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Abstract

We review recent work on a kinetic model for very low temperature
dilute Bose gases. The brief derivation, expressions for hydrodynamics
modes, and the comparison with a experiment on a BEC of 87Rb atoms
are presented.

Keywords low and high temperature quantum kinetics, Bose-Einstein con-
densate, quantum Boltzmann equation.

MSC: 82C10, 82C22, 82C40.

Contents

1 Introduction 2

2 The model 3

3 Derivation of the system 6
3.1 The Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Kinetic Equations in Terms of Wigner Functions . . . . . . . . . 9
3.3 Bogolon Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . 11

4 Microscopic hydrodynamic modes 13
4.0.1 Zeroth Order Perturbation Theory . . . . . . . . . . . . . 14
4.0.2 First Order Perturbation Theory . . . . . . . . . . . . . . 15
4.0.3 Second Order Perturbation Theory . . . . . . . . . . . . . 17

4.1 Comparison to Experiment . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions 19

6 Acknowledgements 20

∗Department of Physics and Center for Complex Quantum Systems, University of Texas-
Austin, Austin, TX 78712, USA. Email: reichl@mail.utexas.edu.
†Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA.

Email: mtran23@wisc.edu

1



7 Appendix A 20

8 Appendix B 22

9 Appendix C 22

1 Introduction

After the first observation of Bose-Einstein condensation in a gas of rubidium
87Rb atoms [3] and then in a gas of sodium 23Na atoms [4], there have been a
number of experiments investigating properties of dilute Bose-Einstein conden-
sates (BECs), and it has been shown that the mean field theory of dilute BECs,
first proposed by Bogoliubov [5], gives excellent agreement with experiments
[9, 26, 36].

If we consider a ideal gas of bosons at temperature T , as the temperature
of the gas is lowered, there is a critical temperature Tc at which a phase transi-
tion occurs (Bose-Einstein condensation) and bosons begin to condense into the
ground state (lowest energy state) of the system. This phase transition also oc-
curs for weakly interacting particles like 87Rb and 23Na, which are bosons. For
finite temperatures T < Tc, the gas can be viewed as a two-fluid system, con-
sisting of an irrotational fluid (the condensate) and a normal fluid (the excited
particles) [6, 39, 40, 47]. The original experiments on BECs confined the atoms
to a harmonic optical trap formed by electromagnetic fields. More recently,
BECs have also been formed on microelectronic chips [25].

At finite temperatures, the coupling of the condensate and noncondensate
degrees of freedom leads to a two-component condensate-thermal cloud system.
The dynamical description of such systems at finite temperature involves a ki-
netic equation for the dynamics of thermal excitations coupled to the evolution
equation of the macroscopic phase of the Bose-Einstein condensate. The ther-
mal excitations described by Bogoliubov mean field theory can be regarded as
a gas of weakly-interacting excitations (“bogolons”), whose energy spectrum is
phonon-like at low temperature and particle-like at higher temperatures.

In the pioneering work by Kirkpatrick and Dorfman [31, 32, 33] and Eckern
[11], the authors derived a closed kinetic equation for the quasiparticle distribu-
tion function of an inhomogeneous Bose gas below the transition temperature.
The approach was then employed and extended by Zaremba, Nikuni and Griffin
[52]. These theories can be regarded as the consistent time-dependent extension
of the Hartree-Fock-Bogoliubov-Popov theory [37] in which collisions within the
thermal cloud and particle-exchange collisions between condensate and thermal
atoms are included. Based on a quantum BBGKY hierarchy argument, a similar
model was also derived in the work [50].

Independently, using a field-theoretic formulation of the non-equilibrium
Keldysh theory [7], within the many-body T-matrix approximation, Stoof also
derived a model [49] that describes the evolution of the full probability distribu-
tion for a weakly interacting Bose gas. In this model, using a Hartree-Fock-like
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ansatz, the total probability distribution can be separated into a product of re-
spective probability distributions for the condensate and thermal particles, that
finally leads to a similar system to the one obtained in [52].

Based on techniques established in the quantum optics community [15], Gar-
diner, Zoller and co-workers [12, 30, 13, 29, 14] developed a theory that gives a
unified description of the entire range of Bose gas kinetics, combining both co-
herent and incoherent processes. Using the above theory, the authors also wrote
a different series of papers [18, 17, 16, 34, 8], in which the formation of a BEC in
an optical trap was studied. The theories formulated by Stoof [10, 48, 49], and
those formulated by Gardiner-Zoller [12, 13, 14, 29, 30], both have the kinetic
equations of ZNG as a limiting case. An excellent review of some of these kinetic
theories can be found in [41].

All of the above models are based on a picture of excitations with particle-
like spectrum. Such models are adequate for high temperature ranges TBEC >
T ≥ 0.5TBEC [28], but are inappropriate for describing collective phonon-like
excitations, which become important at very low temperatures [2]. In order to
fix this problem, in [44, 22, 20, 21, 23, 24] authors Reichl and Gust, based on the
work of Peletminskii and Yatsenko [38], derived a new kinetic equation which
takes into account the non-conservation of bogolon number during collisions and
the phonon-like spectrum of bogolons at very low temperature. As a result, a
new contribution to the collision operator G31 appears that takes into account
1↔3 type collisions between the excitations, addition to the 1↔2 and 2↔2 type
collisions that are known to occur. In [38], Peletminskii and Yatsenko derived a
more traditional kinetic equation that could incorporate a mean field description
of relaxation processes insuperfluids. This approach was subsequently used to
describe relaxation processes in Fermi superfluids [42, 43] and later used to
derive the kinetic equations BECs that are discussed in more detail in subsequent
sections.

In this review paper, we revisit the model derived by Reichl and Gust [44,
22, 20, 21, 23, 24]. The model, which couples the kinetic equation for bogolons
to the equation for evolution of the condensate, is described in Section 2. In
Section 3, we recall the main steps of the derivation of the model by Reichl and
Gust. In Section 4, we calculate the decay rates of the sound modes as a function
equilibrium temperature, density, particle mass and interaction strength. We
obtain expressions for the decay rates of sound modes that can be applied to
any monatomic dilute Bose gas and compare the results to a experiment on a
BEC of 87Rb atoms [46]. The value of the sound mode lifetime, predicted by
the new theory, is consistent with experiment reported in [46].

2 The model

In this paper, we are interested in the kinetic equations that describe the dy-
namics of excitations (bogolons) in a very low temperature dilute atomic Bose-
Einstein condensate [44, 22, 20, 21, 23, 24]. We let f(r,k1, t) denote the devia-
tion from equilibrium of the phase space bogolon number density for bogolons, at
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time t, with position and momentum in the intervals r→r+dr, h̄k1→h̄k1+dh̄k1,
respectively (h̄ is Planck’s constant). Then the equation for the spatial Fourier
transform, f(q,k1, t) =

∫
dreiq·rf(r,k1, t), satisfies the coupled equations

∂f(q,k1, t)

∂t
= i

h̄

m
k1·q

ε(k1) + Λ0

Ek1

f(q,k1, t) + iq·vs(q, t)N eq
k1
−

−G[f ](q,k1, t), on (q,k1, t) ∈ R3 ×R3 ×R+,(2.1)

f(q,k1, 0) = f0(q,k1), (q,k1) ∈ R3 ×R3, (2.2)

∂2φ(q, t)

∂t2
= −i g

m

1

(2π)3

∫
R3

dk1 q·k1f(q,k1, t)−

−i g
h̄

q·vs(q, t)neq, on (q, t) ∈ R3 ×R+, (2.3)

φ(q, 0) = φ0(q), ξ ∈ R3, (2.4)

where q is the wave vector for spatial variations of the bogolon density, εk1
=

h̄2|k1|2
2m , Λ0 is the equilibrium condensate order parameter,

Ek1
=

√
(εk1

+ Λ0)2 − Λ0
2

is the bogolon energy, and

N eq
k1

= (eEk1
/kBT − 1)−1

is the equilibrium Bose-Einstein distribution for bogolons at temperature T with
kB being the Boltzmann constant, g = 4πh̄2a/m is the coupling constant, a is
the s-wave scattering length of the atoms in the gas, and neq is the total particle
number density. The distribution N eq(k1) is a stationary state of Eq. (2.1).

