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Abstract

We introduce in this paper a new constructive approach to the
problem of the convergence to equilibrium for a large class of kinetic
equations. The idea of the approach is to prove a ’weak’ coercive
estimate, which implies exponential or polynomial convergence rate.
Our method works very well not only for hypocoercive systems in which
the coercive parts are degenerate but also for the linearized Boltzmann
equation.
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1 Introduction

In [7] and [8], L. Desvillettes and C. Villani started the program about
the trend to equilibrium for kinetic equations. Up to now, there are three
classes of techniques to study the convergence to equilibrium. The first
class of technique is the Lyapunov functional technique, which works for
nonlinear equations. These techniques are developed in [5], [7], [8], [9],
[12]. The second class of techniques is the pseudodifferential calculus, which
works for linear hypoelliptic equations, developed in [19], [11], [18], [20], [28].
The third class of techniques is developed by Yan Guo in [16], which is in
some sense an intermediate method between the two previous ones, which
works for nonlinear kinetic equations in a close-to-equilibrium regime or the
linearized versions of nonlinear kinetic equations. For a full discussion on
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this, we refer to the note [29].
Using the techniques developed in [7], [8], L. Desvillettes and F. Salvarani
have investigated the speed of relaxation to equilibrium in the case of linear
collisional models where the collision frequency is not uniformly bounded
away from 0. The two models that they considered are the non-homogeneous
transport equation and the Goldstein-Taylor model

∂f

∂t
+ v.∇f = σ(x)(f̄ − f), (1.1)

and { ∂u
∂t + ∂u

∂x = σ(x)(v − u),

∂v
∂t −

∂v
∂x = σ(x)(u− v).

(1.2)

They prove that when σ is greater than a positive polynomial and σ belongs
to H2, one can get polynomial decays of the solutions toward the equilibrium
points. However, the techniques used in the paper could not be extended to
consider the case where the cross section σ is 0 on a set of strictly positive
measure. A conjecture in this paper is to find explicit decay rates for these
systems in wider classes of σ. In the same spirit of [10], K. Aoki and F. Golse
[3] have studied the case of a collisionless gas enclosed in a vessel, where the
surface is kept at a constant temperature, and they have investigated the
convergence to equilibrium for such a system.
We introduce a new approach to the problem of convergence toward equilib-
rium in the kinetic theory and use it to study the question of L. Desvillettes
and F. Salvarani in [10] for Goldstein-Taylor and related models. We can
relax the regularity property of σ as well as the condition that σ is greater
than a positive polynomial and prove that the decay is exponential (see The-
orems 2.1, 2.2). The main idea of our techniques is similar to the work of
Haraux [17]: in order to prove an exponential decay for the solution of the
equation { ∂f

∂t +A(f) = −K(f), t ∈ R+,

f(0) = f0,
(1.3)

we can study the following homogeneous equation with the same initial
condition { ∂g

∂t +A(g) = 0, t ∈ R+,

g(0) = f0,
(1.4)

and prove that the following observability inequality holds∫ T

0
< K(g), g > dt ≥ C‖f0‖2. (1.5)
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A natural way of proving the exponential decay for the solutions of (1.3) is
to prove that K is coercive

< K(g), g >≥ C‖g‖2,

however this is not always true, especially in the case of Goldstein-Taylor
and related models. The task of proving of the observability inequality (1.5)
turns out to be much easier than proving an exponential decay for solutions
of (1.3) since the solutions of (1.4) are explicit. Inequality (1.5) could be
considered as a ’weak’ coercive inequality. The details of this technique will
be explained in section 3 (see Lemmas 3.1, 3.2, 3.3, 3.4 and 3.5).
Consider the dissipative inequality for (1.1)

∂t‖f‖2L2 = −
∫
Td×Rd

σ(x)|f̄ − f |2dxdv,

we can see that the damping
∫
Td×Rd σ(x)|f̄ − f |2dxdv is too strong to lead

to a polynomial decay. A reasonable question is if we can get a polynomial
decay with a weaker damping. We give an example where the damping is
quite weak

∂t‖f‖2L2 = −
∫
Td×Rd

|(1−∆x)−ε/2σ(x)1/2(f̄ − f)|2dxdv,

where ε is a positive constant. Since the order of the pseudo-differential
operator (1 −∆x)−ε/2 is −ε, it leads to a polynomial decay and this is the
result of Theorem 2.3.
Another question is that: our method works well for kinetic models of col-
lisionless particles, could it be applied to more sophisticated models? The
answer is yes. We also succeed to apply our technique to study the conver-
gence toward equilibrium for the linearized Boltzmann equation (see The-
orem 2.4). In the context of the linearized Boltzmann equation, the main
tool to prove the exponential and polynomial convergence toward the equi-
librium is based on the spectral gap estimate for the hard potential case
and the coercivity estimate for the soft potential case. Using this technique,
C. Mouhot has proved exponential decays in the case of hard potential (see
[4], [22], [23], [24]). For the soft potential case, R. Strain and Y. Guo have
proved results about the almost exponential decay (which means that the
convergence is faster than any polynomial convergence) in [25] , or some
exponential decay of the type exp(−tp) , (p < 1) in [26]. However, obtaining
spectral gap and coercivity estimates is sometimes very hard. Using our
tools, we can prove an exponential decay for the hard potential case and an
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almost exponential decay for the soft potential case. Since we do not need
the coercivity of the collision operator, we do not really need assumptions on
the collision kernel B(|v − v∗|, cos θ) including the smoothness, convexity,...
The linearized Boltzmann collision operator is usually split into two parts

L[f ] = ν(v)f −Kf,

where ν(v)f is the dominant part. If K is good enough, the spectrum of
L is included in the spectrum of ν(v), which leads to the coercivity of L.
Our idea is to consider the ’weak’ coercivity of L for only a small class of
functions: the solutions of (1.4). For a solution g of (1.4), the integral∫ T

0
L(g)dt

is equivalent to
Tν(v)g − C(T )Kg

in some sense, where C(T ) << T . This means that C(T )Kg is absorbed by
Tν(v)g when T is large and we still have the ’weak’ coercivity of L without
assuming more conditions on K. The only assumption we need is that the
usual dominant part in the linearized Boltzmann collision kernel remains
dominant with our very general conditions (see assumptions (2.18), (2.19)).
These assumptions is the least property that we could expect from the lin-
earized Boltzmann collision operator and they cover both cases: with and
without Grad cut-off assumptions. Similar as in the case of the Goldstein-
Taylor and related models, our proof remains true if the collision kernel
B(|v− v∗|, cos θ) depends on the space variable, which means that the effect
of the collision of particles depends also on the position where they collide;
however, we have not found any real model for this.
The plan of the paper is the following: the main results of the paper is stated
in Section 2 and the main tool of the proofs is studied in Section 3. Sections
3, 4, 5, 6 are devoted to the proofs of Theorems 2.1, 2.2, 2.3 and 2.4.
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2 Preliminaries and Statements of the Main Re-
sults

2.1 Stabilization of the Goldstein-Taylor equation and re-
lated models

We consider the Goldstein-Taylor model{ ∂u
∂t + ∂u

∂x = σ(x)(v − u),

∂v
∂t −

∂v
∂x = σ(x)(u− v),

(2.1)

where u := u(t, x), v := v(t, x), x ∈ T = R/Z, t ≥ 0, with the initial
condition

u(0, x) = u0(x), v(0, x) = v0(x). (2.2)

Suppose that σ ∈ L2(T). Define the asymptotic profile of the system (2.1):

(u∞, v∞) =

(
1

2

∫
T
(u0 + v0)dx,

1

2

∫
T
(u0 + v0)dx

)
, (2.3)

and the energy is then

Hu(t) =

∫
T
[(u− u∞)2 + (v − v∞)2]dx. (2.4)

We also consider the following non-homogeneous (in space) transport equa-
tion

∂f

∂t
+ v.∇f = σ(x)(f̄ − f), (2.5)

where f := f(t, x, v) is the density of particles at time t, position x and
velocity v. The notation f̄ is

∫
V f(t, x, v), where V is (−1, 1)d, we can

normalize the measure such that |V | = 1. The solutions are considered of
periodic 1 or on Td = Rd/Zd. We give an example where the damping is
week enough to give a polynomial decay

∂f

∂t
+ v.∇f = σ(x)1/2(1−∆x)−

ε
2σ(x)1/2(f̄ − f), (2.6)

where ε is a positive constant. The initial data is

f(0, x, v) = f0(x, v). (2.7)
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Define the energy of (2.6)

Ef (t) =

∫
Td

∫
V
|f − f∞|2dvdx, (2.8)

where

f∞ =

∫
V

∫
Td
f0(x, v)dxdv. (2.9)

Our main results are

Theorem 2.1 When σ ≥ 0, σ ∈ L2(Td), σ 6= 0, (u0, v0) ∈ L2(Td)×L2(Td),
the solution of the equation (2.1) decays exponentially in time towards the
equilibrium state of the equation.

