
An Iterative HDG Framework for Partial Differential
Equations: Analysis of Schwarz methods for an upwind

HDG systemI

Sriramkrishnan Muralikrishnana, Minh-Binh Tranc, Tan Bui-Thanha,b

aDepartment of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin, TX 78712, USA.

bThe Institute for Computational Engineering & Sciences,
The University of Texas at Austin, Austin, TX 78712, USA.

cDepartment of Mathematics, University of Wisconsin, Madison, WI 53706, USA.

Abstract

We propose and analyze a scalable iterative solver for high-order hybridized
discontinuous Galerkin (HDG) discretizations of linear partial differential equa-
tions. This is an extension of our previous work ([1] SIAM J. Sci. Comput.
Vol. 39, No. 5, pp. S782–S808) where we proposed an iterative HDG (iHDG)
solver for elliptic, scalar and system of hyperbolic equations. Compared to our
previous work, we improve on the following aspects. For the transport equa-
tion the current solver converges in finite number of iterations as opposed to
theoretically infinite number of iterations in our previous work. For the shallow
water and the convection-diffusion equations the current solver is uncondition-
ally convergent and the rate of convergence is better compared to our previous
work. We explicitly derive the iteration growth of our proposed solver in terms
of contraction factor estimates for the transport, the shallow water and the
convection-diffusion equations. Extensive numerical results verifying the theo-
retical findings are presented.

Keywords:
Iterative solvers, Schwarz methods, Hybridized Discontinuous Galerkin
methods, Transport equation, shallow water equation, convection-diffusion
equation, Gauss-Seidel methods
2000 MSC: 65N30, 65N55, 65N22, 65N12, 65F10

1. Introduction

Originally developed [2] for the neutron transport equation, first analyzed in
[3, 4], the discontinuous Galerkin (DG) method has been studied extensively for

IThis research was partially supported by DOE grants DE-SC0010518 and DE-SC0011118,
NSF Grants NSF-DMS1620352 and RNMS (Ki-Net) 1107444, ERC Advanced Grant DYCON:
Dynamic Control. We are grateful for the supports.

Preprint submitted to Computer Methods in Applied Mechanics and EngineeringNovember 2, 2017

virtually all types of partial differential equations (PDEs) [5]. This is due to the
fact that DG combines advantages of finite volume and finite element methods.
As such, it is well-suited to problems with large gradients including shocks
and with complex geometries, and large-scale simulations demanding parallel
implementations. While the focus of the majority of previously mentioned works
are hyperbolic systems, for elliptic and parabolic problems interior penalty DG
methods are first proposed and studied in [6, 7, 8]. A nice work relating the
analysis of different DG methods in a unified framework can be found in [9].
In spite of the stated advantages, DG methods for steady state problems or
time-dependent ones that require implicit time-integrators are more expensive
in comparison to other existing numerical methods since it typically have many
more (coupled) unknowns.

In order to mitigate the computational expense associated with DG meth-
ods, the hybridized (also known as hybridizable) discontinuous Galerkin (HDG)
methods are introduced for various types of PDEs including Poisson-type equa-
tion [10, 11, 12, 13, 14, 15], Stokes equation [16, 17], Euler and Navier-Stokes
equations, wave equations [18, 19, 20, 21, 22, 23, 24], to name a few. In
[25, 26, 27], we have proposed an upwind HDG framework which provides a
unified and a systematic construction of HDG methods for a large class of PDEs.

HDG discretizations have two unknowns namely volume and trace. The
usual procedure for solving HDG systems is to construct a linear system for
the single valued traces and once they are solved for, the usual DG unknowns
can be recovered in an element-by-element fashion, completely independent of
each other. Since the trace system is substantially smaller and sparser com-
pared to a standard DG linear system this procedure is preferred. For small
and medium sized problems the above approach seems attractive. However,
for practically large-scale applications, where complex and high-fidelity simu-
lations involving features with a large range of spatial and temporal scales are
necessary the trace system is still a bottleneck. We need matrix-free iterative
solvers/preconditioners [28] which converge in reasonably small number of itera-
tions to perform these complex simulations in a large scale parallel environment.

Schwarz-type domain decomposition methods (DDMs) have become popular
during the last three decades as they provide efficient algorithms to parallelize
and to solve PDEs [29, 30, 31]. Schwarz waveform relaxation methods and
optimized Schwarz methods [32, 33, 34, 35, 36, 37, 38] are among the most
important subclasses of DDMs since they can be adapted to the underlying
physics, and thus lead to powerful parallel solvers for challenging problems.
While, scalable iterative solvers/preconditioners for the statically condensed
trace system can be developed [39], DDMs and HDG have a natural connection
which can be exploited to create efficient parallel solvers. We have developed and
analyzed one such solver namely iterative HDG (iHDG) in our previous work
[1] for elliptic, scalar and system of hyperbolic equations. Independently, for
elliptic and parabolic equations optimized Schwarz methods for HDG systems
were proposed and analyzed in [40, 36, 41].

In this paper, we improve upon our previous work [1] in several aspects
as explained in details in section 3. We organize our paper in the following

2

way. Section 2 introduces an upwind HDG framework [25] for a general class
of PDEs and also our notations used in this paper. The iHDG algorithm and
significant improvements over our previous work are explained in section 3. The
convergence of the iHDG algorithm proposed in this paper for the scalar and for
the system of hyperbolic PDEs is proved in section 4 using an energy approach.
In section 5 the convection-diffusion PDE is considered in the first order form
and the convergence and scaling of iterations with mesh size and solution order
are derived. Section 6 presents various steady and time dependent examples, in
both two and three spatial dimensions, to support the theoretical findings. We
finally conclude the paper in section 7.

2. Upwind HDG framework

In this section we briefly review the upwind HDG framework for a general
system of linear PDEs and introduce necessary notations. To begin, let us
consider the following system of first order PDEs

d∑
k=1

∂kFk (u) + Cu :=

d∑
k=1

∂k (Aku) + Cu = f , in Ω, (1)

where d is the spatial dimension (which, for the clarity of the exposition, is
assumed to be d = 3 whenever a particular value of the dimension is of concern,
but the result is also valid for d = {1, 2}), Fk the kth component of the flux
vector (or tensor) F, u the unknown solution with values in Rm, and f the forcing
term. For simplicity, we assume that the matrices Ak and C are continuous
across Ω. Here, ∂k stands for the k-th partial derivative and by the subscript
k we denote the kth component of a vector/tensor. We shall employ HDG to
discretize (1). To that end, let us start with notations and conventions.

We partition Ω ∈ Rd, an open and bounded domain, intoNel non-overlapping
elements Kj , j = 1, . . . , Nel with Lipschitz boundaries such that Ωh := ∪Nel

j=1Kj

and Ω = Ωh. The mesh size h is defined as h := maxj∈{1,...,Nel} diam (Kj).

We denote the skeleton of the mesh by Eh := ∪Nel
j=1∂Kj , the set of all (uniquely

defined) faces e. We conventionally identify n− as the outward normal vector
on the boundary ∂K of element K (also denoted as K−) and n+ = −n− as the
outward normal vector of the boundary of a neighboring element (also denoted
as K+). Furthermore, we use n to denote either n− or n+ in an expression
that is valid for both cases, and this convention is also used for other quantities
(restricted) on a face e ∈ Eh. For convenience, we denote by E∂h the sets of
all boundary faces on ∂Ω, by Eoh := Eh \ E∂h the set of all interior faces, and
∂Ωh := {∂K : K ∈ Ωh}.

For simplicity in writing we define (·, ·)K as the L2-inner product on a domain
K ∈ Rd and 〈·, ·〉K as the L2-inner product on a domainK ifK ∈ Rd−1. We shall
use ‖·‖K := ‖·‖L2(K) as the induced norm for both cases and the particular value
of K in a context will indicate the inner product from which the norm is coming.
We also denote the ε-weighted norm of a function u as ‖u‖ε,K := ‖

√
εu‖K for any

3

positive ε. We shall use boldface lowercase letters for vector-valued functions
and in that case the inner product is defined as (u,v)K :=

∑m
i=1 (ui,vi)K ,

and similarly 〈u,v〉K :=
∑m
i=1 〈ui,vi〉K , where m is the number of components

(ui, i = 1, . . . ,m) of u. Moreover, we define (u,v)Ω :=
∑
K∈Ωh

(u,v)K and
〈u,v〉Eh :=

∑
e∈Eh 〈u,v〉e whose induced (weighted) norms are clear, and hence

their definitions are omitted. We employ boldface uppercase letters, e.g. L,
to denote matrices and tensors. We conventionally use u (v and û) for the
numerical solution and ue for the exact solution.

We denote by Pp (K) the space of polynomials of degree at most p on a
domain K. Next, we introduce two discontinuous piecewise polynomial spaces

Vh (Ωh) :=
{

v ∈
[
L2 (Ωh)

]m
: v|K ∈ [Pp (K)]

m
,∀K ∈ Ωh

}
,

Λh (Eh) :=
{
λ ∈

[
L2 (Eh)

]m
: λ|e ∈ [Pp (e)]

m
,∀e ∈ Eh

}
,

and similar spaces Vh (K) and Λh (e) on K and e by replacing Ωh with K and
Eh with e. For scalar-valued functions, we denote the corresponding spaces as

Vh (Ωh) :=
{
v ∈ L2 (Ωh) : v|K ∈ P

p (K) ,∀K ∈ Ωh
}
,

Λh (Eh) :=
{
λ ∈ L2 (Eh) : λ|e ∈ P

p (e) ,∀e ∈ Eh
}
.