The macroscopic phase of the condensate, φ(r, t), varies in space and time.
The equation for the component φ(q, t) =

∫
dreiq·rφ(r, t) with wave vector q is

given by Eq. (2.3). The equilibrium particle density neq that appears in Eq.
(2.3) can be written

neq≈ neq
0 +

1

(2π)3

∫
R3

dk1
εk1 + Λ0

Ek1

N eq
k1

(2.5)

where neq0 is the density of particles that have condensed into the ground state
k = 0. This form of the equilibrium particle density is sometimes called the
”Popov approximation” and limits the theory to temperatures below about
0.6TC [26]. The superfluid velocity is determined by the spatial variation of the
macroscopic phase φ(r, t) and is given by by vs(r, t) = h̄

m∇rφ(r, t). Therefore,

vs(q, t) = −i h̄
m

q φ(q, t). (2.6)

The macroscopic phase φ(r, t) arises from the broken gauge symmetry in the
Bose Einstein condensate. From Eqs. (2.1). -(2.4), we see that bogolon distri-
bution function and the macroscopic phase are nonlinearly coupled.
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The collision operator G[f ] that appears in Eq. (2.1) contains the processes
that cause the BEC to relax to equilibrium. In subsequent sections, we con-
sider the linearized bogolon kinetic equation so we write the linearized collision
operator here. Let us define

f(q,k, t) = N eq
k (1 +N eq

k )η(q,k, t), (2.7)

then η(q,k, t) is a small quantity that decays to zero as the gas relaxes to
equilibrium. We rewrite G[f ] as G[η]. In the hydrodynamic regime where spa-
tial variations have very long wavelength, the wave vector |q| is a very small
parameter. The linearized bogolon collision integral can be written G[η] =
G12[η] + G22[η] + G13[η] where

G12
k1,q =

4πN0g
2

h̄V 2

∑
2,3

′
δ

(4)
1,2+3(W 12

3,2,1)2Meq
1 N

eq
2 N

eq
3 (η2 + η3 − η1)

+
8πN0g

2

h̄V 2

∑
2,3

′
δ

(4)
1+2,3(W 12

1,2,3)2 Meq
3 N

eq
1 N

eq
1 (η3 − η1 − η2), (2.8)

G22
k1,q =

4πg2

h̄V 2

∑
2,3,4

′
δ

(4)
1+2,3+4(W 22

1,2,3,4)2 Meq
1 M

eq
2 N

eq
3 N

eq
4

×(η3 + η4 − η1 − η2) (2.9)

and

δG31
k1,q =

4πg2

3h̄V 2

∑
2,3,4

′
δ

(4)
1,2+3+4(W 31

1,2,3,4)2Meq
1 N

eq
2 N

eq
3 N

eq
4

×(η2 + η3 + η4 − η1)

+
4πg2

h̄V 2

∑
2,3,4

′
δ

(4)
1+2+3,4(W 31

4,3,2,1)2N eq
1 N

eq
2 N

eq
3 M

eq
4

×(η4 − η1 − η2 − η3) (2.10)

whereMeq
j = 1+N eq

j , ηj = η(q,kj , t), Ei = Eki , the summation
∑′

j =
∑

kj 6=0,

and δ
(4)
1+2,3+4 denotes the product of momentum and energy conserving delta

functions

δ
(4)
1+2,3+4 = δ(3)(k1 + k2 − k3 − k4)δ(E1 + E2 − E3 − E4). (2.11)

The weighting functions W 12
1,2,3, W 22

1,2,3,4, and W 31
1,2,3,4, are given by

W 12
1,2,3 = u1u2u3 − u1v2u3 − v1u2u3 + u1v2v3 + v1u2v3 − v1v2v3, (2.12)

W 22
1,2,3,4 = u1u2u3u4 + u1v2u3v4 + u1v2v3u4 + v1u2u3v4 + v1u2v3u4 + v1v2v3v4

(2.13)
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and

W 31
1,2,3,4 = u1u2u3v4 + u1u2v3u4 + u1v2u3u4 + v1v2v3u4 + v1v2u3v4 + v1u2v3v4.

(2.14)
In the limit that Λ0 → 0, the weighting functions W 12 and W 22 approach 1 while
the weighting function W 31 approaches zero. However, G12 still approaches
zero overall since it is multiplied by N0 which approaches zero. The collision
operators G12 and G22 are the same as those considered in refs. [31, 33, 32, 37]
. They dominate collision processes at higher temperatures where particle-
like excitations exist. The collision operator G31 becomes important at lower
temperatures where the excitations take on a more phonon-like character.The
factors ui and vi are given by

ui =
1√
2

√
εi + Λ0

Ei
+ 1 vi =

1√
2

√
εi + Λ0

Ei
− 1 (2.15)

where εj = εkj . In Appendix A, we write these linearized collision operators in
a more explicit form.

3 Derivation of the system

In this Section, we outline the key steps of the derivation (cf. [44, 20]) of the
BEC kinetic equations shown in Section 2. Let Φ̂†(x) (Φ̂(x)) be the quantum
field operator that creates (annihilates) a particle at position x, the Hamiltonian
for N bosons of mass m, in a cubic box with very large volume Ω, can be written
in the form

Ĥ =

∫
Ω

dxΦ̂†(x)

(
− h̄2

2m
∆x

)
Φ̂(x)

+
1

2

∫
Ω

∫
Ω

dx1dx2V(|x1 − x2|)Φ̂†(x1)Φ̂†(x2)Φ̂(x2)Φ̂(x1), (3.1)

where and the integration is over the entire volume Ω of the cubic box. These
operators satisfy the boson commutation relations [Φ̂(x1), Φ̂†(x2)] = δ(x1−x2).
We will assume that the interaction between particles is given by the contact
potential V(|x1 − x2|) = gδ(x1 − x2). The evolution of the probability density
operator ρ̂ for this system follows the quantum Liouville equation

∂ρ̂(t)

∂t
= − i

h̄
[Ĥ, ρ̂(t)]. (3.2)

The equations (3.1) and (3.2) give the exact behavior of the BEC gas.
Below the Bose-Einstein condensation transition temperature, Tc, the gauge

symmetry of the fluid is broken. In order to accurately describe the behavior
of the BEC, one needs to incorporate this broken symmetry into the dynamics,
by using the one-body reduced density operator

ˆ̄Θ(x1,x2) =

(
Φ̂†(x1)Φ̂(x2) Φ̂†(x1)Φ̂†(x2)

Φ̂(x1)Φ̂(x2) Φ̂(x1)Φ̂†(x2)

)
, (3.3)
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and the one-body reduced density matrix

F̄(x1,x2, t) = Tr
[
ρ̂(t) ˆ̄Θ(x1,x2)

]
=

(
〈Φ̂†(x1)Φ̂(x2)〉 〈Φ̂†(x1)Φ̂†(x2)〉
〈Φ̂(x1)Φ̂(x2)〉 〈Φ̂(x1)Φ̂†(x2)〉

)
, (3.4)

which follows the time evolution equation

−ih̄∂F̄(x1,x2, t)