Theorem 2.2 Suppose that σ ≥ 0, periodic, σ ∈ C∞(Td), σ 6= 0, and σ
satisfies: there exists constants T∗ > 0, C∗ > 0, such that for T > T∗∫ T

0
σ(x+ vt)dt ≥ TC∗. (2.10)

Suppose as well that f0 ∈ L∞(Td × V ), the solution of the equation (2.5)
decays exponentially in time towards the equilibrium state of the equation in
the L2 norm.

Remark 2.1 Compare to the results in [10], we do not need the condition
that the cross section σ is greater than a positive polynomial.

Theorem 2.3 When σ = 1, f0 ∈ C∞(Td), the solution of the equation
(2.6) decays polymonially in the following sense ∀M > 0, there exist positive
constants C(M) and k > M such that

Hf (t) ≤ C(M)(t+ 1)−k‖f0 − f∞‖2Hε . (2.11)

Remark 2.2 The existence of a solution of this equation can be proved by a
Picard iteration technique; however, we do not go into details of this classical
proof.

Remark 2.3 Since the order of the pseudo-differential operator (1−∆x)−ε/2

is −ε in (2.6), which means that the damping is quite weak, we get a polyno-
mial decay. According to our theorem the order of the convergence is −∞,
or we can get an almost exponential decay with this damping.
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2.2 Stabilization of the linearized Boltzmann equation

The Boltzmann equation describes the behavior of a dilute gas when the
interactions are binary (see [6], [13], [27])

∂tF + v.∇xF = Q(F, F ), t ≥ 0, x ∈ Td, v ∈ Rd. (2.12)

In (2.12), Q is the quadratic Boltzmann collision operator, defined by

Q(F, F ) =

∫
SN−1

∫
RN

(F ′F ′∗ − FF∗)B(|v − v∗|, cos θ)dσdv∗,

where F = F (t, x, v), F∗ = F (t, x, v∗), F
′
∗(t, x, v

′
∗), F

′ = F (t, x, v′) in which

v′ =
v + v∗

2
+
|v − v∗|

2
σ; v′∗ =

v + v∗
2
− |v − v∗|

2
σ, σ ∈ SN−1.

This is the so called ”σ-representation” of the Boltzmann collision operator.
Up to a Jacobian factor 2N−2 sinN−2(θ/2), where cos θ = (v′∗ − v′).(v∗ −
v)/|v∗ − v|2, one can also define the alternative ”ω-representation”,

Q(F, F ) =

∫
SN−1

∫
RN

(F ′F ′∗ − FF∗)B(v − v∗, ω)dv∗dω,

with
v′ = v + ((v∗ − v).ω)ω, v′∗ = v∗ − ((v∗ − v).ω)ω, ω ∈ Sd−1,

and
B(v − v∗, ω) = 2N−2 sinN−2(θ/2)B(|v − v∗|, cos θ).

The equilibrium distribution is given by the Maxwellian distribution

M(ρ, u, T )(v) =
ρ

(2πT )
N
2

exp

(
−|u− v|

2

2T

)
, (2.13)

where ρ, u, T are the density, mean velocity and temperature of the gas at
the point x

ρ =

∫
Rd
f(v)dv, u =

1

ρ

∫
Rd
vf(v)dv, T =

1

Nρ

∫
Rd
|u− v|2f(v)dv. (2.14)

Denote by
µ(v) = (2π)−d/2 exp(−|v|2/2),
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the normalized unique equilibrium with mass 1, momentum 0 and tem-
perature 1, we consider F to be a solution of the equation near µ. Put
F = µ+

√
µf , then

∂tf + v.∇xf = 2µ−1/2Q(µ,
√
µf) + µ−1/2Q(

√
µf,
√
µf). (2.15)

Define
Γ(f, f) = µ−1/2Q(

√
µf,
√
µf),

and
L[f ] = 2µ−1/2Q(µ,

√
µf),

the following equation is the linearized Boltzmann equation

∂tf + v.∇xf = L[f ], (2.16)

where L[f ] =∫
RN×SN−1

2Bµ1/2(v)µ(v∗)[µ
1/2(v′)f(v′∗) + µ1/2(v′∗)f(v

′)− µ1/2(v∗)f(v)− µ1/2(v)f(v∗)]dv∗dσ,

(2.17)

with the initial condition

f(0, x, v) = f0(x, v).

We assume the following conditions on the collision kernel B
(B1) There exist a constant α > −d + 1 and a positive constant M1 such
that ∫

Rd×Sd−1

µ(v∗)B(|v − v∗|, ω)dωdv∗ ≥M1(|v|+ 1)α. (2.18)

(B2) There exist constants 1− d < β < α+ 2/3, and M2 > 0 such that

B(|v − v∗|, ω) ≤M2|v − v∗|β|v′ − v|d−2. (2.19)

We impose these conditions to assure that the term∫
Rd×Sd−1

B(|v − v∗|, ω)µ(v∗)f(v)dv∗dσ

is the dominant term in the linearized Boltzmann collision operator. These
assumptions cover both cases: with and without Grad cut-off.
Consider the energy of f

Hf (t) =

∫
Td×Rd

|f |2dxdv, (2.20)
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and its derivative in time

d

dt
Hf (t) (2.21)

= −1

2

∫
Td×Rd×Rd×Sd−1

Bµ∗µ×

×[f ′∗µ
′−1/2
∗ + f ′µ′−1/2 − f∗µ−1/2∗ − fµ−1/2]2dσdv∗dvdx

≤ 0,

where we use the notation f ′∗ = f(v′∗), f
′ = f(v′), f∗ = f(v∗), f = f(v),

µ′∗ = µ(v′∗), µ
′ = µ(v′), µ∗ = µ(v∗) and µ = µ(v).

For ρ ∈ R, define

L2((|v|+ 1)ρ) := {f |(|v|+ 1)ρf ∈ L2(Td × Rd)}.
Denote by S(t)f0 the solution of the linearized Boltzmann equation and
suppose that f0 is orthogonal to the kernel of the linearized Boltzmann
collision kernel:∫

Rd
µ1/2f0dv =

∫
Rd
µ1/2|vi|f0dv =

∫
Rd
µ1/2|v|2f0dv = 0,

for all i ∈ {1, . . . , d}.
Theorem 2.4 With the assumptions (B1) and (B2):

• The ’hard potential’ case α, β > 0: suppose that f0 ∈ L2(Td × Rd),
there exist positive constants M0, δ such that∥∥∥∥S(t)

(
f0 −

∫
Td
f0dx

)∥∥∥∥
L2

≤M0 exp(−δt)
∥∥∥∥f0 − ∫

Td
f0dx

∥∥∥∥
L2

. (2.22)

• The ’soft potential’ case −(d − 1) < α, β < 0, : suppose that f0 ∈
L2((|v| + 1)δ), (∀δ > 0), for any M1 > 0, there exist p > M1 and
M2 > 0 such that∥∥∥∥S(t)

(
f0 −

∫
Td
f0dx

)∥∥∥∥
L2

≤M2t
−p
∥∥∥∥f0 − ∫

Td
f0dx

∥∥∥∥
L2

. (2.23)

Remark 2.4 In this theorem, since we prove a ’weak’ coercive estimate in-
stead of spectral gap and coercivity estimates for the linearized Boltzmann
operator, we can get exponential and almost exponential decays without re-
quiring too much assumptions on the collision kernel including the smooth-
ness, convexity, ... The only property that we need is that the dominant term
remains dominant with our conditions (B1) and (B2).

Remark 2.5 Our proof works well also for the case where B depends on x;
however, we have not found any real application for this.
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3 The main tool

Let (H,< ., . >, ‖.‖) be a real Hilbert space with its inner product and its
norm, A be an operator on H satisfying < A(x), x >= 0 for all x in H and
K be a self-ajoint linear operator. Suppose that

< K(x), y >=< x,K(y) >=< K1/2(x),K1/2(y) > .

Let f be the solution of the evolution equation{ ∂f
∂t +A(f) = −K(f), t ∈ R+,

f(0) = f0, f0 ∈ H,
(3.1)

and let g be the solution of{ ∂g
∂t +A(g) = 0, t ∈ R+,

g(0) = f0.
(3.2)

Lemma 3.1 For all T in R+∫ T

0
‖K1/2(f)‖2dt ≤

∫ T

0
‖K1/2(g)‖2dt. (3.3)

Proof Consider the norm of ‖f − g‖2

‖f − g‖2(T ) = 2

∫ T

0
< ∂tf − ∂tg, f − g > dt

= −
∫ T

0
2 < K1/2(f),K1/2(f − g) > dt

= −2

∫ T

0
‖K1/2(f)‖2dt+ 2

∫ T

0
< K1/2(f),K1/2(g) > dt

≤ −
∫ T

0
‖K1/2(f)‖2dt+

∫ T

0
‖K1/2(g)‖2dt,

which leads to ∫ T

0
‖K1/2(f)‖2dt ≤

∫ T

0
‖K1/2(g)‖2dt.
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Lemma 3.2 If K1/2 is bounded, then for all T in R+

M1

∫ T

0
‖K1/2(g)‖2dt ≤

∫ T

0
‖K1/2(f)‖2dt, (3.4)

where M1 is a positive constant.