Following [25], an upwind HDG discretization for (1) in each element K
involves the DG local unknown u and the extra “trace” unknown û such that

− (F (u) ,∇v)K +
〈
F̂ (u, û) · n,v

〉
∂K

+ (Cu,v)K = (f ,v)K , (2a)〈
[[F̂ (u, û) · n]],µ

〉
e

= 0, ∀e ∈ Eoh, (2b)

where we have defined the “jump” operator for any quantity (·) as [[(·)]] :=
(·)− + (·)+

. We also define the “average” operator {{(·)}} via 2 {{(·)}} := [[(·)]].
For simplicity, we have ignored the fact that equations (2a), (2b) must hold for
all test functions v ∈ Vh (K) and µ ∈ Λh (e) respectively. This is implicitly
understood throughout the paper. Here, the HDG flux is defined as

F̂ · n = F (u) · n + |A| (u− û) , (3)

with the matrix A :=
∑d
k=1 Aknk = RSR−1, and |A| := R |S|R−1. Here nk is

the kth component of the outward normal vector n and |S| represents a matrix
obtained by taking the absolute value of the main diagonal of the matrix S.
We have assumed that A admits an eigen-decomposition, and this is valid for a
large class of PDEs of Friedrichs’ type [42].

The typical procedure for computing HDG solution requires three steps. We
first solve (2a) for the local solution u as a function of û. It is then substituted
into the conservative algebraic equation (2b) on the mesh skeleton to solve for
the unknown û. Finally, the local unknown u is computed, as in the first step,
using û from the second step. Since the number of trace unknowns û is less than
the DG unknowns u [27], HDG is more advantageous. For large-scale problems,

4

however, the trace system on the mesh skeleton could be large and iterative
solvers are necessary. In the following we construct an iterative solver that
takes advantage of the HDG structure and the domain decomposition method.

3. iHDG methods

To reduce the cost of solving the trace system, our previous effort [1] is to
break the coupling between û and u in (2) by iteratively solving for u in terms
of û in (2a), and û in terms of u in (2b). We name this approach iterative
HDG (iHDG) method, and now let us call it iHDG-I to distinguish it from
the approach developed in this paper. From a linear algebra point of view,
iHDG-I can be considered as a block Gauss-Seidel approach for the system (2)
that requires only independent element-by-element and face-by-face local solves
in each iteration. However, unlike conventional Gauss-Seidel schemes which
are purely algebraic, the convergence of iHDG-I [1] does not depend on the
ordering of unknowns. From the domain decomposition point of view, thanks
to the HDG flux, iHDG can be identified as an optimal Schwarz method in which
each element is a subdomain. Using an energy approach , we have rigorously
shown the convergence of the iHDG-I for the transport equation, the linearized
shallow water equation and the convection-diffusion equation [1].

Nevertheless, a number of questions that need to be addressed for the iHDG-I
approach. First, with the upwind flux it theoretically takes infinite number of
iterations to converge for scalar transport equation. Second, it is conditionally
convergent for linearized shallow water system; in particular, it blows up for
fine meshes and/or large time stepsizes. Furthermore, we have not been able to
estimate the number of iterations as a function of time stepsize, solution order,
and mesh size. Third, it is also conditionally convergent for convection-diffusion
equation, especially in the diffusion-dominated regime.

The iHDG approach constructed in this paper, which we call iHDG-II, over-
comes all the aforementioned shortcomings. In particular, it converges in a finite
number of iterations for scalar transport equation and is unconditionally conver-
gent for both linearized shallow water system and convection-diffusion equation.
Moreover, compared to our previous work [1], we provide several additional find-
ings: 1) we make a connection between iHDG and the parareal method, which
reveals interesting similarities and differences between the two methods; 2) we
show that iHDG can be considered as a locally implicit method, and hence being
somewhat in between fully explicit and fully implicit approaches; 3) for both lin-
earized shallow system and convection-diffusion equation, using an asymptotic
approximation, we uncover a relationship between the number of iterations and
time stepsize, solution order, mesh size and the equation parameters. This
allows us to choose the time stepsize such that the number of iterations is inde-
pendent of the solution order and the meshsize; 4) we show that iHDG-II has
improved stability and convergence rates over iHDG-I; and 5) we provide both
strong and weak scalings of our iHDG approaches up to 16, 384 cores.

We now present a detailed construction of the iHDG-II approach. We define
the approximate solution for the volume variables at the (k + 1)th iteration

5

using the local equation (2a) as

−
(
F
(
uk+1

)
,∇v

)
K

+
〈
F
(
uk+1

)
· n + |A| (uk+1 − ûk,k+1),v

〉
∂K

+
(
Cuk+1,v

)
K

= (f ,v)K , (4)

where the weighted trace |A| ûk,k+1 is computed from (2b) using volume un-

known in element K at the k + 1th iteration, i.e.
(
uk+1

)−
, and volume solution

of the neighbors at the kth iteration, i.e.
(
uk
)+

:〈
2 |A| ûk,k+1,µ

〉
∂K

=
〈
|A|

{(
uk+1

)−
+
(
uk
)+}

,µ
〉
∂K

+
〈
F
{(

uk+1
)− · n−}+ F

{(
uk
)+ · n+

}
,µ
〉
∂K

. (5)

Algorithm 1 summarizes the iHDG-II approach. Compared to iHDG-I,
iHDG-II improves the coupling between û and u while still avoiding intra-
iteration communication between elements. The trace û is double-valued during
the course of iterations for iHDG-II and in the event of convergence it becomes
single valued upto a specified tolerance. Another principal difference is that
while the well-posedness of iHDG-I elemental local solves is inherited from the
original HDG counterpart, it has to be shown for iHDG-II. This is due to the
new way of computing the weighted trace in (5) that involves uk+1, and hence
changing the structure of the local solves. Similar and independent work for
HDG methods for elliptic/parabolic problems have appeared in [40, 36, 41].
Here, we are interested in pure hyperbolic equations/systems and convection-
diffusion equations. Unlike existing matrix-based approaches, our convergent
analyses are based on an energy approach that exploits the variational struc-
ture of HDG methods. Moreover we provide, both rigorous and asymptotic,
relationships between the number of iterations and time stepsize, solution or-
der, and mesh size. We also make connection between our proposed iHDG-II
approach with parareal and time integration methods. Last but not least, our
framework is more general: indeed it recovers the contraction factor results in
[40] for elliptic equations as one of the special cases.

Algorithm 1 The iHDG-II approach.

Ensure: Given initial guess u0, compute the weighted trace |A| û0,1 using (5).

1: while not converged do
2: Solve the local equation (4) for uk+1 using the weighted trace |A| ûk,k+1.

3: Compute |A| ûk+1,k+2 using (5).
4: Check convergence. If yes, exit, otherwise set k = k + 1 and continue.
5: end while

4. iHDG-II for hyperbolic PDEs

In this section we show that iHDG-II improves upon iHDG-I in many aspects
discussed in section 3. The PDEs of interest are (steady and time dependent)
transport equation, and the linearized shallow water system [1].

6

4.1. Transport equation

Let us start with the (steady) transport equation

β · ∇ue = f in Ω, (6a)

ue = g on ∂Ω−, (6b)

where ∂Ω− is the inflow part of the boundary ∂Ω, and again ue denotes the exact
solution. Note that β is assumed to be continuous across the mesh skeleton.

Applying the iHDG-II algorithm 1 to the upwind HDG discretization [1] for
(6) we obtain the approximate solution uk+1 at the (k+1)th iteration restricted
on each element K via the following independent local solve:

−
((
uk+1

)−
,∇ · (βv)

)
K

+
〈
β · n−

(
uk+1

)−
+ |β · n|

{(
uk+1

)− − ûk,k+1
}
, v
〉
∂K

= (f, v)K , (7)

where the weighted trace |β · n| ûk,k+1 is computed using information from the
previous iteration and current iteration as

2 |β · n| ûk,k+1 =
{
β · n−

(
uk+1

)−
+ β · n+

(
uk
)+}

+ |β · n|
{(
uk+1

)−
+
(
uk
)+}

. (8)

Next we study the convergence of the iHDG-II method (7), (8). Since (6) is
linear, it is sufficient to show that the algorithm converges for the homogeneous
equation with zero forcing f = 0 and zero boundary condition g = 0. Let us
define ∂Kout as the outflow part of ∂K, i.e. β · n− > 0 on ∂Kout, and ∂K in

as the inflow part of ∂K, i.e. β · n− < 0 on ∂K in. First, we will prove the
well-posedness of the local solver (7) in the following Lemma.

Lemma 1. Assume −∇ · β ≥ α > 0, i.e. (6) is well-posed. Then the local
solver (7) of the iHDG-II algorithm for the transport equation is well-posed.

Proof. Taking v =
(
uk+1

)−
in (7), substituting (8) in (7) and applying homo-

geneous forcing condition yield

−
((
uk+1

)−
,∇ ·

(
β
(
uk+1

)−))
K

+
1

2

〈(
β · n− + |β · n|

) (
uk+1

)−
,
(
uk+1

)−〉
∂K

=
1

2

〈(
β · n+ + |β · n|

) (
uk
)+
,
(
uk+1

)−〉
∂K

(9)

Since((
uk+1

)−
,∇ ·

(
β
(
uk+1

)−))
K

=
((
uk+1

)−
,∇ · β

(
uk+1

)−)
K

+
((
uk+1

)−
,β · ∇

(
uk+1

)−)
K
,

7

integrating by parts the second term on the right hand side((
uk+1

)−
,∇ ·

(
β
(
uk+1

)−))
K

=
((
uk+1

)−
,∇ · β

(
uk+1

)−)
K

−
((
uk+1

)−
,∇ ·

(
β
(
uk+1

)−))
K

+
〈
β · n−

(
uk+1

)−
,
(
uk+1

)−〉
∂K

,

yields the following identity, after rearranging the terms((
uk+1

)−
,∇ ·

(
β
(
uk+1

)−))
K

=

((
uk+1

)−
,
∇ · β

2

(
uk+1

)−)
K

+
1

2

〈
β · n−

(
uk+1

)−
,
(
uk+1

)−〉
∂K

. (10)

Using (10) in (9) we get∥∥∥(uk+1
)−∥∥∥2

−∇·β
2 ,K

+
∥∥∥(uk+1

)−∥∥∥2

|β·n|/2,∂K
=

1

2

〈(
β · n+ + |β · n|

) (
uk
)+
,
(
uk+1

)−〉
∂K

. (11)

In equation (11) all the terms on the left hand side are positive. Since
(
uk
)+

is the “forcing” for the local equation by taking
(
uk
)+

= 0 the only solution

possible is
(
uk+1

)−
= 0 and hence the local solver is well-posed.

