Vitetmamidournall
of
$\mathbb{M} \mathbb{A} \mathbb{T} H E M A \mathbb{A} \| C S$
© VAST 2009

On Partially Elliptic and Coercive Boundary Problems

Tran Minh Binh, Duong Minh Duc, and Nguyen Duy Thanh
Department of Mathematics and Computer Sciences
National University of Ho Chi Minh City
227 Nguyen Van Cu, Dist. 5, Ho Chi Minh City, Vietnam

Received February 2, 2009
Revised May 14, 2009

Abstract

Applying iteration method, we prove fixed point theorems for operators, which may neither be continuous nor monotone. Using these results and some considerations in sub-supersolution methods, we can partially relax the coercivity, ellipticity and compactness in some boundary problems.

2000 Mathematics Subject Classification: 47H07, 47H10, 35J55, 35J67.
Key words: Monotone operators, Fixed point theorems, Boundary value problems.

1. Introduction

Let X be a non-empty set, \leq and d be a partially order and a metric on X respectively. We call (X, d, \leq) an ordered metric space if (X, d, \leq) satisfies the following condition
(C) $\quad x \leq y$ (resp. $y \leq x$) for any x and y in X such that x is the limit of an increasing (resp. decreasing) sequence $\left\{x_{n}\right\}$ and $x_{n} \leq y$ (resp. $y \leq x_{n}$) for any integer n.

We say $x \geq y$ (resp. $x<y ; x>y$) if $y \leq x$ (resp. $x \leq y$ and $x \neq y ; y \leq x$ and $x \neq y$).

The continuity and monotonicity of mappings and their modified versions play essential roles of fixed point theorems in ordered metric spaces (see [2, 3,

5-7, 10-13, 16-18]). The motivation of our paper is the following example: let $f(t)=t$ if t is a rational number in the interval $(0,1]$ and $f(t)=\frac{1}{2}+\frac{1}{2} t$ if t is a irrational number in the interval $(0,1]$. We see that f has many fixed points in $(0,1]$, but it is neither continuous nor monotone in $(0,1]$. We point out that the relation between x and $f(x)$ can give us the fixed points of f by using iteration methods. We obtain the following result.

Theorem 1.1. Let A be a non-empty subset of an ordered metric space (X, d, \leq), and f be an operator from X into itself. Suppose that
(i) $f(A) \subset A$ and $x \leq f(x)$ for any x in A,
(ii) each increasing sequence of A has a limit in X and an upper bound in A.

Then f has a fixed point in A.
Applying this result we solve a class of elliptic equations in the last section.

2. Proof of Theorem 1.1

We will prove the theorem by using the lemmas, what follow.
Lemma 2.1. Let W be a non-empty subset of an ordered metric space (X, d, \leq), and g be a mapping from W into W. Suppose that
(i) $x \leq g(x)$ for any x in W, and
(ii) $\left\{g\left(x_{n}\right)\right\}$ has a limit in X and an upper bound in W for any increasing sequence $\left\{x_{n}\right\}$ in W.
Then W has a maximal element y, i.e. $a=y$ whenever a is in W and $y \leq a$.
Proof. By Hausdorff's principle, there exists a maximal chain B of W. Now we prove that B has the greatest element. Let x_{0} be an arbitrary element of B. We shall show that there is a sequence $\left\{x_{n}\right\}$ in B having the following property

$$
\begin{equation*}
x_{n} \geq x_{n-1} \text { and } d\left(g(x), g\left(x_{n}\right)\right)<\frac{1}{n}, \forall x \in\left\{z \in B: z \geq x_{n}\right\}, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

Suppose by contradiction that we only can find a finite family $\left\{x_{0}, \ldots, x_{m-1}\right\}$ satisfying (1), where m is a positive integer. In this case, for each x in $\{z \in B$: $\left.z \geq x_{m-1}\right\}$, we can find y_{x} in B such that $y_{x}>x$ and $d\left(g(x), g\left(y_{x}\right)\right) \geq \frac{1}{m}$. Hence we can construct an increasing sequence $\left\{y_{k}\right\}$ such that $y_{0}=x_{m-1}$ and $d\left(g\left(y_{k+1}\right), g\left(y_{k}\right)\right) \geq \frac{1}{m}$ for any non-negative integer k. Since $\left\{y_{k}\right\}$ is increasing, $\left\{g\left(y_{k}\right)\right\}$ has a limit. This is a contradiction and we get such a sequence $\left\{x_{n}\right\}$.

Since $\left\{x_{n}\right\}$ is increasing, then $\left\{g\left(x_{n}\right)\right\}$ has a limit x in X and an upper bound y in W. Because $x_{n} \leq g\left(x_{n}\right)$ for any non-negative integer n, y is also an upper bound of $\left\{x_{n}\right\}$. Since (X, d, \leq) is an ordered metric space, we have $x \leq y$. Let z be in B, we prove that $z \leq y$. If $z \leq x_{n}$ for some positive integer n, then $z \leq y$. Otherwise, $z>x_{n}$ for any positive integer n. Hence $d\left(g(z), g\left(x_{n}\right)\right)<\frac{1}{n}$, for any
positive integer n, which implies $z \leq g(z)=x \leq y$. Since B is a maximal chain, then $y \in B$ and y is the greatest element of B.

Finally, we show that y is a maximal element of W. Suppose by contradiction that there exists a in W such that $a>y$. Then $B \cup\{a\}$ is a chain containing B and B is not a maximal chain. This contradiction yields the lemma.

Lemma 2.2. Let W be a non-empty set in an ordered metric space (X, d, \leq). Suppose that each increasing sequence of W has a limit in X and an upper bound in W. Then W has a maximal element.

Proof. Apply Lemma 2.1 for the case $g(x) \equiv x$, we get the lemma.
Lemma 2.3. Let U be a non-empty ordered set and f be an operator from U into U such that $x \leq f(x)$ for any x in U. Suppose that α is a maximal element of U. Then α is a fixed point of f.

Proof. We have $\alpha \leq f(\alpha)$ and $f(\alpha)$ is in U. Thus $\alpha=f(\alpha)$.
Combining Lemmas 2.2 and 2.3, we get the theorem.
Remark 2.4. Our results relax the monotonicity in $[2,3,5-7,10-12,16-18]$. In next sections, using this idea, we can solve some equations involving with operators which may not be monotone.

