)

for all z ∈ (0, 1) and k > 1. The Lebesgues convergence Theorem gives then,

lim
k→∞

k−5

(
sinh k

∫ k

0
φ(k − k′)φ(k′)dk′

)
=

= lim
k→∞

sinh k

∫ 1

0

z2(1− z)2

sinh(k(1− z)) sinh(kz)
dz

= 2

∫ 1

0
z2(1− z)2dz =

1

15
.

It is not difficult to check, using similar arguments, that the second integral
in the right hand side of (6.3) is of lower order when k →∞ and then (6.1)
follows.

Lemma 6.2 ∫ ∞
0
|K(k, k′)|2dk′ < 4

15
π4k4 +

4

21
π6k2 (6.4)

and ∫ ∞
0

∫ ∞
0

∣∣∣∣∣ K(k, k′)√
Γ(k′)Γ(k)

∣∣∣∣∣
2

dkdk′ < +∞. (6.5)

Proof

∫ ∞
0
|K(k, k′)|2dk′ ≤ 2k2

∫ ∞
0

(
φ(k − k′)2 + φ(k + k′)2

)
k′2dk′

∫ ∞
0

φ(k + k′)2k′2dk′ =

∫ ∞
0

(k + k′)4

sinh2(k + k′)
k′2dk′
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=

∫ ∞
k

z4

sinh2 z
(z − k)2dz ≤

∫ ∞
k

z4

sinh2 z
z2dz

≤
∫ ∞

0

z4

sinh2 z
z2dz =

π6

42

∫ ∞
0

φ(k − k′)2k′2dk′ =

∫ ∞
0

(k′ − k)4

sinh2(k′ − k)
k′2dk′

=

∫ ∞
−k

z4

sinh2 z
(z + k)2dz ≤

∫ ∞
−∞

z4

sinh2 z
(z + k)2dz

≤ 2

∫ ∞
0

z4

sinh2 z
(z2 + k2)dz = 2

π6

42
+ 2k2π

4

30

In order to prove (6.5) we first write:

∫ ∞
0

∫ ∞
0

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dkdk′ = I1 + 2I2 + I4

I1 =

∫ 1

0

∫ 1

0

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dkdk′

I2 =

∫ 1

0

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dkdk′

I3 =

∫ ∞
1

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dkdk′

We notice that,

I3 =

∫ ∞
1

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dkdk′ ≤ 2

(∫ ∞
1

∫ ∞
1

|K(k, k′)|2

|Γ(k)|2
dkdk′

)
since:∫ ∞

1

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dkdk′ =

∫ ∞
1

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

1Γ(k)>Γ(k′)dkdk
′ +

+

∫ ∞
1

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

1Γ(k)<Γ(k′)dkdk
′
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=

∫ ∞
1

∫ ∞
1

∣∣∣∣∣ K(k′, k)√
Γ(k′)Γ(k)

∣∣∣∣∣
2

1Γ(k′)>Γ(k)dkdk
′ +

+

∫ ∞
1

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

1Γ(k)<Γ(k′)dkdk
′

= 2

∫ ∞
1

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

1Γ(k′)>Γ(k)dkdk
′

≤ 2

∫ ∞
1

∫ ∞
1

∣∣∣∣K(k, k′)

Γ(k)

∣∣∣∣2 1Γ(k′)>Γ(k)dkdk
′ ≤ 2

∫ ∞
1

∫ ∞
1

∣∣∣∣K(k, k′)

Γ(k)

∣∣∣∣2 dkdk′
and this integral I3 converges by Lemma 6.1 and (6.4).
We have that

lim
k,k′→0

√
Γ(k)Γ(k′)√

kk′
=
π4

15
,

and

lim
k,k′→0

K(k, k′)√
kk′

= 0,

we have

lim
k,k′→0

K(k, k′)√
Γ(k)Γ(k′)

= 0.

Therefore K(k,k′)√
Γ(k)Γ(k′)

is continuous on [0, 1] × [0, 1] and the first integral is

then convergent. Finally let us estimate I2. We first notice that for all
k > 0, Γ(k) > 0 and then, by the continuity of Γ on [0,∞) and (6.2), there
exists a positive constant C > 0 such that

Γ(k) ≥ C > 0, ∀k ≥ 1.