Having proved the well-posedness of the local solver we can now proceed to
prove the convergence of algorithm 1 for the transport equation.

Theorem 1. Assume −∇ · β ≥ α > 0, i.e. (6) is well-posed. There exists
J ≤ Nel such that the iHDG-II algorithm for the homogeneous transport equation
converges to the HDG solution in J iterations.

Proof. Using (11) from Lemma 1 and β ·n+ > 0 on ∂K in, β ·n+ < 0 on ∂Kout

we can write∥∥∥(uk+1
)−∥∥∥2

−∇·β
2 ,K

+
∥∥∥(uk+1

)−∥∥∥2

|β·n|/2,∂K
=
〈
|β · n|ukext,

(
uk+1

)−〉
∂Kin

. (12)

where ukext is either the physical boundary condition or the solution of the neigh-
boring element that shares the same inflow boundary ∂K in.

Consider the set K1 of all elements K such that ∂K in is a subset of the
physical inflow boundary ∂Ωin on which we have ukext = 0 for all k ∈ N. We
obtain from (12) that∥∥∥(uk+1

)−∥∥∥2

−∇·β
2 ,K

+
∥∥∥(uk+1

)−∥∥∥2

|β·n|/2,∂K
= 0, (13)

which implies u1 = 0 on K ∈ K1, i.e. our iterative solver is exact on K ∈ K1 at
the first iteration.

8

Next, let us define Ω1
h := Ωh and

Ω2
h = Ω1

h\K1.

Consider the set K2 of all K in Ω2
h such that ∂K in is either (possibly partially)

a subset of the physical inflow boundary ∂Ωin or (possibly partially) a subset of
the outflow boundary of elements in K1. This implies, on ∂K in ∈ K2, ukext = 0
for all k ∈ N \ {1}. Thus, ∀K ∈ K2, we have∥∥∥(uk)−∥∥∥2

−∇·β
2 ,K

+
∥∥∥(uk)−∥∥∥2

|β·n|/2,∂K
= 0, ∀k ∈ N \ {1} , (14)

which implies u2 = 0 in K ∈ K2, i.e. our iterative solver is exact on K ∈ K2 at
the second iteration.

Repeating the same argument, we can construct subsets Kj ⊂ Ωh, on which
the iterative solution on K ∈ Kj is the exact HDG solution at the j-th iteration.
Since the number of elements Nel is finite, there exists J ≤ Nel such that
Ωh = ∪Jj=1Kj . It follows that the iHDG-II algorithm provides exact HDG
solution on Ωh after J iterations.

Remark 1. Compared to iHDG-I [1], which requires an infinite number of
iterations to converge, iHDG-II needs finite iteration for convergence. The key

to the improvement is the stronger coupling between û and u by using
(
uk+1

)−
in (5) instead of

(
uk
)−

. The proof of Theorem 1 also shows that iHDG-II
automatically marches the flow, i.e., each iteration yields the HDG solution
exactly for a group of elements. Moreover, the marching process is automatic
(i.e. does not require an ordering of elements) and adapts to the velocity field
β under consideration.

4.2. Time-dependent transport equation

In this section we first briefly comment on a space-time formulation of the
iHDG methods and compare it with the parareal methods studied in [43] for the
time-dependent scalar transport equation. Then we consider the semi-discrete
version of iHDG combined with traditional time integration schemes and com-
pare it with the fully implicit and explicit DG/HDG schemes.

4.2.1. Comparison of space-time iHDG and parareal methods for the scalar
transport equation

Space-time finite element methods have been studied extensively for the
past several years both in the context of continuous and discontinuous Galerkin
methods [44, 45, 46, 47, 48] and HDG methods [49]. Parareal methods, on the
other hand, were first introduced in [50] and various modifications have been
proposed and studied (see [51, 52, 53, 54, 55] and references therein).

In the scope of our work, we compare our methods with the parareal scheme
proposed in [43] for the scalar advection equation. Let us start with the following
ordinary differential equation

du

dt
= f in [0, T], u(0) = g, (15)

9

for some positive constant T > 0.

Corollary 1. Suppose we discretize the temporal derivative in (15) using the
iHDG-II method with the upwind flux and the elements Kj are ordered such that
Kj is on the left of Kj+1. At iteration k, uk

∣∣
Kj

converges to the HDG solution

u|Kj
for j ≤ k.

Proof. Since (15) can be considered as the one dimensional transport equation
(6) with velocity β = 1, the proof follows directly from Theorem 1 and induction.

Note that the iHDG scheme can be considered as a parareal algorithm in
which the fine propagator is taken to be the local solver (4) and the coarse
propagator corresponds to the conservation condition (5). However, unlike ex-
isting parareal algorithms, the coarse propagator of iHDG-parareal is dependent
on the fine propagator. Moreover, Corollary 1 says that after k iterations the
iHDG-parareal solution converges up to element k. For time dependent hyper-
bolic PDEs, the space-time iHDG method again can be understood as parareal
approach, and in this case, a layer of space-time elements converges after each
iHDG-parareal iteration. See Figure 1 and Table 1 of section 6 for a demon-
stration in 2D where either x or y is considered as “time”. It should be pointed
out that the specific parareal method in [43] exactly traces the characteristics,
and hence may take less iterations to converge than the iHDG-parareal method,
but this is only true if the forward Euler discretization in time, upwind finite
difference in space, and CFL = 1 are used with constant advection velocity.
The iHDG-parareal, on the other hand, automatically marches and adapts to
general advection velocity.

4.3. iHDG as a locally implicit method

In this section we discuss the relationship between iHDG and implicit/explicit
HDG methods. For the simplicity of the exposition, we consider time-dependent
scalar transport equation given by:

∂ue

∂t
+ β · ∇ue = f. (16)

We first review the implicit/explicit HDG schemes for (16), and then compare
them with iHDG-II. The implicit Euler HDG scheme for (16) reads(

um+1

∆t
, v

)
K

−
(
um+1,∇ · (βv)

)
K

+
〈
β · num+1 + τ(um+1 − ûm+1), v

〉
∂K

=

(
fm+1 +

um

∆t
, v

)
K

,〈
[[τ ûm+1]],µ

〉
∂K

=
〈
[[τum+1]] + [[β · num+1]],µ

〉
∂K

. (17)

Here, um+1 and ûm+1 stands for the volume and the trace unknowns at the
current time step, whereas um and ûm are the computed solutions from the

10

previous time step. Clearly, um+1 and ûm+1 are coupled and this can be a
challenge for large-scale problems.

Next let us consider an explicit HDG with forward Euler discretization in
time for (16):(
um+1

∆t
, v

)
K

= (um,∇ · (βv))K−〈β · nu
m + τ(um − ûm), v〉∂K+

(
fm +

um

∆t
, v

)
K

,

〈[[τ ûm]],µ〉∂K = 〈[[τum]] + [[β · num]],µ〉∂K ,
which shows that we can solve for um+1 element-by-element, completely inde-
pendent of each other. However, since it is an explicit scheme, the CFL restric-
tion for stability can increase the computational cost for problems involving fast
time scales and/or fine meshes.

Now applying one iteration of the iHDG-II scheme for the implicit HDG
formulation (17) with um as the initial guess yields(

um+1

∆t
, v

)
K

−
(
um+1,∇ · (βv)

)
K

+
〈
β · num+1 + τ(um+1 − ûm,m+1), v

〉
∂K

=(
fm+1 +

um

∆t
, v

)
K

,〈
[[τ ûm,m+1]],µ

〉
∂K

=
〈
τ−
(
um+1

)−
+ τ+ (um)

+
,µ
〉
∂K

+
〈
β · n−

(
um+1

)−
+ β · n+ (um)

+
,µ
〉
∂K

.

Compared to the explicit HDG scheme, iHDG-II requires local solves since it is
locally implicit. As such, its CFL restriction is much less (see Figure 2), while
still having similar parallel scalability of the explicit method.1 Indeed, Figure
2 shows that the CFL restriction is only indirectly through the increase of the
number of iterations; for CFL numbers between 1 and 5, the number of iterations
varies mildly. Thus, as a locally implicit method, iHDG-II combines advantages
of both explicit (e.g. matrix free and parallel scalability) and implicit (taking
reasonably large time stepsize without facing instability) methods. Clearly, on
convergence iHDG solution is, up to the stopping tolerance, the same as the
fully-implicit solution.

4.4. iHDG-II for system of hyperbolic PDEs

In this section, as an example for system of linear hyperbolic PDEs, we
consider the following linearized oceanic shallow water system [56]:

∂

∂t

 φe

Φue

Φve

+
∂

∂x

 Φue

Φφe

0

+
∂

∂y

 Φve

0
Φφe

 =

 0
fΦve − γΦue + τx

ρ

−fΦue − γΦve +
τy
ρ

(18)

1In fact, the parallel efficiency could be much more than explicit methods since the local
solves can be well overlapped with the communication.