∂t
= Tr[ρ̂(t) [Ĥ, ˆ̄Θ(x1,x2)]] (3.5)

According to the Bogoliubov assumption, after a very short time t the density
operator ρ̂(t) will be a functional of the single particle reduced density operator
F̄(x1,x2, t). The density operator then can be written, with an abuse of notation

ρ̂(t) = ρ̂′({F̄}), (3.6)

where {F̄} denotes the vector containing F̄(x1,x2, t) for all values of (x1,x2).
The quantity F̄(x1,x2, t) is defined self-consistently so that

F̄(x1,x2, t) = Tr[ρ̂′({F̄}) ˆ̄Θ(x1,x2)]. (3.7)

The existence of the broken symmetry can be made explicit if we divide the
total Hamiltonian into a mean field contribution Ĥ0 and a deviation from the
mean field Ĥ1. The total Hamiltonian then takes the form Ĥ = Ĥ0 + Ĥ1, where
the mean field Hamiltonian is defined

Ĥ0 =

∫
Ω

dxΦ̂†(x)

(
− h̄2

2m
∆x − µ

)
Φ̂(x) + Ĥ3, (3.8)

with

Ĥ3 =
1

2

∫
B

dx1[ν(x1)Φ̂†(x1)Φ̂(x1) + ν(x1)Φ̂(x1)Φ̂†(x1)]

+
1

2

∫
Ω

dx1Λ
†(x1)Φ̂(x1)Φ̂(x1) +

1

2

∫
Ω

dx1Λ(x1)Φ̂†(x1)Φ̂†(x1), (3.9)

and Ĥ1 contains deviations from the mean field Hamitloniain

Ĥ1 =
1

2

∫
Ω

∫
Ω

dx1dx2V(|x1 − x2|)Φ̂†(x1)Φ̂†(x2)Φ̂(x2)Φ̂(x1)− Ĥ3, (3.10)

In Eq. (3.9), ν(x1) = 2g 〈Φ̂†(x1)Φ̂(x1)〉, Λ(x1) = g 〈Φ̂(x1)Φ̂(x1)〉, Λ†(x1) =
g 〈Φ̂†(x1)Φ̂†(x1)〉, and µ is the equilibrium chemical potential.

3.1 The Kinetic Equation

In [20], the authors used the Peletminksii and Yatsenko approach [1, 38] to
derive the kinetic equation for the BEC from the above mean field Hamiltonian.
The kinetic equation describing the dynamic evolution of the one-body density
matrix can be written
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−ih̄∂F̄(x1,x2, t)

∂t
= Tr{ρ̂′({F̄}), [Ĥ0,

ˆ̄Θ(x1,x2)]}+ Tr{ρ̂′({F̄}), [Ĥ1,
ˆ̄Θ(x1,x2)]}

+
i

h̄

∫ 0

−∞
ds Tr{ρ̂′({F̄}), [Ĥ1, Ŝ

0,†(0, s)[ ˆ̄Θ(x1,x2), Ĥ1]Ŝ0(0, s)},(3.11)

where Ŝ0 is the semigroup operator

Ŝ0(s1, s2) = e−Ĥ0(s1−s2)/h̄, (3.12)

and Ŝ0,† is the adjoint of Ŝ0. The mean field Hamiltonian Ĥ0, defined in (3.8)
needs to satisfy

Tr{ρ̂′({F̄})[Ĥ1, Θ̂(x1,x2)]} = 0, (3.13)

In order to remove secular effects in the evolution of the one-body density ma-
trix.

We can now introduce the unitary transformation to the reference frame
moving with the superfluid (superfluid rest frame)

Ŝ(t) = exp

[
−i
∫

Ω

dxφ(x, t)Φ̂†(x)Φ̂(x)

]
, (3.14)

where φ(x, t) is the macroscopic phase of the condensate wave function. We

let ψ̂†(x) and ψ̂(x) denote particle creation and annihilation operators in the

superfluid rest frame. Then Ŝ†(t)Φ̂(x)Ŝ(t) = e−iφ(x,t)Φ̂(x) = ψ̂(x) and we
obtain

−ih̄ ∂
∂t
〈ψ̂†1ψ̂2〉 = (L(+)

1 − L(−)
2 )〈ψ̂†1ψ̂2〉 − Λ2〈ψ̂†1ψ̂

†
2〉+ Λ†1〈ψ̂1ψ̂2〉+ I11,

−ih̄ ∂
∂t
〈ψ̂†1ψ̂

†
2〉 = (L(+)

2 + L(+)
1 )〈ψ̂†1ψ̂

†
2〉+ Λ†2〈ψ̂

†
1ψ̂2〉+ Λ†1〈ψ̂1ψ̂

†
2〉+ I12,

−ih̄ ∂
∂t
〈ψ̂1ψ̂2〉 = −(L(−)

2 + L(−)
1 )〈ψ̂1ψ̂2〉 − Λ1〈ψ̂†1ψ̂2〉 − Λ2〈ψ̂1ψ̂

†
2〉+ I21,

−ih̄ ∂
∂t
〈ψ̂1ψ̂

†
2〉 = (L(+)

2 − L(−)
1 )〈ψ̂1ψ̂

†
2〉 − Λ1〈ψ̂†1ψ̂

†
2〉+ Λ†2〈ψ̂1ψ̂2〉+ I22,

(3.15)

where ψ̂j = ψ̂(xj),

L(±)
j = L(xj)±i

h̄

2
(∇xj

·vs(xj)) +
m

2
v2
s(xj) ± ih̄vs(xj)·∇xj

+ h̄
∂φ(xj)

∂t
, (3.16)

with

L(xj) = − h̄2

2m
∆xj

+ ν(xj)− µ, ν(xj) = 2g〈ψ̂†(xj)ψ̂(xj)〉,

Λj = Λ(xj) = g〈ψ̂(xj)ψ̂(xj)〉, Λ†j = Λ†(xj) = g〈ψ̂†(xj)ψ̂†(xj)〉,
(3.17)
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for j = 1, 2. The quantity vs(xj) = h̄
m∇xjφ(xj) is the superfluid velocity. The

quantities(
I1,1 I1,2

I2,1 I2,2

)
=
i

h̄

∫ 0

−∞
ds Tr{ρ̂′({F̄})[Ĥ1, Ŝ

0,†(0, s)[ˆ̄θ(x1,x2), Ĥ1]Ŝ0(0, s)]},

(3.18)
where

ˆ̄θ(x1,x2) =

(
ψ̂†(x1)ψ̂(x2) ψ̂†(x1)ψ̂†(x2)

ψ̂(x1)ψ̂(x2) ψ̂(x1)ψ̂†(x2)

)
, (3.19)

are the collision integrals governing relaxation processes in the BEC gas.
The coupled kinetic equations (3.15) contain the full quantum dynamics of

the BEC gas. If we transform these kinetic equations to equations for the Wigner
functions, we can write the kinetic equations in the hydrodynamic regime where
all macroscopic quantities are slowly varying in space and time.