Proof Take the derivative in time of ‖f − g‖2

∂t‖f − g‖2 = 2 < ∂tf − ∂tg, f − g >
= −2 < K1/2(f),K1/2(f − g) >

≤ ‖K1/2(f)‖2 + ‖K1/2(f − g)‖2

≤ ‖K1/2(f)‖2 + C‖f − g‖2,

the last inequality follows from the boundedness of K1/2(f − g), where C is
a positive constant. Gronwall’s inequality then leads to

‖f − g‖2(t) ≤
∫ t

0
exp(C(t− s))‖K1/2(f)‖2ds,

which together with the boundedness of K1/2(f − g) leads to

‖K1/2(f − g)‖2(t) ≤ C exp(Ct)

∫ t

0
‖K1/2(f)‖2ds,

where C is some positive constant. This deduces∫ T

0
‖K1/2(f − g)‖2dt ≤ CT exp(CT )

∫ T

0
‖K1/2(f)‖2dt.

The triangle inequality deduces∫ T

0
‖K1/2(g)‖2dt ≤ 2(CT exp(CT ) + 1)

∫ T

0
‖K1/2(f)‖2dt.

Lemma 3.3 Let (H ′, ‖.‖0) be a Banach subspace of H with its norm. Sup-
pose that for any h in H ′, ‖h‖ ≤ M‖h‖0, where M is a positive constant
and that for any solution g of (3.2)

‖f0‖ = ‖g(t)‖,∀t ∈ R+. (3.5)
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We assume that for any positive constant ε, the operator K could be decom-
posed into the sum of two linear operators Kε,1 and Kε,2 such that

K = Kε,1 +Kε,2, (3.6)

‖K1/2‖2 = ‖Kε,11/2‖2 + ‖Kε,21/2‖2, (3.7)

‖Kε,11/2(h)‖ ≤ C1(ε)‖h‖, ∀h ∈ H ′, (3.8)

‖Kε,21/2(h)‖ ≤ C2(ε)‖h‖0, ∀h ∈ H ′, (3.9)

‖K1/2(h)‖ ≤ C(K)‖h‖0, ∀h ∈ H ′, (3.10)

where C1(ε), C2(ε) and C(K) are positive constants, C2(ε) tends to 0 as ε

tends to 0, and K1/2
ε,i , i ∈ {1, 2} are defined in the following way

< Kε,i(h), k >=< K1/2
ε,i (h),K1/2

ε,i (k) >, ∀h, k ∈ H ′.

Suppose that there exist positive numbers T0 and C such that∫ T0

0
‖K1/2(g)‖2dt ≥ C‖f0‖20. (3.11)

Then there exists a constant M1 depending on T0 such that

M1

∫ T

0
‖K1/2(g)‖2dt ≤

∫ T

0
‖K1/2(f)‖2dt, (3.12)

for all T ≥ T0.

Proof Similar as in the previous lemma

∂t‖f − g‖2 = −2 < K1/2
ε,1 (f),K1/2

ε,1 (f − g) > −2 < K1/2
ε,2 (f),K1/2

ε,2 (f − g) >

≤ ‖K1/2
ε,1 (f)‖2 + ‖K1/2

ε,1 (f − g)‖2 − 2 < K1/2
ε,2 (f),K1/2

ε,2 (f − g) >

≤ ‖K1/2
ε,1 (f)‖2 + C1(ε)

2‖f − g‖2 + 2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f − g)‖,

the last inequality follows from (3.8). Gronwall’s inequality deduces

‖f − g‖2(t) ≤
∫ t

0
(‖K1/2

ε,1 (f)‖2 + 2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f − g)‖) exp(C1(ε)
2(t− s))ds

≤ exp(C1(ε)
2t)

∫ t

0
(‖K1/2

ε,1 (f)‖2 + 2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f − g)‖)ds.

The previous inequality implies∫ T

0
‖f−g‖2dt ≤ T exp(C1(ε)

2T )

∫ T

0
(‖K1/2

ε,1 (f)‖2+2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f−g)‖)dt,

(3.13)
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for any T > T0. The two inequalities (3.8) and (3.13) lead to∫ T

0
‖K1/2

ε,1 (f − g)‖2dt

≤ TC1(ε)
2 exp(C1(ε)

2T )

∫ T

0
(‖K1/2

ε,1 (f)‖2 + 2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f − g)‖)dt.

Apply the triangle inequality to the previous inequality to get∫ T

0
‖K1/2

ε,1 (g)‖2dt (3.14)

≤ 2(TC1(ε)
2 exp(C1(ε)

2T ) + 1)

∫ T

0
(‖K1/2

ε,1 (f)‖2 + 2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f − g)‖)dt.

The three inequalities (3.9), (3.10) and (3.11) imply that for ε small enough∫ T

0
‖K1/2

ε,1 (g)‖2dt ≥ C(ε)

∫ T

0
‖K1/2(g)‖2dt, (3.15)

where C(ε) is a positive constant depending on ε.
Combine (3.14) and (3.15) to get

C(ε)

2(TC1(ε)2 exp(C1(ε)2T ) + 1)

∫ T

0
‖K1/2(g)‖2dt (3.16)

≤
∫ T

0
(‖K1/2

ε,1 (f)‖2 + 2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f − g)‖)dt.

Since for any positive constant δ∫ T

0
(‖K1/2

ε,1 (f)‖2 + 2‖K1/2
ε,2 (f)‖‖K1/2

ε,2 (f − g)‖)dt

≤
∫ T

0

(
‖K1/2

ε,1 (f)‖2 +
1

δ
‖K1/2

ε,2 (f)‖2 + δ‖K1/2
ε,2 (f − g)‖2

)
dt

≤
(

1 + 2δ +
1

δ

)∫ T

0
‖K1/2(f)‖2dt+ 2δ

∫ T

0
‖K1/2(g)‖2dt,

Inequality (3.16) leads to(
C(ε)

2(TC1(ε)2 exp(C1(ε)2T ) + 1)
− 2δ

)∫ T

0
‖K1/2(g)‖2dt

≤
(

1 + 2δ +
1

δ

)∫ T

0
‖K1/2(f)‖2dt,

which implies (3.11) for δ small enough.
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Remark 3.1 Lemma 3.2 will be used later for the case of Goldstein-Taylor
and related models, while Lemma 3.3 will be used for the linearized Boltz-
mann equation.

Lemma 3.4 Suppose that K satisfies the conditions in Lemmas 3.2 or 3.3
and that there exist positive numbers T0 and C such that∫ T0

0
‖K1/2(g)‖2dt ≥ C‖f0‖2, (3.17)

then there exist positive numbers T1 and δ such that for all t ≥ T1

‖f(t)‖ ≤ exp(−δt)‖f0‖. (3.18)

Moreover, (3.18) also leads to (3.17).

Proof
Step 1: (3.17) leads to (3.18).
Choose T = kT0, where k is a positive integer. Since

‖f(0)‖ − ‖f(T )‖ =

∫ T

0
‖K1/2(f)‖2dt,

there exists p in {0, . . . , k − 1} such that

‖f(0)‖
k

≥
∫ (p+1)T0

pT0

‖K1/2(f)‖2dt.

Let h be the solution of
∂th+A(h) = 0,

with h(0) = f(pT0). Inequality (3.17) implies that∫ T0

0
‖K1/2(h)‖2dt ≥ C‖f(pT0)‖,

which together with Lemmas 3.2 and 3.3 deduces∫ T0

0
‖K1/2(f)‖2dt ≥ C‖f(pT0)‖.

This leads to

‖f(kT0)‖ ≤ ‖f(pT0)‖ ≤
1

Ck
‖f(0)‖,

14



where C is some positive constant, since

∂t‖f‖2 = −2 < K1/2f,K1/2f >,

or ‖f‖ is decreasing; for k large enough. The previous inequality implies

‖f(T∗)‖ ≤ exp(−δ∗T∗)‖f(0)‖,

where T∗ = kT0 and δ∗ = ln(Ck)
T∗

, which means

‖f(nT∗)‖ ≤ exp(−δ∗T∗)‖f((n− 1)T∗)‖ ≤ exp(−δ∗nT∗)‖f(0)‖, ∀n ∈ N.

For t ∈ [nT∗, (n+ 1)T∗),

‖f(t)‖ ≤ ‖f(nT∗)‖ ≤ exp(−δ∗nT∗)‖f(0)‖ ≤ exp(−δ∗
2
t)‖f(0)‖,

which leads to the exponential decay (3.18) with δ = δ∗
2 .

Step 2: (3.18) leads to (3.17).
Inequality (3.18) deduces that there exist constants C < 1 and T∗ > 0 such
that for T > T∗

‖f(0)‖ − ‖f(T )‖ =

∫ T

0
‖K1/2(f)‖2dt ≥ C‖f(0)‖2.

Lemma 3.1 implies that∫ T

0
‖K1/2(g)‖2dt ≥ C‖f(0)‖2.

We also recall Lemma 4.4 in [2], for a proof of this lemma we refer to [1]
and [21].