11

where φ = gH is the geopotential height with g and H being the gravitational
constant and the perturbation of the free surface height, Φ > 0 is a constant
mean flow geopotential height, ϑ := (u, v) is the perturbed velocity, γ ≥ 0 is
the bottom friction, τ := (τx, τy) is the wind stress, and ρ is the density of the
water. Here, f = f0 + β (y − ym) is the Coriolis parameter, where f0, β, and
ym are given constants. We study the iHDG-II methods for this equation and
compare it with the results in [1].

For the simplicity of the exposition and the analysis, let us employ the back-
ward Euler HDG discretization for (18). Since the unknowns of interest are
those at the (m+ 1)th time step, we can suppress the time index for the clarity
of the exposition. Furthermore, since the system is linear it is sufficient to con-
sider homogeneous system with zero initial condition, boundary condition, and
forcing (wind stress). Applying the iHDG-II algorithm 1 to the homogeneous
system gives(
φk+1

∆t
, ϕ1

)
K

−
(

Φϑk+1,∇ϕ1

)
K

+
〈

Φϑk+1 · n +
√

Φ
(
φk+1 − φ̂k,k+1

)
, ϕ1

〉
∂K

= 0, (19a)(
Φuk+1

∆t
, ϕ2

)
K

−
(

Φφk+1,
∂ϕ2

∂x

)
K

+
〈

Φφ̂k,k+1n1, ϕ2

〉
∂K

=
(
fΦvk+1 − γΦuk+1, ϕ2

)
K
, (19b)(

Φvk+1

∆t
, ϕ3

)
K

−
(

Φφk+1,
∂ϕ3

∂y

)
K

+
〈

Φφ̂k,k+1n2, ϕ3

〉
∂K

=
(
−fΦuk+1 − γΦvk+1, ϕ3

)
K
, (19c)

where ϕ1, ϕ2 and ϕ3 are the test functions, and

φ̂k,k+1 =
1

2

{(
φk+1

)−
+
(
φk
)+}

+

√
Φ

2

{(
ϑk+1

)−
· n− +

(
ϑk
)+

· n+

}
. (20)

Lemma 2. The local solver (19) of the iHDG-II algorithm for the linearized
shallow water equation is well-posed.

Proof. Since

{(
φk
)+
,Φ
(
ϑk
)+
}

is a “forcing” to the local solver it is sufficient

to set them to {0,0} and show that the only solution possible is

{(
φk
)−
,Φ
(
ϑk
)−}

=

{0,0}. Choosing the test functions ϕ1 = φk+1, ϕ2 = uk+1 and ϕ3 = vk+1 in
(19), integrating the second term in (19a) by parts, and then summing equations
in (19) altogether, we obtain

1

∆t

(
φk+1, φk+1

)
K

+
Φ

∆t

(
ϑk+1,ϑk+1

)
K

+
√

Φ
〈
φk+1, φk+1

〉
∂K

+ γΦ
(
ϑk+1,ϑk+1

)
K

−
√

Φ
〈
φ̂k,k+1, φk+1

〉
∂K

+ Φ
〈
φ̂k,k+1,n · ϑk+1

〉
∂K

= 0. (21)

12

Summing (21) over all elements yields∑
K

1

∆t

(
φk+1, φk+1

)
K

+
Φ

∆t

(
ϑk+1,ϑk+1

)
K

+ γΦ
(
ϑk+1,ϑk+1

)
K

+
√

Φ
〈
φk+1, φk+1

〉
∂K
−
√

Φ
〈
φ̂k,k+1, φk+1

〉
∂K

+ Φ
〈
φ̂k,k+1,n · ϑk+1

〉
∂K

= 0.

(22)

Substituting (20) in the above equation and cancelling some terms we get,

∑
K

1

∆t

∥∥∥(φk+1
)−∥∥∥2

K
+

(
γ +

1

∆t

)∥∥∥∥(ϑk+1
)−∥∥∥∥2

Φ,K

+

√
Φ

2

∥∥∥(φk+1
)−∥∥∥2

∂K

+

√
Φ

2

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

Φ,∂K

=
∑
∂K

√
Φ

2

〈((
φk
)+

+
√

Φ
(
ϑk · n

)+
)
,
(
φk+1

)−〉
∂K

− Φ

2

〈((
φk
)+

+
√

Φ
(
ϑk · n

)+
)
,
(
ϑk+1 · n

)−〉
∂K

. (23)

Since Φ > 0, all the terms on the left hand side are positive. When we set{(
φk
)+
,Φ
(
ϑk
)+
}

= {0,0}, the only solution possible is

{(
φk+1

)−
,Φ
(
ϑk+1

)−}
=

{0,0} and hence the method is well-posed.

Next, our goal is to show that
(
φk+1,Φϑk+1

)
converges to zero. To that

end, let us define

C :=
A
B
, A :=

max {1,Φ}+
√

Φ

4ε
, G :=

ε
(

max {1,Φ}+
√

Φ
)

4
(24)

and

B1 :=

(
ch

∆t(p+ 1)(p+ 2)
+

2
√

Φ− (Φ +
√

Φ)ε

4

)

B2 :=

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
+

2
√

Φ− (1 +
√

Φ)ε

4

)
,B := min {B1,B2} .

where 0 < c ≤ 1, ε > 0 are constants. We also need the following norms:∥∥∥(φk,ϑk)∥∥∥2

Ωh

:=
∥∥φk∥∥2

Ωh
+
∥∥∥ϑk∥∥∥2

Φ,Ωh

,∥∥∥(φk,ϑk · n)∥∥∥2

Eh
:=
∥∥φk∥∥2

Eh
+
∥∥∥ϑk · n∥∥∥2

Φ,Eh
.

Theorem 2. Assume that the mesh size h, the time step ∆t and the solution
order p are chosen such that B > 0 and C < 1, then the approximate solution at

13

the kth iteration
(
φk,ϑk

)
converges to zero in the following sense∥∥∥(φk,ϑk · n)∥∥∥2

Eh
≤ Ck

∥∥(φ0,ϑ0 · n
)∥∥2

Eh
,∥∥∥(φk,ϑk)∥∥∥2

Ωh

≤ ∆t (A+ GC) Ck−1
∥∥(φ0,ϑ0 · n

)∥∥2

Eh
,

where C, A and G are defined in (24).

Proof. Using Cauchy-Schwarz and Young’s inequalities for the terms on the
right hand side of (23) and simplifying

∑
K

1

∆t

∥∥∥(φk+1
)−∥∥∥2

K
+

(
γ +

1

∆t

)∥∥∥∥(ϑk+1
)−∥∥∥∥2

Φ,K

+

√
Φ

2

∥∥∥(φk+1
)−∥∥∥2

∂K

+

√
Φ

2

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

Φ,∂K

≤
∑
∂K

Φ +
√

Φ

4ε

∥∥∥(φk)+∥∥∥2

∂K

+
1 +
√

Φ

4ε

∥∥∥∥(ϑk · n)+
∥∥∥∥2

Φ,∂K

+
ε(Φ +

√
Φ)

4

∥∥∥(φk+1
)−∥∥∥2

∂K

+
ε(1 +

√
Φ)

4

∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

Φ,∂K

. (25)

An application of inverse trace inequality [57] for tensor product elements
gives (

φk+1, φk+1
)
K
≥ 2ch

d(p+ 1)(p+ 2)

〈
φk+1, φk+1

〉
∂K

, (26a)(
ϑk+1,ϑk+1

)
K
≥ 2ch

d(p+ 1)(p+ 2)

〈
ϑk+1,ϑk+1

〉
∂K

, (26b)

where d is the spatial dimension which in this case is 2 and 0 < c ≤ 1 is a
constant. For simplices we can use the trace inequalities in [58] and it will
change only the constants in the proof. Inequality (26), together with (25),
implies∑

∂K

[(
ch

∆t(p+ 1)(p+ 2)
+

2
√

Φ− (Φ +
√

Φ)ε

4

)∥∥∥(φk+1
)−∥∥∥2

∂K

+

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
+

2
√

Φ− (1 +
√

Φ)ε

4

)∥∥∥∥(ϑk+1 · n
)−∥∥∥∥2

Φ,∂K

]

≤
∑
∂K

[
Φ +
√

Φ

4ε

∥∥∥(φk)+∥∥∥2

∂K
+

1 +
√

Φ

4ε

∥∥∥∥(ϑk · n)+
∥∥∥∥2

Φ,∂K

]
, (27)

which implies∥∥∥(φk+1,ϑk+1 · n
)∥∥∥2

Eh
≤ C

∥∥∥(φk,ϑk · n)∥∥∥2

Eh
,

14

where the constant C is computed as in (24).
Therefore ∥∥∥(φk+1,ϑk+1 · n

)∥∥∥2

Eh
≤ Ck+1

∥∥(φ0,ϑ0 · n
)∥∥2

Eh
. (28)

On the other hand, inequalities (25) and (28) imply∥∥∥(φk+1,ϑk+1
)∥∥∥2

Ωh

≤ ∆t (A+ GC) Ck
∥∥(φ0,ϑ0 · n

)∥∥2

Eh

and this ends the proof.

We now derive an explicit relation between the number of iterations k, the
mesh size h, the solution order p, the time step ∆t and the mean flow geopo-
tential height Φ. First, we need to find an ε which makes C < 1. From (24) we
obtain the following inequality for ε

max{1,Φ}+
√

Φ
4ε(

ch
∆t(p+1)(p+2) + 2

√
Φ−(max{1,Φ}+

√
Φ)ε

4

) < 1 (29)

subject to the condition that the denominator is positive. If we further assume
that the mesh size is sufficiently large and/or the time stepsize is sufficiently
small, we have

ch
∆t(p+1)(p+2)

max {1,Φ}+
√

Φ
>

1

2
, (30)

which allows us to find an ε > 0 that satisfies the inequality (29) for all Φ.
Assuming the coarseness condition (30), then the following value of ε

ε =

2ch
∆t(p+1)(p+2) +

√
Φ

max {1,Φ}+
√

Φ

satisfies the inequality (29). Using this value of ε in equation (24) we get

C =

 max{1,Φ}+
√

Φ√
Φ

1 + 2ch√
Φ∆t(p+1)(p+2)

2

and since the numerator is always greater than 1, the necessary condition for
the convergence of the algorithm is given by

1(
1 + 2ch√

Φ∆t(p+1)(p+2)

)2k

k→∞−→ 0.