3. Applications to Elliptic Equations with Discontinuity

Let N be a positive integer, Ω be a smooth bounded open subset of R^{N} and p and r be in $(1, \infty)$. We denote by $L^{s}(\Omega)$ and $W_{0}^{1, s}(\Omega)$ the usual Lebesgue space and Sobolev space as in [1] for any s in $[1, \infty)$. Let a_{1}, \ldots, a_{N} be real functions on $\Omega \times \mathbb{R} \times \mathbb{R}^{N}, f$ be a real function on $\Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{N}$ having the following properties.
(A0) The functions a_{1}, \ldots, a_{N} satisfy the Caratheodory conditions on $\Omega \times \mathbb{R} \times$ \mathbb{R}^{N}.
(A1) There exist $k_{0} \in L^{p / p-1}(\Omega)$, a non-negative real number C_{0}, and \underline{u} and \bar{u} in $W_{0}^{1, p}(\Omega) \cap L^{r}(\Omega)$ such that for all (s, ζ) in $[\underline{u}(x), \bar{u}(x)] \times \mathbb{R}^{N}$ and for almost everywhere x in Ω, we have

$$
\left|a_{i}(x, s, \zeta)\right| \leq k_{0}(x)+C_{0}\left(|s|^{\frac{r(p-1)}{p}}+|\zeta|^{p-1}\right) \quad \forall i=0, \ldots, N
$$

(A2) For almost everywhere x in Ω, all s in $[\underline{u}(x), \bar{u}(x)]$ and any $\zeta \neq \zeta^{\prime}$ in \mathbb{R}^{N}

$$
\sum_{i=1}^{N}\left[a_{i}(x, s, \zeta)-a_{i}\left(x, s, \zeta^{\prime}\right)\right]\left(\zeta_{i}-\zeta_{i}^{\prime}\right)>0
$$

(A3) There exist $C_{1}>0$ and $k_{1} \in L^{1}(\Omega)$ such that for all (s, ζ) in $[\underline{u}(x), \bar{u}(x)] \times$ \mathbb{R}^{N} and for almost everywhere x in Ω

$$
\sum_{i=1}^{N} a_{i}(x, s, \zeta) \zeta_{i} \geq C_{1}|\zeta|^{p}-k_{1}(x)
$$

(F1) There exist a function $k_{2} \in L^{p / p-1}(\Omega)$ and a constant $C_{2} \geq 0$ such that

$$
|f(x, t, s, \zeta)| \leq k_{2}(x)+C_{2}\left(|s|^{\frac{r(p-1)}{p}}+|\zeta|^{p-1}\right) \text { a.e. } x \in \Omega, \forall \zeta \in R^{N}, t, s \in[\underline{u}(x), \bar{u}(x)]
$$

(F2) The function f satisfies the Caratheodory conditions on $\Omega \times \mathbb{R}^{N+2}$, and there exist a continuous real function a on \mathbb{R} and a non-negative real number C_{3} such that: the function $f(x, ., s, \zeta)+a($.$) is increasing on [\underline{u}(x), \bar{u}(x)]$ for almost everywhere x in Ω and for any $(s, \zeta) \in[\underline{u}(x), \bar{u}(x)] \times \mathbb{R}^{N}$, and

$$
|a(t)| \leq C_{3}\left(1+|t|^{\frac{r(p-1)}{p}}\right) \text { and }\left[a\left(t_{1}\right)-a\left(t_{2}\right)\right]\left(t_{1}-t_{2}\right) \geq 0 \text { for any } t \in \mathbb{R}
$$

Remark 3.1. For almost everywhere x in Ω, we only need the conditions (A1), (A2), (A3), (F1) and (F2) for any s in $[\underline{u}(x), \bar{u}(x)]$ instead of in the whole \mathbb{R}, therefore our results can be applied to the cases that we partially have the ellipticity, coercivity and compactness.

In this section we consider the following equation

$$
\begin{cases}-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}(x, u, \nabla u)=f(x, u, u, \nabla u) & \text { in } \Omega \tag{2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Let u be in $W_{0}^{1, p}(\Omega)$. Then u is called a solution (resp. subsolution, supersolution) of (2) if

$$
\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, u, \nabla u) \frac{\partial \varphi}{\partial x_{i}} d x+\int_{\Omega} f(x, u, u, \nabla u) \varphi d x=0(\text { resp. } \leq, \geq)
$$

for all $v \in W_{0}^{1, p}(\Omega), v \geq 0$.
The main result of this section is the following theorem.
Theorem 3.2. Suppose that the conditions (A0), (A1)-(A3), (F1) and (F2) are satisfied, \underline{u} and \bar{u} are a subsolution and a supersolution of (2) respectively. Then (2) has a solution u in $[\underline{u}, \bar{u}]$.

In order to prove the theorem we need following lemmas.
Lemma 3.3. For any u in $W_{0}^{1, p}(\Omega)$, we put

$$
T(u(x))= \begin{cases}\bar{u}(x) & \text { if } u(x)>\bar{u}(x), \\ u(x) & \text { if } \underline{u}(x) \leq u(x) \leq \bar{u}(x), \\ \underline{u}(x) & \text { if } u(x)<\underline{u}(x),\end{cases}
$$

and we define $S_{1}(u)$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*}$ as follows

$$
<S_{1}(u), \varphi>=\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, T(u), \nabla u) \frac{\partial \varphi}{\partial x_{i}} d x \quad \forall \varphi \in W^{1, p}(\Omega)
$$

Then S_{1} is a $(S)_{+}$operator on $W^{1, p}(\Omega)$, i.e. it has the following properties.
(i) $\left\{S_{1}\left(u_{n}\right)\right\}$ converges weakly to $S_{1}(u)$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*}$ for any sequence $\left\{u_{n}\right\}$ converging strongly to u in $W_{0}^{1, p}(\Omega)$.
(ii) Let $\left\{u_{n}\right\}$ be a sequence in $W_{0}^{1, p}(\Omega)$ such that $\left\{u_{n}\right\}$ converges weakly to u in $W_{0}^{1, p}(\Omega)$. Then $\left\{u_{n}\right\}$ converges strongly to x in $W_{0}^{1, p}(\Omega)$ if

$$
\limsup _{n \rightarrow \infty}<S_{1}\left(u_{n}\right), u_{n}-u>\leq 0
$$

Moreover S_{1} is pseudomonotone, i.e.
(iii) If $\left\{u_{n}\right\}$ weakly converges to x in $W_{0}^{1, p}(\Omega)$ and

$$
\limsup _{n \rightarrow \infty}<S_{1}\left(x_{n}\right), x_{n}-x>\leq 0
$$

then $\left\{S_{1}\left(x_{n}\right)\right\}$ weakly converges to $S_{1}(x)$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*}$ and

$$
\lim _{n \rightarrow \infty}<S_{1}\left(x_{n}\right), x_{n}-x>=0
$$

Proof. (i) We note that T is a bounded and continuous operator from $W_{0}^{1, p}(\Omega)$ into itself (see [8]). Let w be in $W_{0}^{1, p}(\Omega)$, we see that $|T w(x)| \leq(|\bar{u}(x)|+|\underline{u}(x)|)$, therefore $T w$ belongs to $L^{r}(\Omega)$ by $(A 1)$ and for all ζ in \mathbb{R}^{N} and for almost everywhere x in Ω, we have

$$
\left|a_{i}(x, T w(x), \zeta)\right| \leq k_{0}(x)+C_{0}(|\bar{u}(x)|+|\underline{u}(x)|)^{\frac{r(p-1)}{p}}+C_{0}|\zeta|^{p-1} \forall i=0, \ldots, N .
$$

Applying a result on superposition operators (see [14, p. 30]), we get the continuity of the map $w \mapsto a_{i}(x, T w(x), \nabla w)$ from $W_{0}^{1, p}(\Omega)$ into $L^{p / p-1}(\Omega)$, and (i).
(ii) and (iii) Let $\left\{u_{n}\right\}$ be a sequence weakly converging to u in $W_{0}^{1, p}(\Omega)$ such that

$$
\limsup _{n \rightarrow \infty}<S_{1} u_{n}, u_{n}-u>\leq 0
$$

We shall prove (ii) and (iii) by the following steps.
Step 1. We show that $\left\{\nabla u_{n}\right\}$ converges pointwise to ∇u almost everywhere in Ω.