Lemma 3.5 Let {Ek} be a sequence of positive real numbers satisfying

Ek+1 ≤ Ek − CE2+ζk+1 ,∀k ≥ 0,

where C > 0 and ζ > −1 are constants. Then there exists a positive constant
M , such that

Ek ≤
M

(k + 1)
1

1+ζ

, k ≥ 0.
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4 Decay rates of the Goldstein-Taylor model

Consider the following system:{ ∂ϕ
∂t + ∂ϕ

∂x = 0,

∂φ
∂t −

∂φ
∂x = 0,

(4.1)

where ϕ := ϕ(t, x), φ := φ(t, x), x ∈ T = R/Z, t ≥ 0, with the initial
condition

ϕ(0, x) = ϕ0(x), φ(0, x) = φ0(x). (4.2)

Then asymptotic profile and the energy of the system are then

(ϕ∞, φ∞) =

(
1

2

∫
T
(ϕ0 + φ0)dx,

1

2

∫
T
(ϕ0 + φ0)dx

)
, (4.3)

and

Hϕ(t) =

∫
T
[(ϕ− ϕ∞)2 + (φ− φ∞)2]dx. (4.4)

The following proposition is a consequence of Lemmas 3.1, 3.2 and 3.4.

Proposition 4.1 Suppose that there exist positive numbers T0 and δ such
that

∀t ≥ T0,∀u0, v0 ∈W 1,1(T) : Hu(t) ≤ exp(−δt)Hu(0), (4.5)

then there exist a positive number T1 and a nonnegative number C such that∫ T1

0

∫
T
σ(ϕ− φ)2dxdt ≥ C

∫
T
[(ϕ− ϕ∞)2 + (φ− φ∞)2]dx, (4.6)

for ϕ0 = u0 and φ0 = v0.
Moreover, if there exist T1 and C such that (4.6) satisfies, then there exist
T0 and δ such that (4.5) is true.

Theorem 2.1 is a direct consequence of Proposition 4.1 and the following
proposition.

Proposition 4.2 There exists a positive constant T0 such that for T > T0∫ T

0

∫
T
σ(ϕ− φ)2dxdt ≥ C(T )

∫
T
[(ϕ0 − ϕ∞)2 + (φ0 − φ∞)2]dx, (4.7)

where C(T ) is a positive constant depending on T .
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Proof Since (ϕ, φ) is the solution of the system (4.1),

(ϕ, φ) = (ϕ0(x− t), φ0(x+ t)).

Write ϕ0 and φ0 under the form of Fourier series:

ϕ0(x) =

∞∑
−∞

exp(inπx)an,

φ0(x) =
∞∑
−∞

exp(inπx)bn,

then

ϕ0(x− t) =

∞∑
−∞

exp(inπ(x− t))an,

φ0(x+ t) =
∞∑
−∞

exp(inπ(x+ t))bn.

Choose T to be a positive integer, the previous formulas imply∫ T

0
σ(ϕ− φ)2dt

=

∫ T

0
σ

∣∣∣∣∣
∞∑
−∞

exp(inπx)(an exp(−inπt)− bn exp(inπt))

∣∣∣∣∣
2

dt

= lim
M→∞

 ∑
|n|<M

∫ T

0
σ|an exp(−inπt)− bn exp(inπt)|2dt+

+
∑

|n|,|m|<M,n6=m

exp(i(n−m)πx)×

×
∫ T

0
[an exp(−inπt)− bn exp(inπt)]am exp(−imπt)− bm exp(imπt)dt

)

= lim
M→∞

 ∑
|n|<M

∫ T

0
σ|an exp(−inπt)− bn exp(inπt)|2dt+

+
∑

|n|,|m|<M,n6=m

exp(i(n−m)πx)×

×
∫ T

0
[an exp(−inπt)− bn exp(inπt)]am exp(−imπt)− bm exp(imπt)dt

)
17



= lim
M→∞

∑
|n|<M

∫ T

0
σ|an exp(−inπt)− bn exp(inπt)|2dt

=
∑

n∈R,n 6=0

Tσ(|an|2 + |bn|2) + Tσ|a0 − b0|2,

which leads to∫
T

∫ T

0
σ(ϕ− φ)2dtdx = T

∫
T
σdx

 ∑
n∈R,n 6=0

(|an|2 + |bn|2) + |a0 − b0|2
 .

(4.8)
Moreover, the right hand side of (4.7) is equal to∫

T
[(ϕ0 − ϕ∞)2 + (φ0 − φ∞)2]dx =

∑
n∈R,n 6=0

(|an|2 + |bn|2). (4.9)

Inequality (4.7) follows by (4.8) and (4.9).

5 Decay rates of the non-homogeneous transport
equation

We recall the conditions on σ : σ ≥ 0, σ ∈ C∞(Td), σ 6= 0, and σ satisfies:
there exists constants T∗ > 0, C∗ > 0, such that for T > T∗

1

T

∫ T

0
σ(x+ vt)dt ≥ C∗.

Consider the equation
∂g

∂t
+ v.∇g = 0, (5.1)

with the initial condition

g(0, x, v) = g0(x, v). (5.2)

The energy of (6.1) is then defined

Eg(t) =

∫
Td
|g − g∞|2dx, (5.3)

where

g∞ =

∫
V

∫
Td
g0(x, v)dxdv. (5.4)

We suppose that g∞ = 0 without loss of genarality. The following proposi-
tion is a direct consequence of Lemmas 3.1, 3.2 and 3.4.
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Proposition 5.1 Suppose that there exist positive numbers T0 and δ such
that

∀t ≥ T0,∀f0 ∈ L∞(Td × V ) : Hf (t) ≤ exp(−δt)Hf (0), (5.5)

then there exist a positive number T1 and a nonnegative number C such that∫ T1

0

∫
Td

∫
V

∫
V
σ|g(t, x, v)−g(t, x, v′)|2dv′dvdvdxdt ≥ C

∫
Td

∫
V

(g0(x, v)−g∞)2dvdx,

(5.6)
for g0 = f0.
Moreover, if there exist T1 and C such that (5.6) satisfies, then there exist
T0 and δ such that (5.5) is true.

Theorem 2.2 is a direct consequence of Proposition 5.1 and the following
proposition.

Proposition 5.2 There exists a positive constant T0 such that for T > T0∫ T

0

∫
Td

∫
V×V

σ(x)|g(t, x, v)−g(t, x, v′)|2dv′dvdxdt ≥ C(T )

∫
Td

∫
V

(g0(x, v)−g∞)2dvdx.

(5.7)

Proof We suppose that g∞ = 0 without loss of genarality. Write g under
the form of Fourier series

g(x, v, t) = g0(x− vt, v) =
∑
n∈Zd

an(v) exp(i2πn(x− vt)).

Then ∫
V×V

|g(x, v, t)− g(x, v′, t)|2dv′dv

=

∫
V×V

∣∣∣∣∣∣
∑
n∈Zd

an(v) exp(i2πn(x− vt))−
∑
m∈Zd

am(v′) exp(i2πm(x− v′t))

∣∣∣∣∣∣
2

dv′dv

=

∫
V

∣∣∣∣∣∣
∑
n∈Zd

an(v) exp(i2πn(x− vt))

∣∣∣∣∣∣
2

dv +

∫
V

∣∣∣∣∣∣
∑
n∈Zd

an(v′) exp(i2πn(x− v′t))

∣∣∣∣∣∣
2

dv′

−2
∑

m,n∈Zd

∫
V×V

am(v′)an(v) exp(i2π(−m+ n)x) exp(i2πt(mv − nv′))dvdv′
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= 2

∫
V

∣∣∣∣∣∣
∑
n∈Zd

an(v) exp(i2πn(x− vt))

∣∣∣∣∣∣
2

dv

−2
∑

m,n∈Zd

∫
V×V

am(v′)an(v) exp(i2π(−m+ n)x) exp(i2πt(mv − nv′))dvdv′

= 2

∫
V
|g(x, v, t)|2 dv

−2
∑

m,n∈Zd

∫
V×V

am(v′)an(v) exp(i2π(−m+ n)x) exp(i2πt(mv − nv′))dvdv′.

Therefore∫ T

0

∫
Td

∫
V×V

σ(x)|g(x, v, t)− g(x, v′, t)|2dv′dvdxdt (5.8)

= 2

∫ T

0

∫
Td

∫
V×V

σ(x) |g(x, v, t)|2 dv′dvdxdt

−2
∑

m,n∈Zd

∫ T

0

∫
Td

∫
V×V

σ(x)am(v′)an(v) exp(i2π(−m+ n)x) exp(i2π(mv − nv′))dvdv′dt.

We first consider one component in the second term on the right hand side
of (5.8). We drop the constant 2 for the sake of simplicity∫ T

0

∫
Td

∫
V×V

σ(x)am(v′)an(v) exp(i2π(−m+ n)x) exp(i2π(mv − nv′))dvdv′dxdt(5.9)

=

∫
Td
σ(x) exp(i2π(−m+ n)x)dx

∫ T

0

∫
V×V

am(v′)an(v) exp(i2π(mv − nv′))dvdv′dt.