3.2 Kinetic Equations in Terms of Wigner Functions

Wigner functions are distribution functions in phase space for quantum systems
[51]. They are particularly useful in dealing with transport processes because
in the classical limit they reduce to classical probability distributions in phase
space. The field operators ψ̂†1 and ψ̂1 are related to operators â†k1

and âk1 ,
that create and annihilate, respectively, a particle with momentum h̄k1, via the
Fourier transforms

ψ̂†1 =
1√
Ω

∑
k1

e−ik1·r1 â†k1
, and ψ̂1 =

1√
Ω

∑
k1

e+ik1·r1 âk1
. (3.20)

We can therefore relate the configuration space distributions to momentum
space distributions via the Fourier transformation(
〈ψ̂†1ψ̂2〉 〈ψ̂†1ψ̂

†
2〉

〈ψ̂1ψ̂2〉 〈ψ̂1ψ̂
†
2〉

)
=

1

Ω

∑
k1,k2

e−ik1·r1e+ik2·r2

(
〈â†k1

âk2
〉 〈â†k1

â†−k2
〉

〈â−k1
âk2
〉 〈â−k1

â†−k2
〉

)
(3.21)

Let us introduce center of mass and relative coordinates R = 1
2 (x1 +x2) and

r = x1−x2, respectively, and introduce center of mass and relative wavevectors
k = 1

2 (k1 + k2) and q = k1 − k2, respectively, the Wigner functions for the
BEC, whose spatial disturbance has wave vector q, are then defined(

F11(k,q) F12(k,q)
F21(k,q) F22(k,q)

)
=

∫
dr

∫
dR e+ik·re+iq·R

(
〈ψ̂†1ψ̂2〉 〈ψ̂†1ψ̂

†
2〉

〈ψ̂1ψ̂2〉 〈ψ̂1ψ̂
†
2〉

)
(3.22)

where h̄k is the momentum of particles. In the classical limit, F11(k,R) is the
particle number density in the the interval k→k+dk and for spatial disturbances
with wave vector q→q+dq. The particle number density whose spatial variation
has wavevector q is N(q) =

∑
kF11(k,q). The number of particles N(k) with

momentum h̄k is N(k) =
∫
dR F11(k,R) = 〈â†kâk〉. The component of the
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order parameters whose spatial variation has wavevector q is given by Λ†(q) =
g
∑

kF12(k,q) and Λ(q) = g
∑

kF21(k,q).
Since we are interested in the hydrodynamic regime, where all macroscopic

quantities are slowly varying in space, we keep only the lowest order derivatives
with respect to R in the kinetic equations. This is equivalent to keeping only
the lowest order contributions from the wave vector q (up to order q2) in the
kinetic equations.

We also note that expressions for transport coefficients can be computed from
kinetic equations that are linearized about absolute equilibrium. We therefore
now write the hydrodynamic variables in terms of their equilibrium values plus
small perturbations from their equilibrium values,

Fi,j(q,k) = F eqi,j(k) + δFi,j(q,k), vs(q) = v0
s + δvs(q)

Λ(q) = Λ0 + δΛ(q), Λ†(q) = Λ0 + δΛ†(q). (3.23)

where F eqi,j(k), v0
s , and Λ0 denote the equilibrium values of the various quantities.

We will study the Bose gas at temperatures below 0.6Tc, where the Popov
approximation has been shown to give good agreement with experiments and
F eq11 (0)≈F eq12 (0)≈F eq21 (0)≈F eq22 (0)≈Neq

0 , with Neq
0 being the number density of

particles in the condensate at equilibrium.
Since we linearize the kinetic equations, each wavevector component evolves

independently. Let us define

e
(±)
k,q =

h̄2

2m
|k±1

2
q|2 + ν0 − µ. (3.24)

The resulting linearized kinetic equations can be written in the following matrix
form,

−ih̄∂δF̌
∂t

= {ε(+)
k,q δF̌ − δF̌ ε

(−)
k,q}+ h̄q·v̌s(q)F eq − h̄k·v̌s(q) q·∇kF

eq

+{B F eq − F eq B′}+ q·∇k{D F eq − F eq D′}+ δI (3.25)

where

δF̌ =

(
δF̌11 (q,k, t) δF̌12 (q,k, t)
δF̌21 (q,k, t) δF̌22 (q,k, t)

)
, F eq =

(
F eq11 (k) F eq12 (k)
F eq21 (k) F eq22 (k)

)
, (3.26)

ε
(+)
k,q =

(
e

(+)
k,q Λ0

−Λ0 −e(+)
k,q

)
, ε

(−)
k,q =

(
e

(−)
k,q −Λ0

Λ0 −e(−)
k,q

)
, (3.27)

B =

(
Ψ̌(q) δΛ†(q)
−δΛ(q) −Ψ̌(q)

)
, B′ =

(
Ψ̌(q) −δΛ†(q)
δΛ(q) −Ψ̌(q)

)
, (3.28)

D =

(
− 1

2 Ψ̌(q) − 1
2δΛ̌

†(q)
1
2δΛ̌(q) 1

2 Ψ̌(q)

)
, D′ =

(
1
2 Ψ̌(q) − 1

2δΛ̌
†(q)

1
2δΛ̌(q) − 1

2 Ψ̌(q)

)
, (3.29)
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Ψ̌(q) = h̄∂φ̌(q)
∂t + δν̌(q) and

δI =

(
δI11 (q,k, t) δI12 (q,k, t)
δI21 (q,k, t) δI22 (q,k, t)

)
. (3.30)

are the linearized collision integrals for the particle kinetic equations. For sim-
plicity and without loss of generality, we have set v0

s = 0 (superfluid velocity at
equilibrium).

The total particle number density in the interval q→q + dq at time t is is

δN(q, t) =
1

V

∑
K

δF11(K,q, t). (3.31)

From Eq. (3.25) we can write

−ih̄∂δF11(k,q, t)

∂t
=
(
ε̃
(+)
k,q − ε̃

(−)
k,q

)
δF11(k,q, t) + h̄q·vs(q, t)Neq

k

+h̄q·vs(q, t) q·∇kNeq
k − Λ0δF12(k,q, t)− δΛ(q, t)F eq12 (k)

+Λ0δF21(k,q, t) + δΛ†(q, t)F eq21 (k) + δI11(k,q, t) (3.32)

Note that

Λ0 =
g

V

∑
k

F eq12 (k) =
g

V

∑
k

F eq12 (k),

δΛ(q, t) =
g

V

∑
k

δF21(k,q, t), δΛ†(q, t) =
g

V

∑
k

δF12(k,q, t). (3.33)

Let us now sum over all momentum states in Eq. (3.32). The terms that depend
on ∆ cancel. One can also check that the third term on the right hand side of
Eq. (3.32) gives a negligible contribution, compared to the second term, when
one integrates over k. Eq. (3.32) then reduces to

−ih̄∂δN(q, t)

∂t
=
h̄2

m

1

V

∑
k

k·qδF11(k,q, t) + h̄q·vs(q, t)Neq (3.34)

which is the continuity equation for total particle number density.

3.3 Bogolon Kinetic Equation

The dynamics of the excitations (bogolons) in the BEC governs the hydrody-
namic relaxation of the BEC. In order to determine the hydrodynamic behavior
of the BEC, we must transform from the particle kinetic equations to kinetic
equations for the bogolons.

We can transform from the particle kinetic equation to the bogolon kinetic
equation using the Bogoliubov transformation Sj (see Appendix C) which trans-

forms particle creation and annihilation operators, â†j = â†kj
and âj = âkj

11



respectively, into bogolon creation and annihilation operators, b̂†j = b̂†kj
and

b̂j = b̂kj , respectively. We can write(
〈b̂†1b̂2〉 0

0 〈b̂−1b̂
†
−2〉

)
= S−1

1 ·
(
〈â†1â2〉 〈â†1â

†
−2〉

〈â−1â2〉 〈â−1â
†
−2〉

)
·S−1

2 , (3.35)

where

Sj =

(
uj −vj
−vj uj

)
and S−1

j =

(
uj vj
vj uj

)
, j = 1, 2 (3.36)

with u1 = uk1
, u2 = uk2

(see Appendix B). Since excitations (the bogolons)

do not form a condensate, we require that 〈b̂†1b̂
†
−1〉 = 0 and 〈b̂−1b̂2〉 = 0. Also,

since we are linearizing the kinetic equations about absolute equilibrium, we can
express the parameters u1 and v1 in terms of equilibrium quantities. We also
find(
N eq(k) 0

0 N eq(k) + 1

)
=

(
〈b̂†kb̂k〉eq 0

0 〈b̂−kb̂
†
−k〉eq

)
= S−1

k ·F
eq(k)·S−1

k ,

(3.37)

where N eq
k = [exp(βEk)− 1]

−1
is the Bose-Einstein distribution for bogolons.