Using (A2), we have
$<S_{1} u_{n}, u_{n}-u>=\int_{\Omega} \sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)-a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right] \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right) d x$

$$
\begin{aligned}
& +\int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, T\left(u_{n}\right), \nabla u\right) \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right) d x \\
\geq & \int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, T\left(u_{n}\right), \nabla u\right) \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right) d x .
\end{aligned}
$$

Note that the sequence $\left\{\frac{\partial}{\partial x_{i}}\left(u_{n}-u\right)\right\}$ converges weakly to 0 in $L^{p}(\Omega)$. By the Sobolev embedding theorem, $(A 1)$ and the Lebesgue dominated convergence theorem, we see that $\left\{a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right\}$ converges strongly to $a_{i}(x, T(u), \nabla u)$ in $L^{q}(\Omega)$. Therefore, we obtain

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, T\left(u_{n}\right), \nabla u\right) \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right) d x=0
$$

Since $\limsup _{n \rightarrow \infty}<S_{1} u_{n}, u_{n}-u>\leq 0$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}<S_{1} u_{n}, u_{n}-u>=0 \tag{3}
\end{equation*}
$$

Thus

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)-a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right] \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right) d x=0
$$

By (A2), it implies the convergence in $L^{1}(\Omega)$ of the sequence of non-negative functions

$$
\left\{\sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)-a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right] \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right)\right\}
$$

By Theorem IV. 9 in [4], we can assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)-a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right] \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right)=0 \text { a.e. in } \Omega \tag{4}
\end{equation*}
$$

and there is a non-negative integrable function h on Ω such that

$$
\begin{equation*}
\sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)-a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right] \frac{\partial}{\partial x_{i}}\left(u_{n}-u\right) \leq h(x) \text { a.e. in } \Omega . \tag{5}
\end{equation*}
$$

Denote by Ω_{0} the set of all x in Ω such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right)(x), \nabla u_{n}(x)\right)-a_{i}\left(x, T\left(u_{n}\right)(x), \nabla u(x)\right)\right] \frac{\partial\left(u_{n}-u\right)}{\partial x_{i}}(x)=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T\left(u_{n}\right)(x)=T(u)(x) \tag{7}
\end{equation*}
$$

We see that the measure of $\Omega \backslash \Omega_{0}$ is null. Let x be in Ω_{0}, we shall prove that $\left\{\nabla u_{n}(x)\right\}$ converges to $\nabla u(x)$. Assume by contradiction that there is a subsequence $\left\{\nabla u_{n_{m}}(x)\right\}$ of $\left\{\nabla u_{n}(x)\right\}$ such that $\left|\nabla u_{n_{m}}(x)-\nabla u(x)\right|>\epsilon$ for some positive real number ϵ and for every integer m. Denote $\nabla u(x), \nabla u_{n_{m}}(x)$, $T\left(u_{n_{m}}(x)\right)$ and $T(u(x))$ by ρ, ρ_{m}, s_{m} and s respectively. We can suppose that $\left\{\frac{\rho_{m}-\rho}{\left|\rho_{m}-\rho\right|}\right\}$ converges to ρ^{*} in \mathbb{R}^{N}. Note that $\left|\rho^{*}\right|=1$. Using (A2), we have

$$
\begin{align*}
& \sum_{i=1}^{N}\left[a_{i}\left(x, s_{m}, \rho_{m}\right)-a_{i}\left(x, s_{m}, \rho+\epsilon \frac{\rho_{m}-\rho}{\left|\rho_{m}-\rho\right|}\right)\right]\left(\rho_{m i}-\rho_{i}\right) \\
&= \frac{\left|\rho_{m}-\rho\right|}{\left|\rho_{m}-\rho\right|-\epsilon} \sum_{i=1}^{N}\left[a_{i}\left(x, s_{m}, \rho_{m}\right)-a_{i}\left(x, s_{m}, \rho+\epsilon \frac{\rho_{m}-\rho}{\left|\rho_{m}-\rho\right|}\right)\right] \times \\
& \times\left(1-\frac{\epsilon}{\left|\rho_{m}-\rho\right|}\right)\left(\rho_{m i}-\rho_{i}\right) \\
& \geq 0 \tag{8}\\
& 0 \leq \sum_{i=1}^{N}\left[a_{i}\left(x, s_{m}, \rho+\epsilon \frac{\rho_{m}-\rho}{\left|\rho_{m}-\rho\right|}\right)-a_{i}\left(x, s_{m}, \rho\right)\right]\left(\rho_{m i}-\rho_{i}\right) \tag{9}\\
&= \sum_{i=1}^{N}\left[a_{i}\left(x, s_{m}, \rho+\epsilon \frac{\rho_{m}-\rho}{\left|\rho_{m}-\rho\right|}\right)-a_{i}\left(x, s_{m}, \rho_{m}\right)\right]\left(\rho_{m i}-\rho_{i}\right) \\
& \quad+\sum_{i=1}^{N}\left[a_{i}\left(x, s_{m}, \rho_{m}\right)-a_{i}\left(x, s_{m}, \rho\right)\right]\left(\rho_{m i}-\rho_{i}\right) .
\end{align*}
$$

Combining (8) and (9), we get

$$
\begin{align*}
0 & \leq \sum_{i=1}^{N}\left[a_{i}\left(x, s_{m}, \rho+\epsilon \frac{\rho_{m}-\rho}{\left|\rho_{m}-\rho\right|}\right)-a_{i}\left(x, s_{m}, \rho\right)\right] \frac{\rho_{m i}-\rho_{i}}{\left|\rho_{m}-\rho\right|} \\
& \leq \frac{1}{\left|\rho_{m}-\rho\right|} \sum_{i=1}^{N}\left[a_{i}\left(x, s_{m}, \rho_{m}\right)-a_{i}\left(x, s_{m}, \rho\right)\right]\left(\rho_{m i}-\rho_{i}\right) \tag{10}
\end{align*}
$$

Since $\left|\rho_{m}-\rho\right|>\epsilon$, by (6) and (A0), we have

$$
\sum_{i=1}^{N}\left[a_{i}\left(x, s, \rho+\epsilon \rho^{*}\right)-a_{i}(x, s, \rho)\right] \rho_{i}^{*}=0
$$