Consider the first component in (5.9). Suppose that |mk−nk| = max{|m1−
n1|, . . . , |md − nd|}, and do the integration by part in the xk direction, we
get∣∣∣∣∫

Td
σ(x) exp(i2π(n−m)x)dx

∣∣∣∣ =

∣∣∣∣(−1)p
∫
Td
∂pkσ(x)

exp(i2π(n−m)x)

(i2π(nk −mk))p
dx

∣∣∣∣
≤
∫
Td
|∂pkσ(x)| 1

2π|nk −mk|p
dx ≤ C‖σ‖W p,1

1

|n−m|p
, (5.10)

where C is some positive constant and p is a positive integer greater than d.
Consider the second component on the right hand side of (5.8)∣∣∣∣∫ T

0

∫
V×V

am(v′)an(v) exp(i2π(mv − nv′)t)dvdv′dt
∣∣∣∣ (5.11)
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=

∣∣∣∣∫
V×V

am(v′)an(v)
1− exp(i2π(mv − nv′)T )

i2π(mv − nv′)
dvdv′

∣∣∣∣
≤ ‖an‖L2‖am‖L2

[∫
V×V

∣∣∣∣1− exp(i2π(mv − nv′)T )

i2π(mv − nv′)

]2
dvdv′

]1/2
≤ ‖an‖L2‖am‖L2 ×

×
[∫

V×V

(1− cos(2π(mv − nv′)T ))2 + sin2(2π(mv − nv′)T )

|2π(mv − nv′)|2
dvdv′

]1/2
≤ ‖an‖L2‖am‖L2

[∫
V×V

2− 2 cos(2π(mv − nv′)T )

|2π(mv − nv′)|2
dvdv′

]1/2
≤ ‖an‖L2‖am‖L2

[∫
V×V

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dvdv′

]1/2
.

Let ε be a positive constant. We now try to estimate the integral

‖an‖L2‖am‖L2

[∫
V×V

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dvdv′

]1/2
.

For fixed v′ and n, we have∫
V

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dv

=

∫
{|π(mv−nv′)|≤ε,v∈V }

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dv +

∫
{|π(mv−nv′)|>ε,v∈V }

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dv

≤ T 2|{|π(mv − nv′)| ≤ ε, v ∈ V }|+ 1

ε2
|{|π(mv − nv′)| > ε, v ∈ V }|

≤ T 2 Cεd

πd|m1| . . . |md|
+

1

ε2
|V |,

where the second inequality follows from the following fact:

|{π(mv − nv′)| ≤ ε, v ∈ V }| ≤ |{ d
max
i=1
|π(mivi − niv′i)| ≤ ε, v ∈ V }|

= |{ d
max
i=1
|π(vi − niv′i)| ≤

ε

mi
, v ∈ V }| = Πd

i=1|{|π(vi − niv′i)| ≤
ε

mi
, v ∈ V }| = Cεd

πd|m1| . . . |md|
.

Optimizing over ε, we have that

T 2 Cεd

πd|m1| . . . |md|
+

1

ε2
|V | =

CT
4
d+2

(|m1| . . . |md|)
2
d+2

,
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we get ∫
V

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dv ≤ CT

4
d+2

(|m1| . . . |md|)
2
d+2

,

which implies∫
V×V

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dvdv′ ≤ CT

4
d+2

(|m1| . . . |md|)
2
d+2

.

A similar argument gives∫
V×V

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dvdv′ ≤ CT

4
d+2

(|m1| . . . |md|)
2
d+2

.

Therefore, the above argument gives∫
V×V

| sin(π(mv − nv′)T )|2

|π(mv − nv′)|2
dvdv′ ≤ CT

4
d+2

(|m1| . . . |md|)
1

(d+2) (|n1| . . . |nd|)
1

(d+2)

.(5.12)

Combine (5.9), (5.10), (5.11) and (5.12), we get for m 6= n∣∣∣∣∫ T

0

∫
Td

∫
V×V

σ(x)am(v′)an(v) exp(i2π(−m+ n)x) exp(i2πt(mv − nv′))dvdv′dxdt
∣∣∣∣

≤ C‖an‖L2‖am‖L2

CT
2
d+2

(|m1| . . . |md|)
1

2(d+2) (|n1| . . . |nd|)
1

2(d+2)

‖σ‖W p,1

1

|n−m|p
(5.13)

≤ C(‖an‖2L2 + ‖am‖2L2)
CT

2
d+2

(|m1| . . . |md|)
1

2(d+2) (|n1| . . . |nd|)
1

2(d+2)

‖σ‖W p,1

1

|n−m|p
.

The case m = n, we have that∣∣∣∣∫ T

0

∫
Td

∫
V×V

σ(x)an(v′)an(v) exp(i2πt(nv − nv′))dvdv′dxdt
∣∣∣∣

≤ C‖an‖2L2

T
2
d+2

(|n1| . . . |nd|)
1
d+2

‖σ‖L2 . (5.14)

Therefore∑
m,n∈Zd

∣∣∣∣∫ T

0

∫
Td

∫
V×V

σ(x)am(v′)an(v) exp(i2π(−m+ n)x) exp(i2π(mv − nv′))dvdv′dxdt
∣∣∣∣

22



≤ CT
2
d+2 ‖σ‖W p,1

∑
n∈Zd

‖an‖2L2

 ∑
m6=n,m∈Zd

1

(|m1| . . . |md|)
1

2(d+2) (|n1| . . . |nd|)
1

2(d+2)

1

|n−m|p


+C

∑
n∈Zd

‖an‖2L2

T
2
d+2

(|n1| . . . |nd|)
1
d+2

‖σ‖L2 (5.15)

≤ CT
2
d+2 (‖σ‖W p,1 + ‖σ‖L2)

∑
n∈Zd

‖an‖2L2

≤ CT
2
d+2 (‖σ‖W p,1 + ‖σ‖L2)‖g0‖2L2 ,

here we use the fact that
∑

m∈Zd
1
|m|p is bounded for p > d, which implies

the boundedness of 1

(|m1|...|md|)
1

2(d+1) (|n1|...|nd|)
1

2(d+1)

1
|n−m|p . We now consider

the first term in (5.8)∫ T

0

∫
Td

∫
V×V

σ(x) |g(v)|2 dv′dvdxdt (5.16)

=

∫ T

0

∫
Td

∫
V×V

σ(x) |g0(x− vt)|2 dv′dvdxdt

=

∫ T

0

∫
Td

∫
V×V

σ(x) |g0(x− vt)|2 dv′dvdxdt.

Fix v and consider the integral∫
Td

∫ T

0
σ(x) |g0(x− vt)|2 dtdx (5.17)

=

∫
Td

∫ T

0
σ(y + vt) |g0(y)|2 dy

≥ TC∗

∫
Td
|g0(y)|2 dtdy

≥ TC∗‖g0‖2L2 ,

where we use the change of variable y = x+vt. Combining (5.16) and (5.17),
we get ∫ T

0

∫
Td

∫
V×V

σ(x)|g(v)− g(v′)|2dv′dvdxdt (5.18)

≥ C(T − T 2/(d+2))‖g0‖2L2

≥ CT‖g0‖2L2 ,

for T large enough.
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6 Decay rates of the special transport equation

Similar as in the previous section, consider the equation

∂g

∂t
+ v.∇g = 0, (6.1)

with the initial condition

g(0, x, v) = g0(x), (6.2)

and

g∞ =

∫
Td
g0(x)dx.

For n in Zd, define

An =

∫
(0,1)d

g0(x) exp(−in2πx)dx.

6.1 The Observability Inequality

Proposition 6.1 There exist positive constants T0 and C(T ) such that for
T > T0∫ T

0

∫
Td

∫
V
|(1−∆x)−ε/2(g − ḡ)|2dvdxdt ≥ C(T )

∑
n∈Zd

∫
Rd |An|

2dv

(1 + |n|2)ε
. (6.3)

Proof
Write g under the form of Fourier series:

g(x, v, t) = g0(x− vt) =
∑
n∈Zd

An exp(i2πn(x− vt)),

which deduces∫
Td

∫
V

∫ T

0
|(1−∆x)−ε/2(g − ḡ)|2dtdx

= lim
m→∞

∫
Td

 ∑
n∈Zd;|n|≤m;n6=0

|An|2|(1−∆x)−
ε
2 exp(i2πnx)|2dx×

×
∫ T

0

∫
V
| exp(−i2πnvt)−

∫
V

exp(−i2πnvt)dv|2dvdt
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+
∑

p,q∈Zd;|p|,|q|≤m;p6=q;p,q 6=0

(1−∆x)−
ε
2 exp(i2πpx)Ap × (6.4)

(1−∆x)−
ε
2 exp(i2πqx)Aq

∫ T

0

∫
V

[(exp(−i2πpvt)−
∫
V

exp(−i2πpvt)dv)×

×exp(−i2πqvt)−
∫
V

exp(−i2πqvt)dv]dvdt

}
dx.