Therefore ∫ ∞
1

∣∣∣∣∣K(k, k′)√
Γ(k′)

∣∣∣∣∣
2

dk ≤ 1

C

∫ ∞
1

∣∣K(k, k′)
∣∣2 dk

≤ 1

C

(
8|B4|π4k4 + 8|B6|π6k2

)
from where we deduce, for some positive constant C ′:

I2 =

∫ 1

0

∫ ∞
1

∣∣∣∣∣ K(k, k′)√
Γ(k)Γ(k′)

∣∣∣∣∣
2

dkdk′ ≤ C ′
∫ 1

0

k2

Γ(k)
dk
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and this integral converges by (6.1).

Finally, the following elementary estimate is used in the proof of Lemma
4.1 and Lemma 4.2.

Lemma 6.3 For all t > 0, θ ≥ 0, ρ > 0, define

Z(t, θ, ρ) =

∫ t

0
(s+ 1)−θeρsds.

Then, for all θ > 0:

Z(t, θ, ρ) ≤ [2θ(t+ 1)−θ + 3e−ρt/3]
eρt

ρ
. (6.6)

Proof We define
S(t, θ, ρ) = Z(t, θ, ρ)ρe−ρt.

and split S(t) into two parts S(t, θ, ρ) = S1(t, θ, ρ) + S2(t, θ, ρ):

S1(t, θ, ρ) =

∫ t

t/2
ρ(s+ 1)−θeρ(s−t)ds,

S2(t, θ, ρ) =

∫ t/2

0
ρ(s+ 1)−θeρ(s−t)ds.

In the first integral, we have

S1(t, θ, ρ) =

∫ t

t/2
ρ(s+ 1)−θeρ(s−t)ds ≤

∫ t

t/2
ρ(t/2 + 1)−θeρ(s−t)ds

≤ (t/2 + 1)−θ
∫ t

t/2
ρeρ(s−t)ds ≤ (t/2 + 1)−θ(1− e−ρt/2)

≤ (t/2 + 1)−θ ≤ 2θ(t+ 1)−θ.

For the second integral we notice that, since s ∈ (0, t/2) we have s − t <
−(s+ t)/3 and then

S2(t, θ, ρ) =

∫ t/2

0
ρ(s+ 1)−θeρ(s−t)ds ≤

∫ t/2

0
ρ(s+ 1)−θe−ρs/3e−ρt/3ds

≤ e−ρt/3
∫ t/2

0
ρe−ρs/3ds ≤ 3e−ρt/3.
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6.2 The measure U and the function M .

The following expressions for U(p, p′) and M(p) have been obtained in [11]:

U(p, p′) = 2
∣∣M(p, p′, p− p′)

∣∣2 δ(ω(p)− ω(p′)− ω(p− p′))×
×n0(ω(p))(1 + n0(ω(p′)))(1 + n0(ω(p)− ω(p′))) +

+2
∣∣M(p′, p, p′ − p)

∣∣2 δ(ω(p′)− ω(p)− ω(p′ − p))×
×n0(ω(p′))(1 + n0(ω(p)))(1 + n0(ω(p′)− ω(p)))−
−2
∣∣M(p′ + p, p, p′)

∣∣2 δ(ω(p) + ω(p′)− ω(p+ p′))×
×(1 + n0(ω(p)))(1 + n0(ω(p′)))n0(ω(p) + ω(p′)). (6.7)

M(p) =
1

ω(p)

∫
R3

U(p, p′)ω(p′)dp′ (6.8)

6.2.1 The formal approximation argument.

In the limit |p|/4mgnc → 0 we have:

ω(p) =

[
gnc
m
|p|2 +

(
|p|2

2m

)2
]1/2

= c(|p|+ ψ(|p|))1/2

0 < ψ(|p|) = o(|p|3).

In order to see how the equation (1.12) may be formally obtained from
equation (1.7)–(1.9) we first express the delta measures in U(p, p′) in terms
of r = |p|, r′ = |p′|, and the angle u = cos θp,p′ . We notice first that, given
r > 0 and r′ > 0, we call u1(r, r′) the positive solution u of the equation
ω(p)− ω(p′)− ω(p− p′) = 0, or equivalently, of the equation:

r = r′ + (r2 + r′2 − 2rr′u)1/2

We may then express:

δ(ω(p)− ω(p′)− ω(p− p′)) = F1(r, r′)δ(u− u1(r, r′))

with

F1(r, r′) =
−1

∂h
∂u(r, r′, u1(r, r′))

h(r, r′, u) = ω(p− p′)
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An asymptotic expression may be obtained for u1(r, r′) in the limit r → 0
and r′ → 0 as follows (cf. [2]):

u1(r, r′) = 1− r − r′

rr′
(ψ(r)− ψ(r′)− ψ(r − r′)) +

+O
(
ψ(r)2 + ψ(r′)2 + 2ψ(r)ψ(r′)

)
as r → 0, r′ → 0.