Therefore, $\rho^{*}=0$ by ($A 2$). This is a contradiction and the sequence $\left\{\nabla u_{n}(x)\right\}$ should converge to $\nabla u(x)$ and we get the first step.
Step 2. $\left\{u_{n}\right\}$ converges strongly to u in $W_{0}^{1, p}(\Omega)$.
Let E be a measurable subset of Ω, by (A1), (A3), we have

$$
\begin{aligned}
C_{1} \int_{E}\left|\nabla u_{n}\right|^{p} d x & \leq \int_{E} k_{1}(x) d x+\int_{E} \sum_{i=1}^{N} a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right) \frac{\partial u_{n}}{\partial x_{i}} d x \\
& =\int_{E} k_{1}(x) d x+\sum_{j=1}^{4} I_{j}
\end{aligned}
$$

where

$$
\begin{aligned}
I_{1}= & \int_{E} \sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)-a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right] \frac{\partial\left(u_{n}-u\right)}{\partial x_{i}} d x \leq \int_{E} h(x) d x, \\
I_{2}= & \int_{E} \sum_{i=1}^{N} a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right) \frac{\partial u}{\partial x_{i}} d x \\
\leq & \sum_{i=1}^{N}\left(\int_{E}\left|a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)\right|^{\frac{p}{p-1}} d x\right)^{\frac{p-1}{p}}\left(\int_{E}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x\right)^{1 / p} \\
\leq & \sum_{i=1}^{N}\left\|k_{0}+C_{0}\left|T\left(u_{n}\right)\right|^{\frac{r(p-1)}{p}}+C_{0}\left|\nabla u_{n}\right|^{p-1}\right\|_{L^{\frac{p}{p-1}}(E)}\left(\int_{E}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x\right)^{1 / p} \\
\leq & \sum_{i=1}^{N}\left\|k_{0}(x)+C_{0}\left(|\underline{u}|^{\frac{r(p-1)}{p}}+|\bar{u}|^{\frac{r(p-1)}{p}}\right)+C_{0}\left|\nabla u_{n}\right|^{p-1}\right\|_{L^{\frac{p}{p-1}}(E)} \times \\
& \times\left(\int_{E}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x\right)^{1 / p} \\
\leq & \sum_{i=1}^{N}\left\{\left\|k_{0}\right\|_{L^{q}(E)}+C_{0}\|\underline{u}\|_{L^{r}(E)}^{\frac{r(p-1)}{p}}+C_{0}\|\bar{u}\|_{L^{r}(E)}^{\frac{r(p-1)}{p}}+C_{0}\left\|\nabla u_{n}\right\|_{L^{p}(E)}^{p-1}\right\} \times \\
& \times\left(\int_{E}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x\right)^{1 / p}, \\
I_{3}= & \int_{E}^{N} \sum_{i=1}^{N} a_{i}\left(x, T\left(u_{n}\right), \nabla u\right) \frac{\partial u_{n}}{\partial x_{i}} d x
\end{aligned}
$$

$$
\begin{aligned}
\leq & \sum_{i=1}^{N}\left[\int_{E}\left|a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right|^{\frac{p}{p-1}} d x\right]^{\frac{p-1}{p}}\left(\int_{E}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x\right)^{1 / p} \\
\leq & \sum_{i=1}^{N}\left\{\left\|k_{0}\right\|_{L^{q}(E)}+C_{0}\|\underline{u}\|_{L^{r}(E)}^{\frac{r(p-1)}{p}}+C_{0}\|\bar{u}\|_{L^{r}(E)}^{\frac{r(p-1)}{p}}+C_{0}\|\nabla u\|_{L^{p}(E)}^{p-1}\right\} \times \\
& \times\left(\int_{E}\left|\frac{\partial u_{n}}{\partial x_{i}}\right|^{p} d x\right)^{1 / p}, \\
I_{4}= & -\int_{E} \sum_{i=1}^{N} a_{i}\left(x, T\left(u_{n}\right), \nabla u\right) \frac{\partial u}{\partial x_{i}} d x \\
\leq & \sum_{i=1}^{N}\left[\int_{E}\left|a_{i}\left(x, T\left(u_{n}\right), \nabla u\right)\right|^{\frac{p}{p-1}} d x\right]^{\frac{p-1}{p}}\left(\int_{E}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x\right)^{1 / p} \\
\leq & \sum_{i=1}^{N}\left\{\left\|k_{0}\right\|_{L^{q}(E)}+C_{0}\|\underline{u}\|_{L^{r}(E)}^{\frac{r(p-1)}{p}}+C_{0}\|\bar{u}\|_{L^{r}(E)}^{\frac{r(p-1)}{p}}+C_{0}\|\nabla u\|_{L^{p}(E)}^{p-1}\right\} \times \\
& \times\left(\int_{E}\left|\frac{\partial u}{\partial x_{i}}\right|^{p} d x\right)^{1 / p} .
\end{aligned}
$$

Let ε be a positive real number. By the boundedness of $\left\{\left\|\nabla u_{n}\right\|_{L^{p}(\Omega)}\right\}$, the r integrability of \bar{u} and \underline{u}, and conditions (A1) and (A3), there is a positive real number δ such that for any measurable subset E of Ω with Lebesgue measure $m(E)<\delta$, we have

$$
\int_{E}\left|\nabla u_{n}\right|^{p} d x \leq \varepsilon \quad \forall n \in \mathbb{N} .
$$

Thus the sequence $\left\{\left|\nabla u_{n}\right|^{p}\right\}$ is equi-integrable. It follows that $\left\{\left|\nabla u_{n}-\nabla u\right|^{p}\right\}$ is also equi-integrable. By Vitali's theorem (see [19]), $\left\{\nabla u_{n}\right\}$ converges to ∇u in $L^{p}(\Omega)$, which implies $\left\{u_{n}\right\}$ converges strongly to u in $W^{1, p}(\Omega)$.
Step 3. $\left\{S_{1}\left(u_{n}\right)\right\}$ weakly converges to $S_{1}(u)$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*}$.
By the previous steps, $\left\{T\left(u_{n}\right)\right\}$ and $\left\{\nabla u_{n}\right\}$ converge to $T(u)$ and ∇u in $L^{p}(\Omega)$ respectively. Thus we can find an integrable function k such that

$$
\left|T\left(u_{n}\right)\right|^{p}+\left|\nabla u_{n}\right|^{p} \leq k \quad \forall n \in \mathbb{N} .
$$

Therefore, by $(A 1)$ and the Lebesgue dominated convergence theorem, we obtain

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \sum_{i=1}^{N}\left[a_{i}\left(x, T\left(u_{n}\right), \nabla u_{n}\right)-a_{i}(x, T(u), \nabla u)\right] \frac{\partial \varphi}{\partial x_{i}} d x=0 \forall \varphi \in W^{1, p}(\Omega)
$$

Step 4. $\lim _{n \rightarrow \infty}<S_{1}\left(u_{n}\right), u_{n}-u>=0$.
It is just (3). Thus we get the lemma.
Lemma 3.4. Let u, v and w be in $W^{1, p}(\Omega)$ such that $v \leq w$. We put

$$
\gamma_{v, w}(u)(x)=(u(x)-w(x))_{+}^{p-1}-(v(x)-u(x))_{+}^{p-1}
$$

We define an operator $B_{v, w}$ from $W_{0}^{1, p}(\Omega)$ into $\left(W_{0}^{1, p}(\Omega)\right)^{*}$ as follows

$$
<B_{v, w} u, \varphi>=\int_{\Omega} \gamma_{v, w}(u) \varphi d x \quad \forall u, \varphi \in W_{0}^{1, p}(\Omega)
$$

Then we have
(i) $B_{v, w}$ is bounded.
(ii) There exist two positive real numbers α and β such that

$$
\int_{\Omega} \gamma_{v, w}(u) u d x \geq \alpha\|u\|_{p}^{p}-\beta \quad \forall u \in W_{0}^{1, p}(\Omega)
$$

(iii) $\left\{B_{v, w} u_{n}\right\}$ converges strongly to $B_{v, w} u$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*}$ for any sequence $\left\{u_{n}\right\}$ weakly converging to u in $W_{0}^{1, p}(\Omega)$.