We can expand the particle number distribution in terms of bogolon distri-
butions to obtain

δF̌11(q,k, t) = u2
kf(q,k, t) + v2

kf(q,−k, t). (3.38)

and expand the particle current in terms of bogolon currents to obtain∑
k

kδF11(q,k, t) =
∑
k

k
[
u2
kf(q,k, t) + v2

kf(q,−k, t)
]

=
∑
k

kδf(q,k, t). (3.39)

since u2
k − v2

k = 1. Thus, we find that the bogolon momentum density is equal
to the particle momentum density.

We now write the Hugenholtz-Pines (H-P) equation, µ = ν−∆ for the BEC
[19]. Since the time derivative of the macroscopic phase φ(q, t) is proportional
to the chemical potential µ = h̄∂φ∂t , in the hydrodynamic regime, where we can
assume that the system is locally in equilibrium, and write

h̄
∂φ(q, t)

∂t
+ δν(q, t)− δΛ̃(q, t) = 0, (3.40)

where
δν(q, t) = 2g

∑
K

δF11(q,k) = 2gδN(q, t), (3.41)

and
δΛ̃(q, t) =

g

2

∑
k

(δF12(q,k, t) + δF21(q,k, t)). (3.42)
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We now make a“Bogoliubov-like” approximation for the nonequilibrium order
parameter, δΛ̃(q, t) = gδN(q, t). Then the Hugenholtz-Pines equation can be
written in the form

h̄
∂φ(q, t)

∂t
+ gδN(q, t) = 0. (3.43)

This approximation limits us to very dilute gases, and we expect that it limits
the accuracy of our results for the longitudinal modes to the temperature range
0≤T≤0.3Tc. Equation (3.43) gives a closure condition for the hydrodynamic
equations. Using Eqs. (3.34), (3.39), and (3.43), we obtain the system of
equations in Eqs. (2.1)-(2.2)-(2.3)-(2.4).

4 Microscopic hydrodynamic modes

In order to obtain the dispersion relation for the hydrodynamic modes of the
BEC, we consider one frequency component of the linearized kinetic equations.
We can write

f(q,k, t) ∼ eiωt f̃(q,k, ω) and φ(q, t) ∼ eiωt ϕ̃(q, ω). (4.1)

Then Eq. (2.1) takes the form

ωf̃(q,k, ω) =
h̄

m
k·qε(k) + Λ0

Ek
f̃(q,k, ω)− i h̄

m
q2ϕ̃(q, ω)N eq

k + iG[̃f ](q,k, ω),

(4.2)
where we have used the fact that vs(q, ω) = −i h̄mqϕ̃(q, ω). Equation (2.3) takes
the form

ω2ϕ̃(q, ω) = i
g

m

1

(2π)3

∫
R3

dk q·k f̃(q,k, ω) + q2 g

m
ϕ̃(ξ, ω)neq. (4.3)

Equations (2.1)-(2.2) and (2.3)-(2.4) are the bogolon kinetic equations that de-
scribe hydrodynamic behavior of a dilute BEC.

We can combine Eqs. (4.2) and (4.3) and obtain

ω f̃(k,q, ω)− q2

ω2 − v2
Bq

2

gh̄

m2
N eq
k

1

(2π)3

∫
dk1 q·k1 f̃(k1,q, ω)

= q·k h̄

m

(εk + Λ0)

Ek
f̃(k,q, ω) + iG[̃f ](q,k, ω)

where vB =
√

gneq

m is the Bogoliubov speed. Let us define

f̃(qk, ω) = N eq
k M

eq
k h(q,k, ω), (4.4)

where Meq
k = (1 +N eq

k ). Then Eq. (4.4) takes the form

ω h(k,q, ω)− q2

ω2 − v2
Bq

2

gh̄

m2

1

Meq
k

1

(2π)3

∫
dk1 q·k1 N eq

k1
Meq

k1
h(q,k1, ω)
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= q·k h̄

m

(εk + Λ0)

Ek
h(k,q, ω)

+i

∫ ∞
0

dk1

∫
dΩ1

√
k2

1N
eq
k1
Meq

k1

k2N eq
k M

eq
k

C(k,k1)h(k1,q, ω), (4.5)

where C(k,k1) is the bogolon collision operator whose properties are described
in Appendix C. Eq. (4.5) is an eigenvalue equation with an unusual structure.
This becomes clearer if we write

h(k,q, ω) =
1√

k2N eq
k M

eq
k

Υ(q,k, ω) (4.6)

Then the eigenvalue equation takes the form

ω Υ(q,k, ω)− q2

ω2 − v2
Bq

2

gh̄k

m2

√
N eq

k

Meq
k

1

(2π)3

∫
dk1

1

k1
q·k1

√
N eq

k1
Meq

k1
Υ(q,k1, ω)

= q·k h̄

m

(εk + Λ0)

Ek
Υ(q,k, ω) + i

∫ ∞
0

dk1

∫
dΩ1 C(k,k1)Υ(q,k, ω). (4.7)

The hydrodynamic behavior occurs for long wavelength (small q) processes.
Therefore, it is enough to consider Eq. (4.7) for small q. Without loss of
generality, we can assume that q = qêz, where êz is the unit vector along the
z-direction.

We will use perturbation theory to solve Eq. (4.7) to second order in q. We
expand

ω = ω(0) + qω1) + q2ω(2) + ...

Υ(q,k) = Υ(0)(k) + qΥ(1)(k) + q2Υ(2)(k) + ... (4.8)

The time dependence of hydrodynamic modes has the form ei(ω
1)q+ω(2)q2+...)t.

If the frequency ω(1) is non-zero, the mode is propagating and ω(1) is the speed
of propagation of the mode. The frequency ω(2) gives the decay rate of the
mode. The non-hydrodynamic modes have a zeroth order contribution ω(0)

which generally causes them to decay rapidly.

4.0.1 Zeroth Order Perturbation Theory

For q = 0, Eq. (4.7) reduces to

ω(0) Υ(0)(k) = +i

∫ ∞
0

dk1

∫
dΩ1 C(k,k1)Υ(0)(k). (4.9)

where Υ(0)(k)≡Υ(0,k). Thus, to zeroth order in q, Υ(0)(k) is an eigenvector of
the collision operator with eigenvalue equal to ω(0). As discussed in Appendix
C, the collision operator has four eigenvalues equal to zero with eigenfunctions
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that depend on bogolon energy and momentum, which are conserved during the
collisions between bogolons.

It is useful to note that the bogolon collision operator differs from that of
a monatomic gas of classical particles, which would have a fifth zero eigenvalue
corresponding to conservation of particle number during collisions. The remain-
ing nonzero eigenvalues of the collision operator are negative. For a classical
gas, the five zero eigenvalues are the source of the five hydrodynamic modes of
the gas. In the BEC, there are only four zero eigenvalues, but we know that the
BEC has six hydrodynamic modes. The remaining two hydrodynamic modes in
the BEC come from the nonlinear dependence on ω in the eigenvalue equation
(4.7). This, in turn comes from the coupling of the macroscopic phase to the
bogolon kinetic equation. A classical monatomic gas has one pair of propagat-
ing hydrodynamic modes which are sound modes. As we will see, a BEC has
two pairs of propagating modes, corresponding to first and second sound. The
additional pair of sound modes in a BEC comes from coupling of the bogolon
kinetic equation to the macroscopic phase.