Similar as in the previous section, we have∫ T

0

∫
V
| exp(−i2πnvt)−

∫
V

exp(−i2πnvt)dv|2dvdt ≥ T

2
,

for T large enough, and∣∣∣∣∫ T

0

∫
V

(
(exp(−i2πpvt)−

∫
V

exp(−i2πpvt)dv)×

exp(−i2πqvt)−
∫
V

exp(−i2πqvt)dv
)
dvdt

∣∣∣∣
=

∣∣∣∣∫ T

0

∫
V

exp(i2π(q − p)vt)dvdt

−
∫ T

0
(

∫
V

exp(−i2πpvt)dv
∫
V

exp(i2πqvt)dv)dt

∣∣∣∣
≤ C

(
T 1/2

|p− q|1/2
+

1√
|p||q|

)
,

where C is some positive constant. Consider the sum∑
n∈Zd;|n|≤m;n6=0

|An|2
∫
Td
|(1−∆x)−

ε
2σ exp(i2πnx)|2dx× (6.5)

×
∫ T

0

∫
V
| exp(−i2πnvt)−

∫
V

exp(−i2πnvt)dv|2dvdt

≥
∑

n∈Zd;|n|≤m;n6=0

T

2
|An|2

∫
Td
|(1−∆x)−

ε
2 exp(i2πnx)|2dx (6.6)

≥ TC
∑

n∈Zd;|n|≤m;n6=0

|An|2

(1 + n2)ε
, (6.7)
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where C is a positive constant.
Now, consider the term∣∣∣∣∣∣

∑
p,q∈Zd;|p|,|q|≤m;p 6=q

(1−∆x)−
ε
2σ exp(i2πpx)Ap×

(1−∆x)−
ε
2 exp(i2πqx)Aq

∫ T

0

[∫
V

(exp(−i2πpvt)−
∫
V

exp(−i2πpvt)dv)×

×exp(−i2πqvt)−
∫
V

exp(−i2πqvt)dv
]
dvdt

∣∣∣∣ (6.8)

≤
∑

p,q∈Zd;|p|,|q|≤m;p6=q

C
|Ap|

(1 + |p|2)
ε
2

|Aq|
(1 + |q|2)

ε
2

(
T

1
2

|p− q|3/2
+

1

|p− q|
√
|p||q|

)

≤
∑

p,q∈Zd;|p|,|q|≤m;p6=q

C

(
T

1
2

|p− q|3/2
+

1

|p− q|
√
|p||q|

)(
|Ap|2

(1 + |p|2)ε
+

|Aq|2

(1 + |q|2)ε

)
.

Combine (6.4), (6.5) and (6.8) to get∫ T

0

∫
Td

∫
V
|(1−∆x)−ε/2(g − ḡ)|2dvdxdt ≥ C(T )

∑
n∈Zd

∫
Rd |An(v)|2dv
(1 + |n|2)ε

,

for T large.

6.2 Convergence to Equilibrium: Proof of Theorem 2.3

Step 1: The boundedness of ‖∂kxf‖L2 , ∀k ∈ Zd.
Derive (2.6) to get∫

Td
∂t∂

k
xf +

∫
Td
v∂k+1

x f =

∫
Td

(1−∆x)−ε∂kx(f̄ − f).

This leads to
∂t‖∂kxf‖2L2 ≤ 0,

which means
‖∂kxf‖2L2(t) ≤ ‖∂kxf0‖2L2 .

Step 2: The polynomial convergence.
The previous proposition and Lemma 3.2 imply

Hf (0)−Hf (T ) ≥ C(T, σ)
∑
n∈Zd

|An|2

(1 + |n|2)ε
. (6.9)
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Let k1, k2 and k3 be positive numbers satisfying −2εk1+k2k3 = 0. According
to Jensen inequality∑n∈Zd

|An|2
(1+|n|2)ε∑

n∈Zd |An|2

k1 (∑
n∈Zd |An|2|n|k2∑
n∈Zd |An|2

)k3

≥

∑
n∈Zd

|An|2((1 + |n|2)−
εk1

k1+k3 |n|
k2k3
k1+k3 )∑

n∈Zd |An|2

k1+k3

≥ C

∑
n∈Zd

|An|2∑
n∈Zd |An|2

k1+k3

≥ C,

where C is some positive constant, which yields

∑
n∈Zd

|An|2

(1 + |n|2)ε
≥ C

∑
n∈Zd

|An|2
( ∑

n∈Zd |An|2∑
n∈Zd |An|2|n|k2

) k3
k1

, (6.10)

for some positive constant C.
Denote

M((l − 1)T ) =
∑
n∈Zd

| ˆf(lT )(n)|2|n|k2 ,

for l ∈ N{0}, where ˆf(lT ) is the Fourier transform in x of f(lT ).
Inequalities (6.9) and (6.10) imply

Hf (0)− CHf (0)

(
Hf (0)

M(0)

) k3
k1

≥ Hf (T ). (6.11)

Since the energy Hf is decreasing, (6.11) deduces

Hf (lT )− CHf (lT )

(
Hf (lT )

M(lT )

) k3
k1

≥ Hf ((l + 1)T ), (6.12)

for all l in N∪{0}. Step 1 implies M(lT ) ≤ C, where C is a positive constant,
which together with Inequality (6.12) implies

Hf (lT )− CHf (lT )

(
Hf (lT )

C

) k3
k1

≥ Hf ((l + 1)T ). (6.13)
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Put

El =
Hf (lT )

C
,

Inequality (6.13) yields

El+1 ≤ El − CE
k3
k1

+1

l+1 ,

where C is some positive constant. According to Lemma 3.5

Hf (lT ) ≤ C
(

1

l + 1

) k1
k3

Hf (0),

where C is some positive constant. Let k1
k3

tend to ∞ we get the theorem.

7 Decay rates of the linearized Boltzmann equa-
tion

Let g be the solution of
∂tg + v∂xg = 0, (7.1)

with the initial datum
g(0, x, v) = f0(x, v),

where f0(x, v) is the initial datum of (2.16). For the sake of simplicity, we
suppose that ∫

Rd
f0dv = 0. (7.2)

7.1 The Observability Inequality

Similar as in the previous sections, we prove

Proposition 7.1 There exists a constant T∗, depending on the structure of
the equation, such that for all T > T∗∫ T

0

∫
Td×Rd×Rd×Sd−1

B(|v∗ − v|, ω)µ∗µ× (7.3)

×[g′∗µ
′
∗
−1/2

+ g′µ′−1/2 − g∗µ−1/2∗ − gµ−1/2]2dσdv∗dvdx

≥ C

∫
Td×Rd

(|v|+ 1)α|f0|2dxdv.
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Proof Since g is a solution of (7.1), it could be written under the form

g(t, x, v) = g0(x− vt, v) =
∑
n∈Zd

An(v) exp(i2πn(x− vt)),

this implies∫ T

0

∫
Td×Rd×Rd×Sd−1

B(|v∗ − v|, ω)µ∗µ× (7.4)

×[g′∗µ
′
∗
−1/2

+ g′µ′−1/2 − gµ−1/2 − g∗µ−1/2∗ ]2dωdv∗dvdxdt

=
∑
n∈Zd

∫ T

0

∫
Rd×Rd×Sd−1

Bµ∗µ
∣∣∣An′∗µ′∗−1/2 exp(−i2πnv′∗t) +An

′µ′−1/2 exp(−i2πnv′t)

−An∗µ
−1/2
∗ exp(−i2πnv∗t)−Anµ−1/2 exp(−i2πnvt)

∣∣∣2 dωdv∗dvdt
= 4

∑
n∈Zd

∫ T

0

∫
Rd×Rd×Sd−1

Bµ∗µ[−An′∗µ′∗
−1/2

Anµ
−1/2 exp(i2πn(v − v′∗)t)−

−An′µ′−1/2Anµ−1/2 exp(i2πn(v − v′)t)
+An∗µ

−1/2
∗ Anµ

−1/2 exp(i2πn(v − v∗)t) + |Anµ−1/2|2]dωdv∗dvdt.

Using the same technique as in [14], [15] and [24], we consider the compo-
nents of the last integral of (7.4) separately.
Part 1: Consider the dominant component of (7.4)∫ T

0

∫
Rd×Rd×Sd−1

Bµ∗µ|Anµ−1/2|2dωdv∗dvdt (7.5)

= T

∫
Rd×Rd×Sd−1

Bµ∗|An|2dωdv∗dv

≥ TC

∫
Rd

(|v|+ 1)α|An|2dv,

where C is some positive constant.
Part 2: Consider the second component of (7.4)∣∣∣∣∫ T

0

∫
Rd×Rd×Sd−1

Bµ1/2µ1/2∗ An∗An exp(i2πn(v − v∗)t)dωdv∗dvdt
∣∣∣∣

≤
∫
Rd×Rd×Sd−1

Bµ1/2µ1/2∗ |An∗||An|
| sin(πn(v − v∗)T )|
|πn(v − v∗)|

dωdv∗dv (7.6)

≤ 1

2

∫
Rd×Rd×Sd−1

Bµ1/2µ1/2∗ |An|2
| sin(πn(v − v∗)T )|
|πn(v − v∗)|

dωdv∗dv.
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The kernel of (7.6) could be bounded in the following way∫
Rd×Sd−1

Bµ1/2∗ µ1/2
| sin(πn(v − v∗)T )|
|πn(v − v∗)|

dωdv∗ (7.7)

≤ |Sd−1|1/2
(∫

Rd×Sd−1

B2(µµ∗)1/2dωdv∗
)1/2

×

×
(∫

Rd

| sin(πn(v − v∗)T )|2

|πn(v − v∗)|2
(µµ∗)