Proof. The proof of (i) and (ii) can be found in ([15, p. 791]). We prove (iii). Let $\left\{u_{n}\right\}$ be a sequence weakly converging to u in $W_{0}^{1, p}(\Omega)$. We can assume that $\left\{u_{n}\right\}$ converges strongly to u in $L^{p}(\Omega)$ and $\left\{u_{n}(x)\right\}$ converges to $u(x)$ for a.e. $x \in \Omega$, and there exists a nonnegative function h in $L^{p}(\Omega)$ such that $\left|u_{n}(x)\right| \leq h(x)$ for a.e. $x \in \Omega$. Hence $\left\{\gamma_{v, w}\left(u_{n}\right)(x)\right\}$ converges to $\gamma_{v, w}(u)(x)$ for a.e. $x \in \Omega$. We have

$$
\begin{aligned}
\left|\gamma_{v, w}\left(u_{n}\right)(x)\right| & \leq\left\{\left[|v(x)|+\left|u_{n}(x)\right|\right]^{p-1}+\left[\left|u_{n}(x)\right|+|w(x)|\right]^{p-1}\right\} \\
& \leq\left\{[|v(x)|+h(x)]^{p-1}+[|w(x)|+h(x)]^{p-1}\right\} \quad \text { a.e. } x \in \Omega .
\end{aligned}
$$

Since $\left[(|v|+h)^{p-1}+(|w|+h)^{p-1}\right]$ is in $L^{q}(\Omega)$, using the Lebesgue dominated convergence theorem, we obtain

$$
\begin{align*}
\lim _{n \rightarrow \infty} & \left\|\gamma_{v, w}\left(u_{n}\right)-\gamma_{v, w}(u)\right\|_{q}=0 \tag{11}\\
\left|<B_{v, w} u_{n}-B_{v, w} u, \varphi>\right| & =\left|\int_{\Omega} \gamma_{v, w}\left(u_{n}\right) \varphi-\gamma_{v, w}(u) \varphi d x\right| \tag{12}\\
& \leq\left\|\gamma_{v, w}\left(u_{n}\right)-\gamma_{v, w}(u)\right\|_{q}\|\varphi\|_{1, p} \forall \varphi \in W_{0}^{1, p}(\Omega)
\end{align*}
$$

Combining (11) and (12), we get the lemma.
Lemma 3.5. Let v be a subsolution of (2) such that $\underline{u} \leq v \leq \bar{u}$. We put

$$
a_{v}(x, u, \nabla u)=-f(x, v, u, \nabla u)+a(u(x))-a(v(x)) \forall x \in \Omega,
$$

Then the following equation has a solution w in $W_{0}^{1, p}(\Omega)$

$$
\begin{cases}-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}(x, u, \nabla u)+a_{v}(x, u, \nabla u)=0 & \text { in } \Omega \tag{13}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

such that $v \leq w \leq \bar{u}$. Moreover w is also a subsolution of (2).
Proof. We define the operator S_{2}, S_{3} and S as follows

$$
\begin{aligned}
<S_{2} u, \varphi> & =\int_{\Omega} a_{0}(x, T u, \nabla T u) \varphi d x \\
<S_{3} u, \varphi> & =M \int_{\Omega} \gamma(x, u) \varphi d x \\
<S u, \varphi> & =<\left(S_{1}+S_{2}+S_{3}\right) u, \varphi>\quad \forall u, \varphi \in W_{0}^{1, p}(\Omega) .
\end{aligned}
$$

We prove the lemma by the following steps.
Step 1. S is bounded.
By (A1), we have

$$
\begin{aligned}
\left|<S_{1} u, \varphi>\right| & =\left|\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, T u, \nabla u) \frac{\partial \varphi}{\partial x_{i}} d x\right| \\
& \leq \int \sum_{\Omega=1}^{N}\left[k_{0}(x)+C_{0}\left(|T u|^{\frac{r(p-1)}{p}}+|\nabla u|^{p-1}\right)\right]\left|\frac{\partial \varphi}{\partial x_{i}}\right| d x \\
& \leq N\|\varphi\|_{1, p}\left[\left\|k_{0}\right\|_{q}+C_{0}\|\underline{u}\|_{r}^{\frac{r(p-1)}{p}}+C_{0}\|\bar{u}\|_{r}^{\frac{r(p-1)}{p}}+C_{0}\|\nabla u\|_{p}^{p-1}\right], \\
\left|<S_{2} u, \varphi>\right| & =\left|\int_{\Omega} a_{0}(x, T u, \nabla T u) \varphi d x\right| \\
& \leq \int_{\Omega}\left[k_{0}(x)+C_{0}|T u|^{\frac{r(p-1)}{p}}+C_{0}|\nabla T u|^{p-1}\right]|\varphi| d x \\
& \leq\|\varphi\|_{1, p}\left[\left\|k_{0}\right\|_{q}+C_{0}\|\nabla T u\|_{p}^{p-1}+C_{0}\|\underline{u}\|_{r}^{\frac{r(p-1)}{p}}+C_{0}\|\bar{u}\|_{r}^{\frac{r(p-1)}{p}}\right.
\end{aligned}
$$

According to Lemma 3.4, S_{3} is bounded. Thus $S=S_{1}+S_{2}+S_{3}$ is bounded.
Step 2. S is pseudomonotone.
By Lemma 3.4, and Proposition 27.7 in [20], it is sufficient to prove that $S_{1}+S_{2}$ is a pseudomonotone operator on $W_{0}^{1, p}(\Omega)$. Let $\left\{u_{n}\right\}$ be a sequence converging weakly to u in $W_{0}^{1, p}(\Omega)$ such that $\limsup _{n \rightarrow \infty}<S_{1} u_{n}+S_{2} u_{n}, u_{n}-u>\leq 0$. Note that

$$
\begin{aligned}
\left|<S_{2} u_{n}, u_{n}-u>\right| & \leq \int_{\Omega}\left|a_{0}\left(x, T u_{n}, \nabla T u_{n}\right)\left(u_{n}-u\right)\right| d x \\
& \leq\left\|u_{n}-u\right\|_{p}\left\|a_{0}\left(x, T\left(u_{n}\right), \nabla T u_{n}\right)\right\|_{q}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}<S_{2} u_{n}, u_{n}-u>=0 \tag{14}
\end{equation*}
$$