Using binomial theorem and neglecting higher order terms we get

k = O

(
∆t(p+ 1)(p+ 2)

√
Φ

4ch

)
. (31)

15

An interesting fact to notice is, if we choose ∆t based on the CFL criteria
for a mesh with LGL points then ∆t ≤ h

p2
√

Φ
[59] and this gives k = O(1)

independent of h and p. However, explicit time integration methods may be
more appealing in this case because no local solves are required. With this
result in hand we are now in a better position to understand the stability of
iHDG-I and iHDG-II algorithms for the linearized shallow water system. For
unconditional stability of the iterative algorithms under consideration, we need
B > 0 in (24) independent of h, p and ∆t. There are two terms in B: one coming
from φ (B1) and the other from ϑ or ϑ · n (B2). We can write B in Theorem
3.6 of [1] also as 2

B1 :=

(
ch

∆t(p+ 1)(p+ 2)
+

2
√

Φ− (Φ +
√

Φ)ε

2

)

B2 :=

((
γ +

1

∆t

)
ch

(p+ 1)(p+ 2)
− (1 +

√
Φ)ε

2

)
,B := min {B1,B2} .

Now for both iHDG-I and iHDG-II algorithms we have the stability in φ (B1 > 0)
independent of h, p and ∆t. However, iHDG-I lacks the mesh independent
stability in the term associated with ϑ, and this was the reason for the instability
when finer meshes or larger time steps were used [1]. Since B2 of the iHDG-II
algorithm can also be controlled (made positive) independent of h, p and ∆t, it
is always stable and this is one of the main advantages of iHDG-II over iHDG-I.

5. iHDG-II for convection-diffusion PDEs

5.1. First order form

In this section we apply the iHDG-II algorithm 1 to the following first order
form of the convection-diffusion equation:

κ−1σe +∇ue = 0 in Ω, (32a)

∇ · σe + β · ∇ue + νue = f in Ω. (32b)

We assume that (32) is well-posed, i.e.,

ν − ∇ · β
2
≥ λ > 0. (33)

Though this is not a restriction, we take constant diffusion coefficient for the
simplicity of the exposition. An upwind HDG numerical flux [25] is given by

F̂ · n =

ûn1

ûn2

ûn3

σ · n + β · nu+ τ (u− û)

 ,

2This can be obtained by using Young’s inequality with ε in the proof of Theorem 3.6 in
[1].

16

where τ = 1
2 (α− β · n) and α =

√
|β · n|2 + 4. Similar to the previous sections,

it is sufficient to consider the homogeneous problem. Applying the iHDG-II
algorithm 1 we have the following iterative scheme

κ−1
(
σk+1, τ

)
K
−
(
uk+1,∇ · τ

)
K

+
〈
ûk,k+1, τ · n

〉
∂K

= 0, (34a)

−
(
σk+1,∇v

)
K
−
(
uk+1,∇ · (βv)− νv

)
K

+〈
β · nuk+1 + σk+1 · n + τ(uk+1 − ûk,k+1), v

〉
∂K

= 0, (34b)

where

ûk,k+1 =

{(
σk+1 · n

)−
+
(
σk · n

)+}
+
{
β · n−

(
uk+1

)−
+ β · n+

(
uk
)+}

α

+

{
τ−
(
uk+1

)−
+ τ+

(
uk
)+}

α
. (35)

Lemma 3. The local solver (34) of the iHDG-II algorithm for the convection-
diffusion equation is well-posed.

Proof. The proof is similar to the one for shallow water equation and hence is
given in appendix A 7.

Now, we are in a position to prove the convergence of the algorithm. For ε,
h > 0 and 0 < c ≤ 1 given, define

C1 :=
(‖β · n‖L∞(∂K) + τ̄)(τ̄ + 1)

2εα∗
, C2 :=

(τ̄ + 1)

2εα∗
, (36)

C3 :=
ετ̄(1 + τ̄ + ‖β · n‖L∞(∂K))

2α∗
, C4 :=

ε(1 + τ̄ + ‖β · n‖L∞(∂K))

2α∗
, (37)

D :=
A
B
, A = max{C1, C2}, E :=

max{C3, C4}
min{κ−1, λ}

, F :=
A

min{κ−1, λ}
, (38)

B1 :=
2chκ−1

d(p+ 1)(p+ 2)
+

1

2ᾱ
− C4,B2 :=

2chλ

d(p+ 1)(p+ 2)
+

1

ᾱ
− C3, (39)

B := min{B1,B2}. (40)

As in the previous section we need the following norms∥∥(σk, uk)∥∥2

Ωh
:=
∥∥σk∥∥2

Ωh
+
∥∥uk∥∥2

Ωh
,
∥∥(σk · n, uk)∥∥2

Eh
:=
∥∥σk · n∥∥2

Eh
+
∥∥uk∥∥2

Eh
.

Theorem 3. Suppose that the mesh size h and the solution order p are chosen
such that B > 0 and D < 1, the algorithm (34a)-(35) converges in the following
sense ∥∥(σk · n, uk)∥∥2

Eh
≤ Dk

∥∥(σ0 · n, u0
)∥∥2

Eh
,∥∥(σk, uk)∥∥2

Ωh
≤ (ED + F)Dk−1

∥∥(σ0 · n, u0
)∥∥2

Eh
,

where D, E and F are defined in (38).

17

Proof. The proof is similar to the one for shallow water equation and hence is
given in appendix B 7.

Similar to the discussion in section 4.4, one can show that

k = O
(

d(p+ 1)(p+ 2)

8ᾱchmin {κ−1, λ}

)
. (41)

For time-dependent convection-diffusion equation, we choose to discretize
the spatial differential operators using HDG. For the temporal derivative, we
use implicit time stepping methods, again with either backward Euler or Crank-
Nicolson method for simplicity. The analysis in this case is almost identical to
the one for steady state equation except that we now have an additional L2-term(
uk+1, v

)
K
/∆t in the local equation (34b). This improves the convergence of

the iHDG-II method. Indeed, the convergence analysis is the same except we
now have λ+ 1/∆t in place of λ. In particular we have the following estimation

k = O
(

d(p+ 1)(p+ 2)

8ᾱchmin {κ−1, (λ+ 1/∆t)}

)
.

Remark 2. Similar to the shallow water system if we choose ∆t = O
(
h
p2

)
then the number of iterations is independent of h and p. This is more efficient
than the iterative hybridizable IPDG method for the parabolic equation in [41],

which requires ∆t = O(h
2

p4) in order to achieve constant iterations. The reason
is due the fact that hybridizable IPDG is posed directly on the second order form
whereas HDG uses the first order form. While iHDG-I has mesh independent
stability for only u (see [1, Theorem 4.1]), iHDG-II does for both u and σ; an
important improvement.

6. Numerical results

In this section various numerical results verifying the theoretical results are
provided for the transport equation, the linearized shallow water equation, and
the convection-diffusion equation in both two- and three-dimensions.

6.1. Transport equation

We consider the same 2D and 3D test cases in [1, sections 5.1.1 and 5.1.2].
The domain is an unit square/cube with structured quadrilateral/hexahedral
elements. Throughout the numerical section, we use the following stopping
criteria

|‖uk − ue‖L2(Ω) − ‖uk−1 − ue‖L2(Ω)| < 10−10, (42)

if the exact solution is available, and

‖uk − uk−1‖L2(Ω) < 10−10, (43)

if the exact solution is not available.

18

From Theorem 1, the theoretical number of iterations is approximately d×
(Nel)

1/d (where d is dimension). It can be seen from the fourth and fifth columns
of Table 1 that the numerical results agree well with the theoretical prediction.
We can also see that the number of iterations is independent of solution order,
which is consistent with the theoretical result Theorem 1. Figure 1 shows the
solution converging from the inflow boundary to the outflow boundary in a
layer-by-layer manner. Again, the process is automatic, i.e., no prior element
ordering or information about the advection velocity is required.

Now, we study the parallel performance of the iHDG algorithm. For this
purpose we have implemented iHDG algorithms on top of mangll [60, 61, 62]
which is a higher order continuous/discontinuous finite element library that sup-
ports large scale parallel simulations using MPI. The simulations are conducted
on Stampede at the Texas Advanced Computing Center (TACC).

(a) uk at k = 16 (b) uk at k = 48 (c) uk at k = 64

Figure 1: Evolution of the iterative solution for the 2D transport equation using the iHDG-II
algorithm.

Table 2 shows strong scaling results for the 3D transport problem. The
parallel efficiency is over 90% for all the cases except for the case where we use
16,384 cores and 16 elements per core whose efficiency is 59%. This is due to
the fact that, with 16 elements per core, the communication cost dominates the
computation. Table 3 shows the weak scaling with 1024 and 128 elements/core.
Since the number of iterations increases linearly with the number of elements,
we can see a similar increase in time when we increase the number of elements,
and hence cores.

Let us now consider the time dependent 3D transport equation with the
following exact solution

ue = e−5((x−0.35t)2+(y−0.35t)2+(z−0.35t)2),

where the velocity field is chosen to be β = (0.2, 0.2, 0.2). In Figure 2 are the
numbers of iHDG iterations taken per time step to converge versus the CFL
number. As can be seen, for CFL in the range [1, 5] the number of iterations
grows mildly. As a result, we get a much better weak scaling results in Table 4
in comparison to the steady state case in Table 3.