4.0.2 First Order Perturbation Theory

Since the eigenvalues of the collision operator are four-fold degenerate at zeroth
order, it is necessary to find the correct combination of zeroth order eigenstates,
in order to compute the contributions first order and second order in q.

To first order in q, Eq. (4.7) can be written

ω(1) Υ(0)(k)− 1

(ω(1))2 − v2
B

gh̄k

m2

√
N eq

k

Meq
k

1

(2π)3

∫
dk1

1

k1
k1,z

√
N eq

k1
Meq

k1
Υ(0)(k1)

= kz
h̄

m

(εk + Λ0)

Ek
Υ(0(k) + i

∫ ∞
0

dk1

∫
dΩ1 C(k,k1)Υ(1)(k). (4.10)

Equation (4.10) is not symmetric with respect to operations from the left and
right Therefore, we must find different combinations of eigenstates of C(k,k1)
for operations to the right and to the left of Eq(4.10). Let us write

Υ
(0)
R (k) =

1∑
`=0

∑̀
m=−`

ΓR0,`,mΥ
(0)
0,`,m(k) and Υ

(0)
L (k) =

1∑
`=0

∑̀
m=−`

ΓL0,`,mΥ
(0)
0,`,m(k),

(4.11)

where Υ
(0)
L (k) and Υ

(0)
R (k) are left and right eigenvectors respectively, of C(k,k1)

with eigenvalue zero. When we multiply Eq. (4.10) from the left with Υ
(0)
L (k),

the contribution from the collision operator drops out, and we finally obtain the
matrix equation Γ̄†L·M̄ ·Γ̄R = 0, where Γ̄†R is the row matrix

Γ̄†L = {ΓL∗0,0,0,Γ
L∗
0,1,0,Γ

L∗
01,1,Γ

L∗
0,1,−1}

and Γ̄R is a column matrix whose transpose is

Γ̄TR = {ΓR0,0,0,ΓR0,1,0,ΓR01,1,Γ
R
0,1,−1}
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The matrix M̄ is given by

M̄ =


−ω(1) α+ γ

(ω(1))2−v2B
0 0

α −ω(1) 0
0 0 −ω(1) 0
0 0 0 −ω(1)

 (4.12)

where

α =

∫
dkΥ

(0)∗
0,0,0(k)kz

h̄

m

(εk + Λ0)

Ek
Υ

(0)
0,0,1(k) (4.13)

and

γ =
gh̄

m2(2π)3

∫
dkkΥ

(0)∗
0,0,0(k)

√
N eq

k

Meq
k

∫
dk1

k1,z

k1

√
N eq

k1
Meq

k1
Υ

(0)
0,0,1(k1) (4.14)

The values of ω(1) can be found from the condition Det[M̄ ] = 0. This gives
solutions

ω
(1)
2 = −ω(1)

1 =
1√
2

√
v2
B + α2 −

√
(v2
B − α2)2 + 4αγ

ω
(1)
4 = −ω(1)

3 =
1√
2

√
v2
B + α2 +

√
(v2
B − α2)2 + 4αγ

ω
(1)
6 = ω

(1)
5 = 0. (4.15)

Thus, at first order there are six hydrodynamic frequencies. The frequencies

ω
(1)
2 = −ω(1)

1 correspond to fast sound modes. The frequencies ω
(1)
4 = −ω(1)

3

correspond to fast sound modes. The frequencies ω
(1)
6 = −ω(1)

5 = 0 correspond
to non-propagating transverse viscous modes in the BEC.

In Fig. 1, we plot the sound speed, in units of the Bogoliubov speed vB , as a
function of fractional distance below the critical temperature for neqa3 = 10−6

[23], which is a value found in experiments. For a rubidium BEC, it would corre-
spond to a scattering length a = 5.6×10−9m and a density neq = 5.7×1018m−3.
There are several things to note. (i) The speed of both the fast mode and the
slow mode approach finite values in the limit T→0 K. This behavior of the sound
speeds is consistent with the behavior of the sound speeds found by Lee and
Yang [35] using a very different approach. It is a consequence of the fact that
the bogolon spectrum becomes phonon-like at very low temperature. One does
not see this behavior of the sound speeds for models with particle-like spectrum
at very low temperature [27]. For models with particle-like spectrum, one of the
sound speeds goes to zero as T→0 K. (ii) The sound speeds undergo an avoided
crossing as the temperature is lowered. The temperature at which the avoided
crossing occurs increases with increasing density of the gas. For neqa3 = 10−5

it occurs at T/Tc≈0.05. For neqa3 = 10−4 it occurs at T/Tc≈0.11 [23].
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The zeroth order left and right eigenstates can be obtained from the equa-
tions Γ̄†L·M̄ = 0, and M̄ ·Γ̄R = 0, respectively, once the frequencies are de-
termined. For the transverse modes, the left and right eigenstates are com-

plex conjugates of one another and Υ
(0)
R (k) = Υ

(0)
0,1,±1(k). For the longitudinal

modes, the left and right eigenstates are of the form Υ
(0)
R (k) = Γ0,0,0Υ

(0)
0,0,0(k) +

Γ0,1,0Υ
(0)
0,1,0(k). The exact expression for Γ0,0,0 and Γ0,0,0 for a given mode can

be found by solving M̄ ·Γ̄R = 0 for the particular first order frequency consid-
ered.

4.0.3 Second Order Perturbation Theory

To second order in q, Eq. (4.7) takes the form

ω(2) Υ(0)(k) + ω(1) Υ(1)(k)

− 1

(ω(1))2 − v2
B

gh̄k

m2

√
N eq

k

Meq
k

1

(2π)3

∫
dk1

k1,z

k1

√
N eq

k1
Meq

k1
Υ(1)(k1)

+
2ω(1)ω(2)

(ω(1))2 − v2
B)2

gh̄k

m2

√
N eq

k

Meq
k

1

(2π)3

∫
dk1

k1,z

k1

√
N eq

k1
Meq

k1
Υ(0)(k1)

= kz
h̄

m

(εk + Λ0)

Ek
Υ(1)(k) + i

∫ ∞
0

dk1

∫
dΩ1 C(k,k1)Υ(2)(k1). (4.16)

The state Υ(1)(k) can be obtained from Eq. (4.10). If we multiply on the

left by Υ
(0)
L (k) and integrate, we can eliminate the collision operator from this

equation and obtain values for ω(2) for each of the hydrodynamic modes. These
quantities are the decay rates of the modes.