Since $\limsup _{n \rightarrow \infty}<\left(S_{1}+S_{2}\right) u_{n}, u_{n}-u>\leq 0$, then $\limsup _{n \rightarrow \infty}<S_{1} u_{n}, u_{n}-u>\leq 0$.
By Lemma 3.3, $\left\{S_{1} u_{n}\right\}$ converges weakly to $S_{1} u$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*},\left\{u_{n}\right\}$ converges to u in $W_{0}^{1, p}(\Omega)$ and $\lim _{n \rightarrow \infty}<S_{1} u_{n}, u_{n}>=<S_{1} u, u>$. Hence $\left\{S_{2} u_{n}\right\}$ weakly converges to $S_{2} u$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*}$ and $\lim _{n \rightarrow \infty}<S_{2} u_{n}, u_{n}>=<S_{2} u, u>$. Consequently, $\left\{\left(S_{1}+S_{2}\right) u_{n}\right\}$ weakly converges to $\left(S_{1}+S_{2}\right) u$ in $\left(W_{0}^{1, p}(\Omega)\right)^{*}$ and $\lim _{n \rightarrow \infty}<\left(S_{1}+S_{2}\right) u_{n}, u_{n}>=<\left(S_{1}+S_{2}\right) u, u>$. That means $S_{1}+S_{2}$ is pseudomonotone. Therefore, S is pseudomonotone.
Step 3. S is coercive.
By (A3), we have

$$
\begin{align*}
<S_{1} u, u> & =\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, T(u), \nabla u) \frac{\partial}{\partial x_{i}} u d x \\
& \geq \int_{\Omega}\left[C_{1}|\nabla u|^{p}-k_{1}(x)\right] d x \tag{15}\\
& =C_{1}\|\nabla u\|_{p}^{p}-\left\|k_{1}\right\|_{1}, \\
\int_{\Omega}|\nabla T u|^{p} d x & =\int_{\underline{u} \leq u \leq \bar{u}}|\nabla u|^{p} d x+\int_{u<\underline{u}}|\nabla \underline{u}|^{p} d x+\int_{u>\bar{u}}|\nabla \bar{u}|^{p} d x \tag{16}\\
& \leq\|\nabla u\|_{p}^{p}+\left||\nabla \underline{u}|_{p}^{p}+\|\nabla \bar{u}\|_{p}^{p},\right. \\
\int_{\Omega}|T u|^{r} d x & \leq \int_{\Omega}(|\underline{u}|+|\bar{u}|)^{r} d x=M_{0} . \tag{17}
\end{align*}
$$

Combining (16), (17), using Young's inequality and the Sobolev embedding theorem, we can find a positive constant M_{1} such that for any positive number ϵ

$$
\begin{aligned}
<S_{2} u, u> & =\int_{\Omega} a_{0}(x, T u, \nabla T u) u d x \\
& \geq \int_{\Omega}\left[-C_{0}|T u|^{\frac{p-1}{p}}-C_{0}|\nabla T u|^{p-1}-k_{0}(x)\right]|u| d x \\
& \geq-C_{0}\|T u\|_{r}^{r \frac{p-1}{p}}\|u\|_{p}-C_{0}\|\nabla T u\|_{p}^{p-1}\|u\|_{p}-\left\|k_{0}\right\|_{q}\|u\|_{p} \\
& \geq-C_{0} M_{0}^{\frac{p-1}{p}}\|u\|_{p}-C_{0}\left[\frac{\|u\|_{p}^{p}}{\epsilon^{p} p}+\frac{\epsilon^{q}\|\nabla T u\|_{p}^{p}}{q}\right]
\end{aligned}
$$

$$
\begin{align*}
\geq & -C_{0} M_{0}^{\frac{p-1}{p}}\|u\|_{p}-C_{0}\left[\frac{\|u\|_{p}^{p}}{\epsilon^{p} p}+\frac{\epsilon^{q}\|\nabla u\|_{p}^{p}}{q}\right] \\
& -C_{0} \frac{\epsilon^{q}\left[\|\nabla \underline{u}\|_{p}^{p}+\|\nabla \bar{u}\|_{p}^{p}\right]}{q}-\left\|k_{0}\right\|_{q}\|u\|_{p} . \tag{18}
\end{align*}
$$

Applying Lemma 3.4, we can find positive real numbers α, β such that

$$
\begin{equation*}
<S_{3} u, u>\geq M\left(\alpha\|u\|_{p}^{p}-\beta\right) \tag{19}
\end{equation*}
$$

Combining (15), (18) and (19), we obtain

$$
\begin{align*}
<S u, u>\geq & C_{1}\|\nabla u\|_{p}^{p}-\left\|k_{1}\right\|_{1}-C_{0} M_{0}^{\frac{p-1}{p}}\|u\|_{p}-C_{0}\left[\frac{\|u\|_{p}^{p}}{\epsilon^{p} p}+\frac{\epsilon^{q}\|\nabla u\|_{p}^{p}}{q}\right] \\
& -C_{0} \frac{\epsilon^{q}\left[\|\nabla \underline{u}\|_{p}^{p}+\|\nabla \bar{u}\|_{p}^{p}\right]}{q}-\left\|k_{0}\right\|_{q}\|u\|_{p}+M\left(\alpha\|u\|_{p}^{p}-\beta\right) \tag{20}
\end{align*}
$$

Choosing a sufficiently small positive real number ϵ and a sufficiently large positive real number M such that $C_{1}>\frac{C_{0} \epsilon^{q}}{q}, M \alpha>\frac{C_{0}}{\epsilon^{p} p}$, we see that

$$
\lim _{\|u\|_{1, p} \rightarrow \infty} \frac{\langle S u, u\rangle}{\|u\|_{1, p}}=\infty
$$

Therefore, S is coercive.
Step 4. There is a solution of (13) in $[v, \bar{u}]$.
By Theorem 27.A in [20], there is a solution w of $S(u, \varphi)=0$ in $W_{0}^{1, p}(\Omega)$. We prove that w is in the interval $[v, \bar{u}]$. Choosing $\varphi=(w-\bar{u})_{+}$, we obtain

$$
\begin{align*}
0= & \int_{\Omega} \sum_{i=1}^{N} a_{i}(x, T w, \nabla w) \frac{\partial}{\partial x_{i}}(w-\bar{u})_{+} d x+\int_{\Omega} a_{0}(x, T(w), \nabla T(w))(w-\bar{u})_{+} d x \\
& +M \int_{\Omega}(w-\bar{u})_{+}^{p} d x \\
= & \int_{\Omega} \sum_{i=1}^{N} a_{i}(x, \bar{u}, \nabla w) \frac{\partial}{\partial x_{i}}(w-\bar{u})_{+} d x+\int_{\Omega} a_{0}(x, \bar{u}, \nabla \bar{u})(w-\bar{u})_{+} d x \\
& +M \int_{\Omega}(w-\bar{u})_{+}^{p} d x . \tag{21}
\end{align*}
$$