19

Table 1: The number of iterations taken by the iHDG-II algorithm for the transport equation
in 2D and 3D settings.

Nel(2D) Nel(3D) p 2D solution 3D solution
4x4 2x2x2 1 9 6
8x8 4x4x4 1 17 12

16x16 8x8x8 1 33 23
32x32 16x16x16 1 65 47

4x4 2x2x2 2 9 6
8x8 4x4x4 2 17 12

16x16 8x8x8 2 33 23
32x32 16x16x16 2 65 47

4x4 2x2x2 3 9 7
8x8 4x4x4 3 17 12

16x16 8x8x8 3 33 23
32x32 16x16x16 3 65 47

4x4 2x2x2 4 9 6
8x8 4x4x4 4 17 12

16x16 8x8x8 4 33 24
32x32 16x16x16 4 64 48

Table 2: Strong scaling results on TACC’s Stampede system for the 3D transport problem.

Nel = 262, 144, p = 4, dof=32.768 million, Iterations=190
#cores time [s] Nel/core efficiency [%]

64 1758.62 4096 100.0
128 883.88 2048 99.5
256 439.94 1024 99.9
512 228.69 512 96.1

1024 113.87 256 96.5
2048 56.36 128 97.5
4096 29.26 64 91.8

16384 11.38 16 59
Nel = 2, 097, 152, p=4, dof=262.144 million, Iterations=382
#cores time [s] Nel/core efficiency [%]

512 3634.89 4096 100.0
1024 1788.78 2048 101.5
2048 932.495 1024 97.3
4096 447.337 512 101.5
8192 232.019 256 97.9

16384 117.985 128 92.9

20

Table 3: Weak scaling results on TACC’s Stampede system for the 3D transport problem.

1024 Nel/core, p=4
#cores time [s] time ratio Iterations ratio

4 103.93 1 1
32 217.23 2.1 2

256 439.94 4.2 4
2048 932.49 8.9 8

128 Nel/core, p=4
#cores time [s] time ratio Iterations ratio

4 6.52 1 1
32 13.68 2.1 2

256 27.71 4.2 4
2048 56.37 8.6 8

0 5 10 15
CFL

0

5

10

15

20

25

30

iH
D

G
 It

er
at

io
ns

/ti
m

es
te

p

Figure 2: CFL versus Iterations for the 3D time dependent transport

6.2. Linearized shallow water equations

The goal of this section is to verify the theoretical findings in section 4.4.
To that extent, let us consider equation (18) with a linear standing wave, for
which, Φ = 1, f = 0, γ = 0 (zero bottom friction), τ = 0 (zero wind stress).
The domain is [0, 1] × [0, 1] and the wall boundary condition is applied on the

21

Table 4: Weak scaling results on TACC’s Stampede system for the 3D time dependent trans-
port problem.

128 Nel/core, p = 4, ∆t=0.01, |β|max=0.35
#cores time/timestep [s] time ratio Iterations ratio CFL

4 1.69 1 1 0.45
32 1.91 1.1 1.1 0.9

256 2.09 1.2 1.1 1.8
2048 2.72 1.6 1.4 3.6

16384 4.68 2.8 2.1 7.2

domain boundary. The following exact solution [56] is taken

φe = cos(πx) cos(πy) cos(
√

2πt), (44a)

ue =
1√
2

sin(πx) cos(πy) sin(
√

2πt), (44b)

ve =
1√
2

cos(πx) sin(πy) sin(
√

2πt). (44c)

We use Crank-Nicolson method for the temporal discretization and the iHDG-II
approach for the spatial discretization. In Table 5 we compare the number of
iterations taken by iHDG-I and iHDG-II methods for two different time steps
∆t = 0.1 and ∆t = 0.01. Here, “∗” indicates divergence. As can be seen from the
third and fourth columns, the iHDG-I method diverges for finer meshes and/or
larger time steps. This is consistent with the findings in section 4.4 where the
divergence is expected because of the lack of mesh independent stability in the
velocity. On the contrary, iHDG-II converges for all cases.

h
1

h
2

h
3

h
4

Mesh size

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
at

io
 o

f s
uc

ce
ss

iv
e

ite
ra

tio
ns

p=1
p=2
p=3
p=4
theory

p
iHDG-II

Asymptotics
h1 h2 h3 h4

2 1.07 1.06 1 1 2
3 1.14 1.11 0.97 1 3.33
4 1.21 1.78 1.87 1.9 5

Figure 3: Growth of iterations with mesh size h (left) and solution order p (right) for the
iHDG-II method for the shallow water equation.

In Table 5, we use a series of structured quadrilateral meshes with uniform
refinements such that the ratio of successive mesh sizes is 1/2. The asymptotic
result (31), which is valid for h

∆t(p+1)(p+2)
√

Φ
� 1, predicts that the ratio of

22

Table 5: Comparison of iHDG-I and iHDG-II for the shallow water equations.

Nel p
iHDG-I iHDG-II

∆t = 10−1 ∆t = 10−2 ∆t = 10−1 ∆t = 10−2

16 1 19 6 14 6
64 1 * 6 18 9

256 1 * 7 32 10
1024 1 * 9 59 8

16 2 * 9 15 9
64 2 * 11 19 9

256 2 * 13 32 11
1024 2 * 15 59 12

16 3 * 7 16 8
64 3 * 9 20 8

256 3 * 12 31 10
1024 3 * * 59 12

16 4 * 10 17 9
64 4 * 12 32 10

256 4 * * 60 9
1024 4 * * 112 13

the number of iterations required by successive refined meshes is 2, and the
results in Figure 3 validate this prediction. The last two columns of Table 5
also confirms the asymptotic result (31) that the number of iHDG-II iterations
scales linearly in the time stepsize.

Next, we study the iHDG iteration growth as the solution order p increases.
The asymptotic result (31) predicts that k = O(p2). In Table 3, rows 2–4 show
the ratio of the number of iterations taken for solution orders p = {2, 3, 4} over
the one for p = 1 for four different meshsizes as in Table 5. As can be seen, the
theoretical estimation is conservative.

6.3. Convection-diffusion equation

In this section the following exact solution for equation (32) is considered

ue =
1

π
sin(πx) cos(πy) sin(πz).

The forcing is chosen such that it corresponds to the exact solution. The velocity
field is chosen as β = (1 + z, 1 + x, 1 + y) and we take ν = 1. The domain is
[0, 1]× [0, 1]× [0, 1]. A structured hexahedral mesh is used for the simulations.
The stopping criteria based on the exact solution is used as in the previous
sections.

In Table 6 we report the number of iterations taken by iHDG-I and iHDG-II
methods for different values of the diffusion coefficent κ. Similar to the shallow

23

water equations, due to the lack of stability in σ, iHDG-I diverges when κ is
large for fine meshes and/or high solution orders. The iHDG-II method, on the
other hand, converges for all the meshes and solution orders, and the number
of iterations are smaller than that of the iHDG-I method. Next, we verify the
growth of iHDG-II iterations predicted by the asymptotic result (41).

Since min
{
κ−1, λ

}
= λ for all numerical results considered here, due to (41)

we expect the number of iHDG-II iterations is independent of κ and this can be
verified in Table 6. In Figure 4 the growth of iterations with respect to mesh
size h for different κ are compared. In the asymptotic limit, for all the cases,
the ratio of successive iterations reaches a value of around 1.7 which is close
to the theoretical prediction 2. Hence the theoretical analysis predicts well the
growth of iterations with mesh size h. On the other hand, from columns 6− 8
in Table 6 the iterations are almost independent of solution orders. This is not
predicted by the theoretical results and the growth of iterations is expected to
be proportional to O(p2). The reason is due to the convection dominated nature
of the problem, which is similar to the pure transport problem where we also
didn’t see any growth with the solution order.

Finally, we consider the elliptic equation case with κ = 1 and β = 0. For
this we use the following stopping criteria based on the direct solver solution
(udirect) ∥∥uk − udirect∥∥L2 < 10−10.

This is due to the fact that the above stopping criteria gives a better comparison
with theoretical results than the one based on exact solution. For the previous
test cases both the stopping criteria showed similar trends. Our theoretical
analysis predicts well the growth of iterations both with mesh size and solution
order in the asymptotic limit as shown in Figure 5.

h
1

h
2

h
3

h
4

Mesh size

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
at

io
 o

f s
uc

ce
ss

iv
e

ite
ra

tio
ns

p=1
p=2
p=3
p=4
theory

(a) κ = 10−2

h
1

h
2

h
3

h
4

Mesh size

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
at

io
 o

f s
uc

ce
ss

iv
e

ite
ra

tio
ns

p=1
p=2
p=3
p=4
theory

(b) κ = 10−3

h
1

h
2

h
3

h
4

Mesh size

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
at

io
 o

f s
uc

ce
ss

iv
e

ite
ra

tio
ns

p=1
p=2
p=3
p=4
theory

(c) κ = 10−6

Figure 4: Ratio of successive iterations as we refine the mesh for the iHDG-II method for
different κ.

7. Conclusions

In this work we have presented an iterative solver for HDG methods (iHDG-
II) which is an improvement of our previous work iHDG-I (S. Muralikrishnan,
M. B. Tran and T. Bui-Thanh SIAM J. Sci. Comput. Vol. 39, No. 5, pp.