In order to write explicit expressions for the decay rates, it is useful to
introduce abstract notation. All the eigenfunctions of the collision operator
C(k1,k2) can be written in the form

Υβ,`,m(k) = Υβ,`(k) Ym
` (k̂), (4.17)

where Ym
` (k̂) is a spherical harmonic and k̂ = k/|k|. The eigenstates are or-

thonormalized so that∫ ∞
0

dk1

∫
dΩ1 Υ∗β1,`1,m1

(k1)Υβ2,`2,m2
(k1) = δβ1,β2

δ`1,`2δm1,m2
(4.18)

and
∫∞

0
dk1 Υ∗β1,`

(k1)Υβ2,`(k1) = δβ1,β2
. We can also write the collision operator

in a spectral decomposition

C(k1,k2) =

∞∑
`=0

∑̀
m=−`

C`(k1, k2) Ym
` (k̂1)Ym∗

` (k̂2)

=

∞∑
β=0

∞∑
`=0

∑̀
m=−`

λβ,` Υβ,`,m(k1)Υ∗β,`,m(k2) (4.19)
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where C`(k1, k2) =
∑∞
β=0 λβ,` Υβ,`(k1)Υ∗β,`(k2) . Here Υβ,`,m(k1) (with β 6=0)

are eigenstates of C`(k1, k2) with eigenvalues λβ,` < 0.
We can now express the operator C`(k1, k2) in “bra-ket” notation as

Ĉ` =

∞∑
β=0

λβ,`|Υβ,`〉〈Υβ,`|, (4.20)

so that 〈k1|Ĉ`|k2〉 = C`(k1, k2) and 〈k|Υβ,`〉 = Υβ,`(k), where 〈k1|k2〉 = δ(k1−k2)
and

∫∞
0
dk |k〉〈k| = 1̂, where 1̂ is the unit operator.

The decay rate for the transverse (viscous) modes can be written

ω
(2)
6 =

1

5

∞∑
β=0

1

λβ,2

∣∣〈Υβ,`|kBk|Υβ,2〉
∣∣2 (4.21)

where

Bk =
h̄

m

εk + Λ0

Ek
(4.22)

The viscosity η of the BEC is related to ω
(2)
6 via the equation η = ρnω

(2)
6 , where

ρn is the density of the normal (non-condensate) part of the the BEC [24].
The decay rates for the longitudinal (sound) modes are given by

ω(2) =
i

1 + S
{1

6
C0;1 +

1

6
C1;0 +

2

15
C1;2 + C

′

0

}
, (4.23)

where

C`′,` =

∞∑
β=0

1

λβ,`
|〈Υ0,`′ |kBk|Υβ,`〉|2, (4.24)

C
′

0 =
gh̄

12π2m2D0,1

1

((ω(1))2 − v2
B)

×
∞∑
β=0

1

λβ,0
〈Υ0,`′ |kBk|Υβ,0〉

∫
dkkψ∗β,0(k)

√
N eq

k

Meq
k

(4.25)

and

S =

[
(ω(1))2

((ω(1))2 − v2
B)2

]
gh̄

m2α

1√
3

1

2π2

1

D0,1

∫
dkk

√
N eq

k

Meq
k

ψ0,0(k). (4.26)

The lifetime of the sound modes in the BEC is given by (ω(2)q2)−1 and depends
on the speed ω(1) of the sound mode. On the right hand side of (4.23), the
first three terms are current-current correlation functions similar to those that
determine the decay of sound modes in classical gases. The factor of S in the
denominator is a consequence of the macroscopic phase that results from the
broken gauge symmetry in the BEC below T = Tc.
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4.1 Comparison to Experiment

We can compare the prediction of Eq. (4.23), for the decay rate of sound modes
in BECs, to the results found in the Steinhauer experiment [46] in which a sound
mode was excited in a 87Rb BEC, and observed to decay. The wavelength of
the sound wave was about 18×10−6 m (q = 0.35µm−1). The particle density
of the BEC was about neq = 9.71×1019 m−3 which gives a critical temperature
of about Tc = 3.90×10−7 K. The Bogoliubov speed in this case is approx-
imately vB ≈ 1.887mm/s, which is approximately the sound speed observed
in the experiment [46]. In the experiment, a harmonic trap with frequencies
f1 = f2 = 224 Hz and f3 = 26 Hz was used to create a 1D sound mode. Around
〈N〉 = 5×105 atoms in the trap were used, which gives the critical tempera-

ture TC = h
m

(
〈N〉f1f2f3

1.202

)1/3

≈3.9×10−7. The sound mode had a wave vector

q = 0.35 µm−1 and a lifetime τd∼9 ms. The temperature of the BEC in the
experiment was T = 21±20 nK, which belongs to the temperature regime shown
in Figure 2.

The lifetimes τd = i/(ω(2)q2) of the fast and slow sound modes, obtained
from Eq. (4.23), are plotted in Figure 2 as a function of temperature for pa-
rameters applicable to the Steinhauer experiment. The dotted line corresponds

to the slow modes with speed ±ω(1)
2 and the solid line corresponds to the fast

modes with speeds ±ω(1)
4 . The life times of the fast and slow sound modes cross

at the same temperature at which the avoided crossing occurs in the fast and
slow sound speeds (see Fig. 1). The lifetime of the slow sound mode (dotted
line) is of the order of microseconds above the crossing but drops to milliseconds
below the crossing point. The lifetime of the fast sound mode is of the order of
milliseconds for temperatures above the crossing point, but then rapidly rises
to microseconds for temperatures below the crossing point. The lifetime of the
sound mode observed in the experiment was τd∼9 ms. Thus we find, using
the theory, that the temperature of the experiment was either T = 11±1nK or
T = 67±5nK.

It should be noted that we use the uniform density neq = 9.71×1019 m−3,
while the density of a BEC in a trap varies slightly in the region that supports
the sound wave, the change in the decay rates if the density were changed
can be estimated to be 10%. The uncertainty in the prediction, due to a 10%
uncertainty in the density is shown in Figure 2 by the faint dashed lines that on
either side of the result for neq = 9.71×1019 m−3. The uncertainty in the density
does not significantly change the theoretical prediction for the temperature at
which sound waves in [46] was measured. Thus, the value of the sound mode
lifetime, predicted by (2.1) - (2.2) is consistent with that reported in [46].

5 Conclusions

A monatomic BEC has six hydrodynamic modes, two of which are transverse
modes and describe viscous properties of the BEC, and the other four modes
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are longitudinal modes and describe sound mode propagation in the BEC. A
monatomic classical gas has one pair of propagating sound modes, one non-
propagating thermal mode, and two non propagating viscous modes. In a BEC,
only the viscous modes are non-propagating. A dilute BEC has two pairs of
sound modes, each of which is a mixture of density and temperature waves.

The theory predicts that the two types of sound mode have different speeds
and very different lifetimes. Using parameters from the Steinhauer experiment
on a rubidium BEC, the theory indicates that one sound mode is long lived
(10−2s) and the other short-lived (10−6s). The identity of the long-live mode
appears to switch at the temperature of the avoided crossing of the sound speeds.
At the temperature of the avoided crossing, neither mode lives a very long time.
It has been suggested that this behavior of the sound modes could form the
basis for an accurate way to determine the temperature of the BEC, at very low
temperature.
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7 Appendix A

We formulate below the form of the collision operator G[η]

G[η](k1) = −N eq
k1

(1 +N eq
k1)

(
M(k1)η(k1)+

+

∫
R3

dk2

N eq
k2

1 +N eq
k1

K(k1,k2)η(k2)
) (7.1)

with

M(k1) =

∫
R3

dk2

N eq
k2

N eq
k1

+ 1

{
2A0TA(k1,k2) +A0

1 +N eq
k2

N eq
k2

TB(k1,k2)

+B0QA(k1,k2) +B0QB(k1,k2) +
1

3

1 +N eq
k2

N eq
k2

QC(k1,k2)

}
,
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K(k1,k2) =

{
2A0TA(k1,k2)− 2A0

1 +N eq
k2

N eq
k2

TB(k1,k2)

− 2A0

1 +N eq
k1

N eq
k1

TB(k2,k1) +B0QA(k1,k2)

− 2B0

1 +N eq
k2

N eq
k2

RA(k1,k2) + 2B0QB(k1,k2)

−B0

1 +N eq
k2

N eq
k2

QC(k1,k2)−B0

1 +N eq
k1

N eq
k1

QC(k2,k1)

}
.