Since \bar{u} is a supersolution of (2) and $(w-\bar{u})_{+} \geq 0$, then

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, \bar{u}, \nabla \bar{u}) \frac{\partial}{\partial x_{i}}(w-\bar{u})_{+} d x+\int_{\Omega} a_{0}(x, \bar{u}, \nabla \bar{u})(w-\bar{u})_{+} d x \geq 0 \tag{22}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{N}\left[a_{i}(x, \bar{u}, \nabla w)-a_{i}(x, \bar{u}, \nabla \bar{u})\right] \frac{\partial}{\partial x_{i}}(w-\bar{u})_{+} d x+M \int_{\Omega}(w-\bar{u})_{+}^{p} d x \leq 0 . \tag{23}
\end{equation*}
$$

It follows from (A2) that

$$
\begin{equation*}
\int_{\Omega} \sum_{i=1}^{N}\left[a_{i}(x, \bar{u}, \nabla w)-a_{i}(x, \bar{u}, \nabla \bar{u})\right] \frac{\partial}{\partial x_{i}}(w-\bar{u})_{+} d x \geq 0 . \tag{24}
\end{equation*}
$$

Combining (23) and (24), we have

$$
M \int_{\Omega}(w-\bar{u})_{+}^{p} d x \leq 0
$$

which implies that $(w-\bar{u})_{+}(x)=0$ for a.e. x in Ω. Thus $w(x) \leq \bar{u}(x)$ for a.e. $x \in \Omega$. Similarly, we also have $w(x) \geq v(x)$ for a.e. $x \in \Omega$.
Step 5. w is a subsolution of (2).
By (F2), it follows that for any nonnegative function φ in $W_{0}^{1, p}(\Omega)$

$$
\begin{align*}
\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, u, \nabla u) \frac{\partial \varphi}{\partial x_{i}} d x & =\int_{\Omega}[f(x, v, w, \nabla w)+a(v)-a(w)] \varphi d x \\
& \leq \int_{\Omega} f(x, w, w, \nabla w) \varphi d x \tag{25}
\end{align*}
$$

Thus w is also a subsolution of (2).
Lemma 3.6. There exists a positive real number M independent of v such that ${ }^{\|} w \|_{W_{0}^{1, p}(\Omega)} \leq M$ for any w in Lemma 3.5.

Proof. Replacing φ by w in (25), by (A3), (F1) and (F2), we get

$$
\begin{aligned}
C_{1}\|\nabla w\|_{p}^{p}-\left\|k_{1}\right\|_{1}= & \int_{\Omega}\left[C_{1}|\nabla w|^{p}-k_{1}(x)\right] d x \\
\leq & \int_{\Omega} \sum_{i=1}^{N} a_{i}(x, u, \nabla w) \frac{\partial w}{\partial x_{i}} d x \\
= & \int_{\Omega}[f(x, v, w, \nabla w)+a(v)-a(w)] u d x \\
\leq & \int_{\Omega}\left(k_{2}+C_{2}|\nabla w|^{p-1}+C_{2}|w|^{\frac{r(p-1)}{p}}+C_{3}|v|^{\frac{r(p-1)}{p}}\right. \\
& \left.+C_{3}|w|^{\frac{r(p-1)}{p}}+2 C_{3}\right)|w| d x
\end{aligned}
$$

$$
\begin{aligned}
\leq & \int_{\Omega}\left[k_{2}+2 C_{3}+C_{2}|\nabla w|^{p-1}+C_{2}(|\underline{u}|+|\bar{w}|)^{\frac{r(p-1)}{p}}\right. \\
& \left.+2 C_{3}(|\underline{w}|+|\bar{w}|)^{\frac{r(p-1)}{p}}\right](|\underline{u}|+|\bar{u}|) d x \\
\leq & \left\|k_{2}\right\|_{q}\|(|\underline{u}|+|\bar{u}|)\|_{p}+2 C_{3}| |(|\underline{u}|+|\bar{u}|) \|_{1} \\
& +\left(C_{2}+2 C_{3}\right)| |(|\underline{u}|+|\bar{u}|)\left\|_{r}^{\frac{r(p-1)}{p}}\right\|(|\underline{u}|+|\bar{u}|) \|_{p} \\
& +C_{2} \int_{\Omega}|\nabla u|^{p-1}(|\underline{u}|+|\bar{u}|) \\
\leq & M_{4}+\left.C_{2}| | \nabla u\right|_{p} ^{p-1}| |(|\underline{u}|+|\bar{u}|) \|_{p}
\end{aligned}
$$

Thus we have

$$
C_{1}\|\nabla u\|_{p}^{p}-\left\|k_{1}\right\|_{1} \leq M_{4}+M_{5}+C_{2}\|\nabla u\|_{p}^{p-1}\|(|\underline{u}|+|\bar{u}|)\|_{p},
$$

which yields the lemma.
Proof of Theorem 3.2. Denote by \mathfrak{S}_{0} the set of subsolutions u in $[\underline{u}, \bar{u}]$ of (2) such that there exists a subsolution v in $[\underline{u}, u]$ of (2) and u is a solution of (13). We see that \mathfrak{S}_{0} is non-empty and bounded by Lemmas 3.5 and 3.6.

Let u be in \mathfrak{S}_{0}, by Lemma 3.5, there is a solution $u^{\prime} \equiv H_{0}(u)$ in $[u, \bar{u}]$ of the following equation

$$
\begin{cases}-\sum_{i=1}^{N} \frac{\partial}{\partial x_{i}} a_{i}\left(x, u^{\prime}, \nabla u^{\prime}\right)+a\left(u^{\prime}\right)=f\left(x, u, u^{\prime}, \nabla u^{\prime}\right)+a(u) & \text { in } \Omega \tag{26}\\ u^{\prime}=0 & \text { on } \partial \Omega\end{cases}
$$

It is easy to see that $H_{0}\left(\mathfrak{S}_{0}\right) \subset \mathfrak{S}_{0}$. Let $\left\{w_{n}\right\}$ be an increasing sequence in \mathfrak{S}_{0}. Since \mathfrak{S}_{0} is bounded, then $\left\{w_{n}\right\}$ converges weakly to w. Since $w_{n} \in \mathfrak{S}_{0}$, there exists v_{n} being a subsolution of (2) such that $\underline{u} \leq v_{n} \leq w_{n} \leq \bar{u}$ and for any nonnegative function φ in $W_{0}^{1, p}(\Omega)$ we have

$$
\begin{aligned}
& \int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, w_{n}, \nabla w_{n}\right) \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega}\left[f\left(x, v_{n}, w_{n}, \nabla w_{n}\right)+a\left(v_{n}\right)-a\left(w_{n}\right)\right] \varphi d x \\
& \geq \int_{\Omega}\left[f\left(x, \underline{u}, w_{n}, \nabla w_{n}\right)+a(\underline{u})-a\left(w_{n}\right)\right] \varphi d x \\
& \int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, w_{n}, \nabla w_{n}\right) \frac{\partial}{\partial x_{i}}\left(w_{n}-w\right) d x \\
& \leq \int_{\Omega}\left[f\left(x, \underline{u}, w_{n}, \nabla w_{n}\right)+a(\underline{u})-a\left(w_{n}\right)\right]\left(w_{n}-w\right) d x
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \int_{\Omega} \sum_{i=1}^{N}\left[a_{i}\left(x, w_{n}, \nabla w_{n}\right)-a_{i}\left(x, w_{n}, \nabla w\right)\right] \frac{\partial}{\partial x_{i}}\left(w_{n}-w\right) d x \\
& \leq \int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, w_{n}, \nabla w\right) \frac{\partial}{\partial x_{i}}\left(w_{n}-w\right) d x \\
& \quad+\int_{\Omega}\left[f\left(x, \underline{u}, w_{n}, \nabla w_{n}\right)+a(\underline{u})-a\left(w_{n}\right)\right]\left(w_{n}-w\right) d x
\end{aligned}
$$