24

Table 6: Comparison of iHDG-I and iHDG-II methods for different κ.

h p
iHDG-I iHDG-II

κ = 10−2 κ = 10−3 κ = 10−6 κ = 10−2 κ = 10−3 κ = 10−6

0.5 1 24 23 23 17 17 17
0.25 1 30 34 35 25 25 26

0.125 1 50 55 56 35 37 38
0.0625 1 90 94 97 62 64 65

0.5 2 26 24 25 17 19 19
0.25 2 41 42 42 27 27 27

0.125 2 66 67 67 42 43 43
0.0625 2 * 109 110 67 70 71

0.5 3 27 31 31 19 19 19
0.25 3 33 33 38 24 26 27

0.125 3 * 58 60 38 39 41
0.0625 3 * 102 106 69 69 71

0.5 4 26 27 27 17 19 19
0.25 4 50 41 43 26 27 27

0.125 4 * 71 72 42 45 46
0.0625 4 * 123 125 73 78 79

h
1

h
2

h
3

h
4

Mesh size

1

1.5

2

2.5

3

3.5

R
at

io
 o

f s
uc

ce
ss

iv
e

ite
ra

tio
ns

p=1
p=2
p=3
p=4
theory p

iHDG-II
Asymptotics

h1 h2 h3

2 2.41 2.11 2.03 2
3 4.07 3.55 3.17 3.33
4 6.09 5.23 4.81 5

Figure 5: Growth of iterations with mesh size h (left) and solution order p (right) for the
iHDG-II method for the elliptic equation.

S782–S808). In particular, the iHDG-II algorithm improves the stability and
convergence of the iHDG-I algorithm by means of improved coupling between
the volume and trace unknowns in the HDG system. It also retains the attractive
parallel performance of the iHDG-I algorithm in which each iteration requires
only independent element-by-element local solves. We rigorously show that the
iHDG-II algorithm for the scalar transport equation converges in finite number
of iterations and the iterations are independent of the solution order. For the
linearized shallow water and the convection-diffusion equations we derive explicit
relationship between number of iterations, the mesh size, the solution order

25

and the time step. The analysis reveals the improved stability of the iHDG-II
algorithm in comparison to the iHDG-I algorithm. This makes the iHDG-II
algorithm unconditionally convergent for the linearized shallow water and the
convection-diffusion equations. Various 2D and 3D numerical results verifying
the theoretical findings are presented.

Acknowledgements

We are indebted to Dr. Hari Sundar for sharing his high-order finite element
library homg, on which we have implemented the iHDG algorithms and pro-
duced numerical results. We thank Texas Advanced Computing Center (TACC)
for processing our requests so quickly regarding running our simulations on
Stampede. The first author would like to thank Stephen Shannon for helping
in proving some results and various fruitful discussions on this topic. We thank
Prof. Martin Gander for pointing us to the reference [43].

Appendix A. Proof for well-posedness of local solver of the iHDG-II
method for the convection-diffusion equation

Proof. Choosing σk+1 and uk+1 as test functions in (34a)-(34b), integrating the
second term in (34a) by parts, using (10) for second term in (34b), and then
summing up the resulting two equations we obtain

κ−1
(
σk+1,σk+1

)
K

+

((
ν − ∇ · β

2

)
uk+1, uk+1

)
K

+

〈(
β · n

2
+ τ

)
uk+1, uk+1

〉
∂K

+
〈
(σk+1 · n− τuk+1), ûk,k+1

〉
∂K

= 0. (45)

Substituting (35) in the above equation and simplifying some terms we get,∑
K

κ−1
∥∥∥(σk+1

)−∥∥∥2

K
+

((
ν − ∇ · β

2

)(
uk+1

)−
,
(
uk+1

)−)
K

+

〈(
|β · n|2 + 2

2α

)(
uk+1

)−
,
(
uk+1

)−〉
∂K

+

〈
1

α

(
σk+1 · n

)−
,
(
σk+1 · n

)−〉
∂K

+

〈
β · n−

α

(
uk+1

)−
,
(
σk+1 · n

)−〉
∂K

=
∑
∂K

−
〈

1

α

(
σk+1 · n

)−
,
(
σk · n

)+〉
∂K

−
〈(

β · n+ + τ+

α

)(
σk+1 · n

)−
,
(
uk
)+〉

∂K

+

〈
τ−

α

(
uk+1

)−
,
(
σk · n

)+〉
∂K

+

〈(
τ−(β · n+ + τ+)

α

)(
uk+1

)−
,
(
uk
)+〉

∂K

. (46)

26

Using the identity〈
β · n
α

uk+1,σk+1 · n
〉
∂K

=

∥∥∥∥ 1√
2α

(
β · nuk+1 + σk+1 · n

)∥∥∥∥2

∂K

−
〈
β · n2

2α
uk+1, uk+1

〉
∂K

−
〈

1

2α
σk+1 · n,σk+1 · n

〉
∂K

, (47)

and the coercivity condition (33) we can write (46) as∑
K

κ−1
∥∥∥(σk+1

)−∥∥∥2

K
+ λ

∥∥∥(uk+1
)−∥∥∥2

K
+
∥∥∥(uk+1

)−∥∥∥2

1/α,∂K

+
∥∥∥(σk+1 · n

)−∥∥∥2

1/2α,∂K
+

∥∥∥∥ 1√
2α

(
β · n−

(
uk+1

)−
+
(
σk+1 · n

)−)∥∥∥∥2

∂K

≤

∑
∂K

−
〈

1

α

(
σk+1 · n

)−
,
(
σk · n

)+〉
∂K

−
〈(

β · n+ + τ+

α

)(
σk+1 · n

)−
,
(
uk
)+〉

∂K

+

〈
τ−

α

(
uk+1

)−
,
(
σk · n

)+〉
∂K

+

〈(
τ−(β · n+ + τ+)

α

)(
uk+1

)−
,
(
uk
)+〉

∂K

.

(48)

Since all the terms on the left hand side are positive, when we take the “forc-

ing” to the local solver
{(
uk
)+
,
(
σk
)+}

= {0,0}, the only solution possible is{(
uk+1

)−
,
(
σk+1

)−}
= {0,0} and hence the method is well-posed.

Appendix B. Proof for convergence of the iHDG-II method for the
convection-diffusion equation

Proof. In equation (48) omitting the last term on the left hand side and using
Cauchy-Schwarz and Young’s inequalities for the terms on the right hand side
we get∑

K

κ−1
∥∥∥(σk+1

)−∥∥∥2

K
+ λ

∥∥∥(uk+1
)−∥∥∥2

K
+
∥∥∥(uk+1

)−∥∥∥2

1/α,∂K

+
∥∥∥(σk+1 · n

)−∥∥∥2

1/2α,∂K
≤
∑
∂K

1

2ε

〈(
τ− + 1

α

)(
σk · n

)+
,
(
σk · n

)+〉
∂K

+
1

2ε

〈(
(1 + τ−)(β · n+ + τ+)

α

)(
uk
)+
,
(
uk
)+〉

∂K

+
ε

2

〈(
1 + τ+ + β · n+

α

)(
σk+1 · n

)−
,
(
σk+1 · n

)−〉
∂K

+
ε

2

〈(
τ−(1 + τ+ + β · n+)

α

)(
uk+1

)−
,
(
uk+1

)−〉
∂K

. (49)

27

We can write the above inequality as

κ−1
∥∥∥(σk+1

)−∥∥∥2

K
+ λ

∥∥∥(uk+1
)−∥∥∥2

K
+

1

ᾱ

∥∥∥(uk+1
)−∥∥∥2

∂K
+

1

2ᾱ

∥∥∥(σk+1 · n
)−∥∥∥2

∂K

≤ τ̄ + 1

2εα∗

∥∥∥(σk · n)+∥∥∥2

∂K
+

(1 + τ̄)(‖β · n‖L∞(∂K) + τ̄)

2εα∗

∥∥∥(uk)+∥∥∥2

∂K

+
ε(1 + τ̄ + ‖β · n‖L∞(∂K))

2α∗

∥∥∥(σk+1 · n
)−∥∥∥2

∂K

+
ετ̄(1 + τ̄ + ‖β · n‖L∞(∂K))

2α∗

∥∥∥(uk+1
)−∥∥∥2

∂K
, (50)

where τ̄ := ‖τ‖L∞(∂Ωh), ᾱ := ‖α‖L∞(∂Ωh), and α∗ := inf
∂K∈∂Ωh

α.

By the inverse trace inequality (26) we infer from (50) that∑
∂K

B1

∥∥∥(σk+1 · n
)−∥∥∥2

∂K
+ B2

∥∥∥(uk+1
)−∥∥∥2

∂K

≤
∑
∂K

[
C1
∥∥∥(uk)+∥∥∥2

∂K
+ C2

∥∥∥(σk · n)+∥∥∥2

∂K

]
,

which implies ∥∥(σk+1 · n, uk+1
)∥∥2

Eh
≤ D

∥∥(σk · n, uk)∥∥2

Eh
,

where the constant D is computed as in (38). Therefore∥∥(σk+1 · n, uk+1
)∥∥2

Eh
≤ Dk+1

∥∥(σ0 · n, u0
)∥∥2

Eh
. (51)

Inequalities (50) and (51) imply∥∥(σk+1, uk+1
)∥∥2

Ωh
≤ (ED + F)Dk

∥∥(σ0 · n, u0
)∥∥2

Eh
,

and this concludes the proof.

References

[1] S. Muralikrishnan, M.-B. Tran, T. Bui-Thanh, iHDG: An iterative HDG
framework for partial differential equations, SIAM Journal on Scientific
Computing 39 (5) (2017) S782–S808.

[2] W. H. Reed, T. R. Hill, Triangular mesh methods for the neutron trans-
port equation, Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory
(1973).

[3] P. LeSaint, P. A. Raviart, On a finite element method for solving the neu-
tron transport equation, in: C. de Boor (Ed.), Mathematical Aspects of
Finite Element Methods in Partial Differential Equations, Academic Press,
1974, pp. 89–145.