Similar arguments yield:

δ(ω(p′)− ω(p)− ω(p′ − p)) = F2(r, r′)δ(u− u2(r, r′))

δ(ω(p+ p′)− ω(p)− ω(p′)) = F3(r, r′)δ(u− u3(r, r′))

In the limit considered in this article we are approximating ω(p) as c|p|.
Therefore, the angles between the vectors p, p′ and p − p′ involved in the
collisions must all be equal to one. This corresponds to the approximation:

ui(r, r
′) = 1 i = 1, 2, 3.

The measure U(p, p′) is then approximated as:

U(p, p′) ≈W (p, p′) ≡ G(r, r′)δ(u− 1) (6.9)

G(r, r′) =
9c

32π2mnc

[
|rr′(r − r′)|2F1(r, r′)×

×n0(r)(1 + n0(r′))(1 + n0(r − r′)) +

+|rr′(r − r′)|2F2(r, r′)×
×n0(r′)(1 + n0(r))(1 + n0(r′ − r))−
−|rr′(r + r′)|2F3(r, r′)×
×(1 + n0(r))(1 + n0(r′))n0(r + r′)

]
. (6.10)

Using the rotational invariance of W (p, p′) we may write its expansion
in terms of Legendre’s polynomials:

W (p, p′) =
∞∑
`=0

W`(r, r
′)P`(cos θ(p, p′))

where r = |p|, r′ = |p′|, P` is the Legendre polynomial of degree ` and θ(p, p′)
is the angle between p and p′ and

W`(r, r
′) =

2`+ 1

2

∫ 1

−1
WP`(u)du, u = cos θ(p, p′).
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It follows that, with some abuse of notation:

M(p) ≡M(|p|) = M(r) =
1

ω(cr)

∫ ∞
0

W0(r, r′)ω(cr′)r′2dr′, (6.11)

where we recall that r = |p|. On the other hand the function W0(r, r′) is
given by

W0(r, r′) =
9(r − r′)2H(r − r′)

32π2n
n0(r)(1 + n0(r′))(1 + n0(r − r′)) +

+
9(r′ − r)2H(r′ − r)

32π2n
n0(r′)(1 + n0(r))(1 + n0(r′ − r))−

−9(r + r′)2

32π2n
n0(r + r′)(1 + n0(r))(1 + n0(r′)). (6.12)

where, we denote n0(r) = n0(p), and H(r) is the Heaviside function (see
[11]).

Proposition 6.1 Let M(p) be the function defined in (6.11). Then,

M(p) ≡M(r) = Γ(k)n0(r)(1 + n0(r)) (6.13)

where r = |p| and k = cr/2kBT . Moreover:

lim
r→0

M(r) sinh2 k

k
=
π4

60
(6.14)

lim
r→∞

M(r) sinh2 k

k5
=

1

60
. (6.15)

Proof The function f satisfies the equation (1.30). Using that, by (1.29),
f(t, k) = (k/ sinh k)Ω(t, p) and that Ω(t, p) satisfies equation (1.12), identity
(6.13) follows. Properties (6.14) and (6.15) are then consequence of Lemma
6.1.

6.3 Legendre’s polynomials.

We recall that the Legendre’s polynomial of degree n ∈ N is defined as:

Pn(x) =
1

2

n

n!
dn

dxn

[(
x2 − 1

)2]
, n = 0, 1, 2, · · · (6.16)

These polynomials form a complete orthogonal set of functions in L2(−1, 1)
such that: ∫ 1

−1
Pm(x)Pn(x)dx =

2

2n+ 1
δmn. (6.17)
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The following property of the Legendre’s polynomials is useful to obtain
fornula (1.25):

P`(u · u′) =
4π

2`+ 1

∑̀
m=−`

Y`m(u)Y ∗`m(u′) (6.18)

for all u ∈ S2, u′ ∈ S2.
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