1/2dv∗

)1/2

≤ C(|v|+ 1)β−2/3
(∫

Rd

| sin(πn(v − v∗)T )|2

|πn(v − v∗)|2
(µµ∗)

1/2dv∗

)1/2

,

where C is some positive constant.
In order to estimate the last integral of (7.7), let ε be a positive constant,
we consider two cases.
For |n(v − v∗)| < ε,(∫

{|n(v−v∗)|}<ε

| sin(πn(v − v∗)T )|2

|πn(v − v∗)|2
(µµ∗)

1/2dv∗

)1/2

(7.8)

≤ T

(∫
{|n(v−v∗)|}<ε

(µµ∗)
1/2dv∗

)1/2

≤ TC(ε),

where C(ε) tends to 0 as ε tends to 0.
For |n(v − v∗)| > ε,(∫

{|n(v−v∗)|}>ε

| sin(πn(v − v∗)T )|2

|πn(v − v∗)|2
(µµ∗)

1/2dv∗

)1/2

(7.9)

≤

(∫
{|n(v−v∗)|}>ε

(µµ∗)
1/2 1

ε2
dv∗

)1/2

≤ C

ε
,

where C is some positive constant. Inequalities (7.7), (7.8) and (7.9) then
imply ∣∣∣∣∫ T

0

∫
Rd×Rd×Sd−1

Bµ1/2µ1/2∗ An∗An exp(i2πn(v − v∗)t)dωdv∗dvdt
∣∣∣∣
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≤ min{TC(ε),
C

ε
}
∫
Rd

(|v|+ 1)β−2/3|An(v)|2dv. (7.10)

Part 3: Consider the last components of (7.4), by the change of variables
ω → −ω

I := (7.11)

=

∣∣∣∣∫ T

0

∫
Rd×Rd×Sd−1

Bµ∗µ[−An′∗µ′∗
−1/2

Anµ
−1/2 exp(i2πn(v − v′∗)t)−

−An′µ′−1/2Anµ−1/2 exp(i2πn(v − v′)t)]dωdv∗dvdt
∣∣∣

=

∣∣∣∣∫ T

0

∫
Rd×Rd×Sd−1

2Bµ∗µAn′µ′−1/2Anµ−1/2 exp(i2πn(v − v′)t)dωdv∗dvdt
∣∣∣∣

≤
∫
Rd×Rd×Sd−1

2|v − v∗|β|v − v′|d−2|An′||An|
| sin(πn(v − v′)T )|
|πn(v − v′)|

µ
1/2
∗ µ′∗

1/2
dωdv∗dv,

the last inequality is derived by taking the integral in time.
Denote

K∗ :=

∫
Rd×Sd−1

2|v − v∗|β|v − v′|d−2|An′|
| sin(πn(v − v′)T )|
|πn(v − v′)|

µ
1/2
∗ µ′∗

1/2
dωdv∗,

and for ω fixed perform the following changes of variables on K∗: v∗ → V =
v∗− v and V = rω+ z with z ∈ ω⊥. Since the Jacobians of the two changes
of variables are 1,

K∗ =

∫
Rd×Sd−1

2rd−2|An(v + rω)| | sin(πrTn.ω)|
|πrn.ω|

(∫
ω⊥

(µ∗µ
′
∗)

1/2|rω + z|βdz
)
dωdr.

Now, make the change of variable (r, ω) → W = rω. The Jacobian of this
change of variables is 2r−d+1.

K∗ =

∫
Rd×Sd−1

4|An(v +W )||W |−1 | sin(πTn.W )|
|πn.W |

(∫
W⊥

(µ∗µ
′
∗)

1/2|W + z|βdz
)
dW.

Since

|v∗|2 + |v′∗|2 = |v +W + z|2 + |v + z|2

=
1

2
|W + 2(v + z)|2 +

1

2
|W |2

=
1

2
|W + 2(v.ω)ω|2 + 2|z + v − (v.ω)ω|2 +

1

2
|W |2,
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then

(µ∗µ
′
∗)

1/2 = (2π)−d/2 exp

(
−|W |

2

8
− |z + v − (v.ω)ω|2

2
− |W + 2(v.ω)ω|2

8

)
,

which implies

K∗ =

∫
Rd×Sd−1

4(2π)−d/2|An(v +W )||W |−1 exp(−|W |
2

8
− |W + 2(v.ω)ω|2

8
)

×| sin(πTn.W )|
|πn.W |

(∫
W⊥

exp(−|z + v − (v.ω)ω|2

2
)|W + z|βdz

)
dW.

Define

K := 4(2π)−d/2|v′ − v|−1 exp(−|v
′ − v|2

8
− |v

′ − v + 2(v.ω)ω|2

8
)
| sin(πTn.(v′ − v))|
|πn.(v′ − v)|

×
(∫

ω⊥
exp(−|z + v − (v.ω)ω|2

2
)|v′ − v + z|βdz

)
,

then

I ≤
∫
Rd×Rd×Sd−1

K|An(v′)||An(v)|dωdv′dv. (7.12)

Now, consider the integral in z in the kernel K∫
ω⊥

exp(−|z + v − (v.ω)ω|2

2
)|v′ − v + z|βdz (7.13)

=

∫
ω⊥

exp(−|z|
2

2
)|v′ − v + z − (v − (v.ω)ω)|βdz

≤ C(1 + |v′ − v − (v − (v.ω)ω)|)β,

since β > −(d − 1), the integral is well-defined. Let s be a real number,
according to the inequality

(1 + |ζ ′|)s ≤ C(1 + |ζ|)s(1 + |ζ ′ − ζ|)|s|,

the following estimate follows from (7.13)∫
Rd
K(1 + |v′|)sdv′ (7.14)

≤ C(1 + |v|)s
∫
Rd
|v′ − v|−1 exp(−|v

′ − v|2

8
− |v

′ − v + 2(v.ω)ω|2

8
)

×| sin(πTn.(v′ − v))|
|πn.(v′ − v)|

(1 + |v′ − v − (v − (v.ω)ω)|)β(1 + |v′ − v|)|s|dv′
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≤ C(1 + |v|)s
(∫

Rd

| sin(πTn.(v′ − v))|3

|πn.(v′ − v)|3
exp(−|v

′ − v|2

8
)dv′

)1/3

×

×
(∫

Rd
|v′ − v|−3/2 exp(−|v

′ − v|2

8
− 3|v′ − v + 2(v.ω)ω|2

16
)

×(1 + |v′ − v − (v − (v.ω)ω)|)3/2β(1 + |v′ − v|)3/2|s|dv′
)2/3

≤ (1 + |v|)s min{TC(ε),
C

ε
}
(∫

Rd
exp(−|v

′ − v|2

8
− 3|v′ − v + 2(v.ω)ω|2

16
)

×C|v′ − v|−3/2(1 + |v′ − v − (v − (v.ω)ω)|)3/2β(1 + |v′ − v|)3/2|s|dv′
)2/3

,

the last inequality is obtained by the same argument that we use in Part 2.
Now, we consider two cases β ≥ 0 and β < 0.
Case 1: β ≥ 0.∫

Rd
K(1 + |v′|)sdv′

≤ (1 + |v|)s min{TC(ε),
C

ε
}
(∫

Rd
exp(−|v

′ − v|2

8
− 3|v′ − v + 2(v.ω)ω|2

16
)

×C|v′ − v|−3/2(1 + |v − (v.ω)ω|)3/2β(1 + |v′ − v|)3/2|s|+3/2βdv′
)2/3

≤ (1 + |v|)s+β min{TC(ε),
C

ε
}
(∫

Rd
exp(−|v

′ − v|2

8
− 3|v′ − v + 2(v.ω)ω|2

16
)

×C|v′ − v|−3/2(1 + |v′ − v|)3/2|s|+3/2βdv′
)2/3

.

Denote

J1 :=

∫
Rd

exp(−|v
′ − v|2

8
−3|v′ − v + 2(v.ω)ω|2

16
)|v′−v|−3/2(1+|v′−v|)3/2|s|+3/2βdv′.

Perform the changes of variables V → u = v′ − v and u = rω, r ∈ R+,
ω ∈ Sd−1, and choose v as the north pole vector in the angle parametrization

J1 = |Sd−2|
∫ ∞
0

rd−5/2(1 + r)3/2|s|+3/2β exp(−r
2

8
)×

×
∫ π

0
exp(−3(r + 2|v| cosϕ)2

16
) sind−2(ϕ)dϕdr.

For the case d ≥ 3, since sind−2(ϕ) ≤ sin(ϕ),

J1 ≤ |Sd−2|
∫ ∞
0

rd−5/2(1 + r)3/2|s|+3/2β exp(−r
2

8
)×
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×
∫ π

0
exp(−3(r + 2|v| cosϕ)2

16
) sin(ϕ)dϕdr.