Using the same argument as in Lemma 3.3, we see that $\left\{w_{n}\right\}$ converges strongly to w in $W_{0}^{1, p}(\Omega)$. We can suppose that $\left\{w_{n}(x)\right\}$ and $\left\{\nabla w_{n}(x)\right\}$ converge to $w(x)$ and $\nabla w(x)$ for almost everywhere x in Ω. Now, we prove that $\left\{w_{n}\right\}$ has an upper bound v in \mathfrak{S}_{0}. Since $v_{n} \leq w_{n}$ for any integer n, we have

$$
\begin{equation*}
v_{n} \leq w \quad \forall n \in \mathbb{N} \tag{27}
\end{equation*}
$$

By (F2) and (27), for any nonnegative function φ in $W_{0}^{1, p}(\Omega)$, we have

$$
\begin{aligned}
\int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, w_{n}, \nabla w_{n}\right) \frac{\partial \varphi}{\partial x_{i}} d x & =\int_{\Omega}\left[f\left(x, v_{n}, w_{n}, \nabla w_{n}\right)+a\left(v_{n}\right)-a\left(w_{n}\right)\right] \varphi d x \\
& \leq \int_{\Omega}\left[f\left(x, w, w_{n}, \nabla w_{n}\right)+a(w)-a\left(w_{n}\right)\right] \varphi d x
\end{aligned}
$$

By $(A 0)$ and $(F 2)$, it follows that

$$
\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, w, \nabla w) \frac{\partial \varphi}{\partial x_{i}} d x \leq \int_{\Omega} f(x, w, w, \nabla w) \varphi d x
$$

Thus w is a subsolution of (2). By Lemma 3.5, there exists v in \mathfrak{S}_{0} such that $\underline{u} \leq w \leq v \leq \bar{u}$ and $\forall \varphi \in W_{0}^{1, p}(\Omega)$

$$
\int_{\Omega} \sum_{i=1}^{N} a_{i}(x, v, \nabla v) \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega}[f(x, w, v, \nabla v)+a(w)-a(v)] \varphi d x
$$

Therefore, v is an upper bound of $\left\{w_{n}\right\}$ in \mathfrak{S}_{0}. By Theorem 1.1, the operator H_{0} has a fixed point w^{*} in $\mathfrak{S}_{0} \subset[\underline{u}, \bar{u}]$. It follows that for any φ in $W_{0}^{1, p}(\Omega)$

$$
\int_{\Omega} \sum_{i=1}^{N} a_{i}\left(x, w^{*}, \nabla w^{*}\right) \frac{\partial \varphi}{\partial x_{i}} d x=\int_{\Omega} f\left(x, w^{*}, w^{*}, \nabla w^{*}\right) \varphi d x
$$

Let $w^{* *}$ be a solution of (13) in $[\underline{u}, \bar{u}]$ such that $w^{*} \leq w^{* *}$, then $w^{* *} \in \mathfrak{S}_{0}$. By Theorem 1.1, we have $w^{*}=w^{* *}$ and get the theorem.

Remark 3.7. Theorem 3.2 have been studied in [11] if $a_{i}(x, u, \nabla u)=A_{i}(x, \nabla u)$ and there is a positive real number c such that

$$
\begin{equation*}
\left[a\left(r_{1}\right)-a\left(r_{2}\right)\right]\left(r_{1}-r_{2}\right) \geq c\left|r_{1}-r_{2}\right|^{p} \quad \forall r_{1}, r_{2} \in \mathbb{R} \tag{28}
\end{equation*}
$$

In our results we only need the following condition (see (F2))

$$
\left[a\left(r_{1}\right)-a\left(r_{2}\right)\right]\left(r_{1}-r_{2}\right) \geq 0 \quad \forall r_{1}, r_{2} \in \mathbb{R}, r_{1} \neq r_{2}
$$

Remark 3.8. If $1<p<2$, we show that the condition (28) is never satisfied by any a. Indeed, suppose that such a function exists. Put $x_{n}=\sum_{1}^{n} \frac{1}{m^{1 /(p-1)}}$. We see that $\left\{x_{n}\right\}$ is an increasing sequence converging to a real number x, thus $a(x) \geq \sup _{n \in \mathbb{N}} a\left(x_{n}\right)$. Since $a\left(x_{n}\right)-a\left(x_{n-1}\right) \geq c\left(x_{n}-x_{n-1}\right)^{p-1}=\frac{c}{n}$, then $a\left(x_{n}\right)-a\left(x_{1}\right) \geq \sum_{2}^{n} \frac{c}{m}$, which tends to infinity when n goes to infinity. Hence $a(x)=\infty$, which is a contradiction.

Moreover our result only partially needs conditions on compactness, ellipticity and coercivity.

References

1. R. Adams, Sobolev Spaces, Academic Press, 1975.
2. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), 620-709.
3. T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006), 1379-1393.
4. H. Brezis, Analyse Fonctionnelle, Dunod, Nonlinear Analysis, Paris, 1999.
5. S. Carl and S. Heikkila, On discontinuous first order implicit boundary value problems, J. Differential Equations 148 (1998), 100-121.
6. S. Carl and S. Heikkila, Elliptic problems with lack of compactness via a new fixed point theorem, J. Differential Equations 186 (2002), 122-140.
7. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.
8. J. Deuel and P. Hess, A criterion for the existence of solutions of non-linear elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 74 (1974/1975), 4954.
9. S. Heikkila, New iterative methods to solve equations and systems in ordered spaces, Nonlinear Analysis 51 (2002), 1233-1244.
10. S. Heikkila and M. Kumpulainen, On improper integrals and differential equations in ordered Banach spaces, J. Math. Anal. Appl. 319 (2006), 579-603.
11. S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York, Basel, 1994.
12. N. B. Huy, Positive weak solutions for some semilinear elliptic equations, Nonlinear Analysis 48 (2002), 939-945.
13. S. Koksal and V. Lakshmikantham, A unified monotone iterative technique for semi linear elliptic boundary value problems, Nonlinear Analysis 51 (2002), 567586.
14. M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, Pergamon, 1964.
15. V. K. Le, Sub-supersolutions and the existence of extremal solutions in noncoercive variational inequalities, J. Inequal. Pure and Appl. Math. 2 (2) (2001), ...-...
16. J. J. Nieto and R. Rodriguez-Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), Published online: May 5, 2006.
17. H. Persson, A fixed point theorem for monotone functions, Appl. Math. Lett. 19 (2006), 1207-1209.
18. A. C. M. Ran and M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (2003), 1435-1443.
19. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1970.
20. E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. II A/B, Springer-Verlag, New York, 1990.