The functions appearing in the above expressions are defined,

A0 =
4πN0g

2

(2π)3h̄V
, B0 =

4πg2

(2π)6h̄
,

TA(k1,k2) =

∫
R3

dk3δ(1 + 2− 3)(W 12
1,2,3)2(N eq

k3
+ 1),

TB(k1,k2) =

∫
R3

dk3δ(1− 2− 3)(W 12
3,2,1)2(N eq

k3
+ 1),

TB(k2,k1) =

∫
R3

dk3δ(2− 1− 3)(W 12
3,1,2)2(N eq

k3
+ 1),

QA(k1,k2) =

∫
R3

dk3dk4δ(1 + 2− 3− 4)(W 22
1,2,3,4)2(N eq

k3
+ 1)(N eq

k4
+ 1),

RB(k1,k2) =

∫
R3

dk3dk4δ(1 + 2− 3− 4)(W 22
1,3,2,4)2N eq

k3
(N eq

k4
+ 1),

QB(k1,k2) =

∫
R3

dk3dk4δ(1 + 2 + 3− 4)(W 31
4,3,2,1)2N eq

k3
(N eq

k4
+ 1),

QC(k1,k2) =

∫
R3

dk3dk4δ(1− 2− 3− 4)(W 31
1,2,3,4)2(N eq

k3
+ 1)(N eq

k4
+ 1),

(7.2)
where

δ(1 + 2− 3− 4)≡δ(k1 + k2 − k3 − k4)δ(E(k1) + E(k2)− E(k3)− E(k4)),

(with similar definitions for δ(1 + 2 − 3) and δ(1 + 2 + 3 − 4). etc), B is the
volume of the box of bosons under consideration, as explained in (3.1),

W 12
1,2,3 = u1u2u3 − u1v2u3 − v1u2u3 + u1v2v3 + v1u2v3 − v1v2v3, (7.3)

W 22
1,2,3,4 = u1u2u3u4 + u1v2u3v4 + u1v2v3u4 + v1u2u3v4 + v1u2v3u4 + v1v2v3v4

(7.4)
and

W 31
1,2,3,4 = u1u2u3v4 + u1u2v3u4 + u1v2u3u4 + v1v2v3u4 + v1v2u3v4 + v1u2v3v4.

(7.5)
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The Bogoliubov factors ui and vi, (i = 1, 2, 3, 4), are given by

ui = uk1 =
1√
2

√
1 +

εki
+ Λ0

Eki

and

vi = vki =
1√
2

√
εki

+ Λ0

Eki

− 1.

8 Appendix B

When the BEC is in equilibrium, the mean field Hamiltonian (in the superfluid
rest frame) takes the form [44]

Ĥ0 =
∑
i

[
(εi − Λ0)â†i âi +

Λ0

2

(
â†i âi + â†i âi

)]
=
g

2
N2

0 +
∑
i

Eib̂
†
i b̂i, (8.1)

where

E1 =

√
e2

1 − Λ0
2 with e1 =

h̄2k2
1

2m
+ ν0 − µ =

h̄2k2
1

2m
+ Λ0 (8.2)

and we have used the Hugenholtz-Pines relation µ = ν0 − Λ0 [19]. In terms
of these equilibrium quantities, the Bogoliubov transformation parameters take
the form

u1 =
1√
2

√
1 +

e1

E1
, v1 =

1√
2

√
e1

E1
− 1 (8.3)

Note also that

u2
1− v2

1 = 1, Λ0(u2
1 + v2

1)− 2e1u1v1 = 0, e1(u2
1 + v2

1)− 2Λ0u1v1 = E1. (8.4)

This transformation has the property that

Ū−1
1 ·

(
e1 Λ0

−Λ0 −e1

)
·Ū1 = Ū1·

(
e1 −Λ0

Λ0 −e1

)
·Ū−1

1 =

(
E1 0
0 −E1

)
. (8.5)

9 Appendix C

The collision operator operator C(k,k1), that appears in Eq. (4.5), can be
expanded in spherical harmonics which determine on the angular directions of
the momenta k and k1.

C(k,k1) =

∞∑
`=0

∑̀
m=−`

C`(k, k1)Ym
` (k̂)Ym∗

` (k̂1) (9.1)

The collision operator C(k,k1) is a symmetric operator and has a complete set
of orthonormal eigenfunctions.
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The eigenvalues λβ,` and eigenstates Υβ,`,m(k1) of the operator C(k1,k2),
satisfy the conditions∫

dk2 C(k1,k2)Υ
(0)
β,`,m(k2) = λβ,`Υ

(0)
β,`,m(k1). (9.2)

and ∫
dk1 Υ

(0)
β,`,m(k1) C(k1,k2) = λβ,`Υ

(0)
β,`,m(k2). (9.3)

The eigenvalues λβ,` are independent of m due to the angular symmetry of the
collision operator.

The bogolon momentum and energy are conserved during collisions, although
bogolon number is not. Therefore, Gk1

{h}, acting on four conserved quantities,
h = Ek, h = kx, h = ky, and h = kz, gives zero. We can use this fact to form
four eigenstates of C(k1,k2). We write them in the form

Υ
(0)
0,0,0(k1) = Υ0,0(k1)Y0

0(k̂1), Υ
(0)

0,1,0
(k1) = Υ0,1(k1)Y0

1(k̂1),

Υ
(0)
0,1,1(k1) = Υ0,1(k1)Y1

1(k̂1), Υ
(0)
0,1,−1(k1) = Υ0,1(k1)Y−1

1 (k̂1). (9.4)

where Υ0,0(k) = D0,0Ek
√
k2N eq

k F
eq
k and Υ0,1(k) = D0,1k

√
k2N eq

k F
eq
k . The

quantities Dβ,`, are normalization constants given by

D0,0 =

(∫ ∞
0

dkk2E2
kN

eq
k F

eq
k

)−1/2

and D0,1 =

(∫ ∞
0

dkk4N eq
k F

eq
k

)−1/2

.(9.5)

The corresponding eigenvalues λβ,` are independent of m and degenerate so
that λ0,0 = λ0,1 = 0 and λ0,1 is three-fold degenerate. The eigenstates can be
orthonormalized so that∫ ∞

0

dk1

∫
dΩ1 Υ

(0)∗
β1,`1,m1

(k1)Υ
(0)
β2,`2,m2

(k1) = δβ1,β2δ`1,`2δm1,m2 (9.6)

and
∫∞

0
dk1 Υ∗β1,`

(k1)Υβ2,`(k1) = δβ1,β2 . We can now write the spectral decom-
position of the collision operator

C(k1,k2) =

∞∑
β=0

∞∑
`=0

∑̀
m=−`

λβ,` Υ
(0)
β,`,m(k1)Υ

(0)∗
β,`,m(k2)

(9.7)

where C`(k1, k2) =
∑∞
β=0 λβ,` Υβ,`(k1)Υ∗β,`(k2) . These four eigenfunctions

form the basis for the hydrodynamic modes in the BEC. They correspond to
quantities that are conserved on the microscopic scale.
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LIST OF FIGURES

Figure 1: Propagation speeds of the fast (solid) and slow (dashed) longitudinal
modes at na3 = 10−6, in units of vB [based on [23]].
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Figure 2: Decay times τd for 87Rb at q = 0.35 µm−1 in the fast (solid) sound
mode and slow (dotted) sound modes. The faint lines give uncertainty in the
results. The experimental value of τd = 9 ms was obtained for a temperature of
T = 21±20nK. [based on [23]].
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