Now, make the change of variables y = r + 2|v| cos(ϕ) in the ϕ integral to
get

J1 ≤ |Sd−2||v|−1
∫ ∞
0

rd−5/2(1 + r)3/2|s|+3/2β exp(−r
2

8
)

∫ ∞
−∞

exp(−3
y2

16
)dydr

≤ C|v|−1,

where C is a positive constant. Notice that since β > 0, the integral∫ ∞
0

rd−5/2(1 + r)3/2|s|+3/2β exp(−r
2

8
)dr,

is well-defined.
For the case d = 2, we perform the same change of variables

J1 ≤ |Sd−2||v|−1
∫ ∞
0

rd−5/2(1 + r)3/2|s|+3/2β exp(−r
2

8
)

×
∫ r+2|v|

r−2|v|
exp(−3y2

16
)(1− (

y − r
2|v|

)2)−1/2dydr

≤ C

∫ ∞
0

rd−5/2(1 + r)3/2|s|+3/2β exp(−r
2

8
)

×
∫ r+2|v|

r−2|v|
exp(−3y2

16
)(4|v|2 − (y − r)2)−1/2dydr,

where C is some positive constant.
We consider the integral in two regions |y − r| ≤ |v| and |y − r| ≥ |v|. On
the first region, (4|v|2 − (y − r)2)−1/2 ≤ |v|−1. On the second region, either
r ≥ |v|/2 or |y| ≥ |v|/2 gives an exponential decay. Finally, we get∫

Rd
K(1 + |v′|)sdv′ ≤ C(1 + |v|)β−2/3+s.

Case 2: β < 0.∫
Rd
K(1 + |v′|)sdv′

≤ (1 + |v|)s min{TC(ε),
C

ε
}
(∫

Rd
exp(−|v

′ − v|2

8
− 3|v′ − v + 2(v.ω)ω|2

16
)
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×C|v′ − v|−3/2(1 + |v − (v.ω)ω|)3/2β(1 + |v′ − v|)3/2|s|+3/2|β|dv′
)2/3

.

Again, perform the change of variables u = rω, r ∈ R+, ω ∈ Sd−1, choose v
as the north pole vector in the angle parametrization. Denote

J2 = |Sd−2|
∫ ∞
0

rd−5/2(1 + r)3/2|s|+3/2|β| exp(−r
2

8
)×

×
∫ π

0
(1 + |v| sinϕ)3/2β exp(−3(r + 2|v| cosϕ)2

16
) sind−2 ϕdϕdr.

Split the integral into two region | cosϕ| ≤ 1√
2

and | cosϕ| > 1√
2
. In the first

case, since sinϕ ≥ 1√
2
, then

(1 + |v| sinϕ)3/2β ≤ C(1 + |v|)3/2β,

the proof is then similar as in the case β > 0. In the second case,

(r + 2|v| cosϕ2)

2
≥ |v|

2

12
− r2

16
,

this leads to an exponential decay in v. Finally, we get∫
Rd
K(1 + |v′|)sdv′ ≤ C(1 + |v|)β−2/3+s.

Combine this estimate with (7.11), (7.12), (7.13) and (7.14) to get

I ≤
∫
Rd×Rd

|An(v)||An(v′)|Kdvdv′

≤
(∫

Rd
|An(v)|2(1 + |v|)β−2/3

)1/2

[

∫
Rd

(1 + |v|)−β+2/3

∫
Rd
K(v, v′)dv′ ×

(

∫
Rd
K(v, v′′)|An(v′′)|2dv′′)dv]1/2,

which implies

I ≤ C min{TC(ε),
C

ε
}
∫
Rd
|An(v)|2(1 + |v|)β−2/3. (7.15)

When ε is small and T is large enough, (7.4), (7.5), (7.10), (7.15) imply∫ T

0

∫
Td×Rd×Rd×Sd−1

B(|v∗ − v|, ω)µ∗µ× (7.16)
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×[g′∗µ
′
∗
−1/2

+ g′µ′−1/2 − gµ−1/2 − g∗µ−1/2∗ ]2dωdv∗dvdx

≥ CT
∑
n∈Zd

∫
Rd

(1 + |v|)α|An(v)|2dv

≥ CT

∫
Td×Rd

|g0|2dxdv.

Proposition 7.2 Suppose that α, β > 0 and there exist positive numbers T1
and C such that∫ T1

0

∫
Td×Rd×Rd×Sd−1

B(|v∗ − v|, ω)µ∗µ× (7.17)

×[g′∗µ
′
∗
−1/2

+ g′µ′−1/2 − gµ−1/2 − g∗µ−1/2∗ ]2dσdv∗dvdx

≥ C

∫
Td×Rd

(|v|+ 1)α|f0|2dxdv.

then there exist positive numbers T0 and δ such that ∀ t ≥ T0, ∀ f0 ∈
L∞(Td × Rd) ∩ L∞(Rd, H1(Td))

Hf (t) ≤ exp(−δt)Hf (0), (7.18)

Proof We check that L satisfies the conditions (3.6), (3.7), (3.8), (3.9). Let
ε be any positive constant, define

Iε := χ

(
|v − v∗| ≤

1

ε

)
,

Lε,1[g] := −
∫ T1

0

∫
Td×Rd×Sd−1

IεB(|v∗ − v|, ω)µ∗µ
1/2 ×

×[g′∗µ
′
∗
−1/2

+ g′µ′−1/2 − gµ−1/2 − g∗µ−1/2∗ ]dσdv∗dx,

Lε,2[g] := −
∫ T1

0

∫
Td×Rd×Sd−1

(1− Iε)B(|v∗ − v|, ω)µ∗µ
1/2 ×

×[g′∗µ
′
∗
−1/2

+ g′µ′−1/2 − gµ−1/2 − g∗µ−1/2∗ ]dσdv∗dx.

It is not difficult to see that L, Lε,1, Lε,2 satisfy (3.6), (3.7), (3.8), with
H ′ = L2((1 + |v|)α). Proceed similar as in the previous proposition to get

‖Lε,2[g]‖2L2 ≤ C(ε)

∫
Td×Rd

(|v|+ 1)β|g|2dxdv,

36



which means that (3.9) is satisfied. By Lemma 3.3, the conclusion of the
proposition follows.

7.2 Convergence to Equilibrium: Proof of Theorem 2.4

The case α, β > 0 is straight forward from Proposition 7.1 and Proposition
7.2. We now prove the theorem for the case −d + 1 < α, β < 0. According
to Proposition 7.1 and Lemma 3.2, there exist a time T and a constant C
such that

‖f(0)‖2L2 − ‖f(T )‖2L2 ≥ C
∫
Td×Rd

(|v|+ 1)α|f(0)|2dxdv.

This implies that for all k in

‖f(kT )‖2L2 − ‖f((k + 1)T )‖2L2 ≥ C
∫
Td×Rd

(|v|+ 1)α|f(kT )|2dxdv. (7.19)

Now, for positive numbers k1, k2 and k3 satisfying αk1+k2k3 = 0, according
to the Holder inequality(∫

Td×Rd
(|v|+ 1)α|f(kT )|2

)k1 (∫
Td×Rd

(|v|+ 1)k2 |f(kT )|2
)k3
≥
(∫

Td×Rd
|f(kT )|2

)k1+k3
.

(7.20)
Combine (7.19) and (7.20) to get

‖f((k + 1)T )‖2L2 ≤ ‖f(kT )‖2L2 − C
‖f(kT )‖

2
k1+k3
k1

L2(∫
Td×Rd(|v|+ 1)k2 |f(kT )|2

) k3
k1

. (7.21)

Now, choose (|v|+ 1)k2f, (k2 > 0) as a test function in the linearized Boltz-
mann equation to obtain

‖(|v|+ 1)k2/2f(0)‖2L2 − ‖(|v|+ 1)k2/2f(kT )‖2L2

≥
∫
Td×Rd×Sd−1

B(|v∗ − v|, ω)µ∗µ
1/2(|v|+ 1)k2 ×

×[fµ−1/2 + f∗µ
−1/2
∗ − f ′∗µ′∗

−1/2 − f ′µ′−1/2]fdσdv∗dx
≥ 0,

then
‖(|v|+ 1)k2/2f(kT )‖2L2 ≤ C‖f(0)‖2

L2((1+|v|)k2/2), (7.22)
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where C is some positive constant. The two inequalities (7.21) and (7.22)
lead to

‖f((k + 1)T )‖2L2 ≤ ‖f(kT )‖2L2 − C‖f(kT )‖
2
k1+k3
k1

L2 .

This implies

‖f((k + 1)T )‖2L2 ≤ ‖f(kT )‖2L2 − C
(
‖f((k + 1)T )‖2L2

) k1+k3
k1 .

According to Lemma 3.5,

‖f(kT )‖2 ≤ Mk

(k + 1)
k1
k3

.

Let k1
k3

= −k2
α tend to ∞, we get the theorem.

8 Conclusion

We have presented a new approach to the problem of convergence to equi-
librium of kinetic equations. The idea of our technique is to prove a ’weak’
coercive estimate on the damping. The approach seems to work very well
in the context of linear equations. Our technique is constructive, since the
constants in the decay rates could be obtained explicitly. An reasonable
question is if this technique could be extended to study the trend to equilib-
rium of nonlinear kinetic equations, where a typical example is the nonlinear
Boltzmann equation. In an ongoing project, we are trying to analyse this
method for the linearized Uehling-Uhlenbeck equation, where a spectral gap
estimate is hard to obtain but a ’weak’ coercive estimate is easier to get.
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