28

[4] C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin
method for a scalar hyperbolic equation, Mathematics of Computation
46 (173) (1986) 1–26.

[5] B. Cockburn, G. E. Karniadakis, C.-W. Shu, Discontinuous Galerkin Meth-
ods: Theory, Computation and Applications, Lecture Notes in Computa-
tional Science and Engineering, Vol. 11, Springer Verlag, Berlin, Heidelberg,
New York, 2000.

[6] J. Douglas, T. Dupont, Interior penalty procedures for elliptic and
parabolic galerkin methods, Computing methods in applied sciences (1976)
207–216.

[7] M. F. Wheeler, An elliptic collocation-finite element method with interior
penalties, SIAM Journal on Numerical Analysis 15 (1) (1978) 152–161.

[8] D. N. Arnold, An interior penalty finite element method with discontinuous
elements, SIAM journal on numerical analysis 19 (4) (1982) 742–760.

[9] D. N. Arnold, F. Brezzi, B. Cockburn, L. D. Marini, Unified analysis of
discontinuous galerkin methods for elliptic problems, SIAM journal on nu-
merical analysis 39 (5) (2002) 1749–1779.

[10] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of dis-
continuous Galerkin, mixed, and continuous Galerkin methods for second
order elliptic problems, SIAM J. Numer. Anal. 47 (2009) 1319–1365.

[11] B. Cockburn, J. Gopalakrishnan, F.-J. Sayas, A projection-based error
analysis of HDG methods, Mathematics Of Computation 79 (271) (2010)
1351–1367.

[12] R. M. Kirby, S. J. Sherwin, B. Cockburn, To CG or to HDG: A comparative
study, J. Sci. Comput. 51 (2012) 183–212.

[13] N. C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridizable
discontinuous Galerkin method for linear convection-diffusion equations,
Journal Computational Physics 228 (2009) 3232–3254.

[14] B. Cockburn, B. Dong, J. Guzman, M. Restelli, R. Sacco, A hybridiz-
able discontinuous Galerkin method for steady state convection-diffusion-
reaction problems, SIAM J. Sci. Comput. 31 (2009) 3827–3846.

[15] H. Egger, J. Schoberl, A hybrid mixed discontinuous Galerkin finite ele-
ment method for convection-diffusion problems, IMA Journal of Numerical
Analysis 30 (2010) 1206–1234.

[16] B. Cockburn, J. Gopalakrishnan, The derivation of hybridizable discontin-
uous Galerkin methods for Stokes flow, SIAM J. Numer. Anal 47 (2) (2009)
1092–1125.

29

[17] N. C. Nguyen, J. Peraire, B. Cockburn, A hybridizable discontinous
Galerkin method for Stokes flow, Comput Method Appl. Mech. Eng. 199
(2010) 582–597.

[18] N. C. Nguyen, J. Peraire, B. Cockburn, An implicit high-order hybridiz-
able discontinuous Galerkin method for the incompressible Navier-Stokes
equations, Journal Computational Physics 230 (2011) 1147–1170.

[19] D. Moro, N. C. Nguyen, J. Peraire, Navier-Stokes solution using hybridiz-
able discontinuous Galerkin methods, American Institute of Aeronautics
and Astronautics 2011-3407.

[20] N. C. Nguyen, J. Peraire, B. Cockburn, Hybridizable discontinuous
Galerkin method for the time harmonic Maxwell’s equations, Journal Com-
putational Physics 230 (2011) 7151–7175.

[21] L. Li, S. Lanteri, R. Perrrussel, A hybridizable discontinuous Galerkin
method for solving 3D time harmonic Maxwell’s equations, in: Numer-
ical Mathematics and Advanced Applications 2011, Springer, 2013, pp.
119–128.

[22] N. C. Nguyen, J. Peraire, B. Cockburn, High-order implicit hybridizable
discontinuous Galerkin method for acoustics and elastodynamics, Journal
Computational Physics 230 (2011) 3695–3718.

[23] R. Griesmaier, P. Monk, Error analysis for a hybridizable discontinous
Galerkin method for the Helmholtz equation, J. Sci. Comput. 49 (2011)
291–310.

[24] J. Cui, W. Zhang, An analysis of HDG methods for the Helmholtz equation,
IMA J. Numer. Anal. 34 (1) (2014) 279–295.

[25] T. Bui-Thanh, From Godunov to a unified hybridized discontinuous
Galerkin framework for partial differential equations, Journal of Computa-
tional Physics 295 (2015) 114–146.

[26] T. Bui-Thanh, From Rankine-Hugoniot Condition to a Constructive
Derivation of HDG Methods, Lecture Notes in Computational Sciences
and Engineering, Springer, 2015, pp. 483–491.

[27] T. Bui-Thanh, Construction and analysis of HDG methods for linearized
shallow water equations, SIAM Journal on Scientific Computing 38 (6)
(2016) A3696–A3719.

[28] J. Brown, Efficient nonlinear solvers for nodal high-order finite elements in
3D, Journal of Scientific Computing 45 (1-3) (2010) 48–63.

[29] P.-L. Lions, On the Schwarz alternating method. I, in: First International
Symposium on Domain Decomposition Methods for Partial Differential
Equations (Paris, 1987), SIAM, Philadelphia, PA, 1988, pp. 1–42.

30

[30] P.-L. Lions, On the Schwarz alternating method. II. Stochastic interpreta-
tion and order properties, in: Domain decomposition methods (Los Ange-
les, CA, 1988), SIAM, Philadelphia, PA, 1989, pp. 47–70.

[31] P.-L. Lions, On the Schwarz alternating method. III. A variant for nonover-
lapping subdomains, in: Third International Symposium on Domain De-
composition Methods for Partial Differential Equations (Houston, TX,
1989), SIAM, Philadelphia, PA, 1990, pp. 202–223.

[32] L. Halpern, Optimized Schwarz waveform relaxation: roots, blossoms and
fruits, in: Domain decomposition methods in science and engineering
XVIII, Vol. 70 of Lect. Notes Comput. Sci. Eng., Springer, Berlin, 2009,
pp. 225–232.

[33] D. Bennequin, M. J. Gander, L. Halpern, A homographic best approxima-
tion problem with application to optimized Schwarz waveform relaxation,
Math. Comp. 78 (265) (2009) 185–223.

[34] L. Halpern, J. Szeftel, Nonlinear nonoverlapping Schwarz waveform relax-
ation for semilinear wave propgation, Math. Comp. 78 (266) (2009) 865–
889.

[35] M. J. Gander, L. Gouarin, L. Halpern, Optimized Schwarz waveform relax-
ation methods: a large scale numerical study, in: Domain decomposition
methods in science and engineering XIX, Vol. 78 of Lect. Notes Comput.
Sci. Eng., Springer, Heidelberg, 2011, pp. 261–268.

[36] M. J. Gander, S. Hajian, Analysis of Schwarz methods for a hybridizable
discontinuous Galerkin discretization, SIAM J. Numer. Anal. 53 (1) (2015)
573–597.

[37] M.-B. Tran, Parallel Schwarz waveform relaxation method for a semilinear
heat equation in a cylindrical domain, C. R. Math. Acad. Sci. Paris 348 (13-
14) (2010) 795–799.

[38] M.-B. Tran, Parallel Schwarz waveform relaxation algorithm for an N -
dimensional semilinear heat equation, ESAIM Math. Model. Numer. Anal.
48 (3) (2014) 795–813.

[39] B. Cockburn, O. Dubois, J. Gopalakrishnan, S. Tan, Multigrid for an HDG
method, IMA Journal of Numerical Analysis (2013) 1–40.

[40] M. J. Gander, S. Hajian, Block jacobi for discontinuous galerkin discretiza-
tions: no ordinary schwarz methods, in: Domain Decomposition Methods
in Science and Engineering XXI, Springer, 2014, pp. 305–313.

[41] M. J. Gander, S. Hajian, Analysis of schwarz methods for a hybridizable
discontinuous galerkin discretization: the many subdomain case, arXiv
preprint arXiv:1603.04073.

31

[42] K. O. Friedrichs, Symmetric positive linear differential equations, Commu-
nications on pure and applied mathematics XI (1958) 333–418.

[43] M. J. Gander, Analysis of the parareal algorithm applied to hyper-
bolic problems using characteristics, Boletin de la Sociedad Espanola de
Matemática Aplicada 42 (2008) 21–35.

[44] Z. Kaczkowski, The method of finite space-time elements in dynamics of
structures, Journal of Technical Physics 16 (1) (1975) 69–84.

[45] J. Argyris, D. Scharpf, Finite elements in time and space, Nuclear Engi-
neering and Design 10 (4) (1969) 456–464.

[46] J. T. Oden, A general theory of finite elements. ii. applications, Interna-
tional Journal for Numerical Methods in Engineering 1 (3) (1969) 247–259.

[47] C. M. Klaij, J. J. van der Vegt, H. van der Ven, Space–time discontinuous
Galerkin method for the compressible Navier–Stokes equations, Journal of
Computational Physics 217 (2) (2006) 589–611.

[48] T. Ellis, J. Chan, L. Demkowicz, Robust DPG methods for transient
convection-diffusion, in: Building Bridges: Connections and Challenges in
Modern Approaches to Numerical Partial Differential Equations, Springer,
2016, pp. 179–203.

[49] S. Rhebergen, B. Cockburn, A space–time hybridizable discontinuous
galerkin method for incompressible flows on deforming domains, Journal
of Computational Physics 231 (11) (2012) 4185–4204.

[50] J.-L. Lions, Y. Maday, G. Turinici, Résolution d’edp par un schéma en
temps pararéel, Comptes Rendus de l’Académie des Sciences-Series I-
Mathematics 332 (7) (2001) 661–668.

[51] I. Garrido, B. Lee, G. Fladmark, M. Espedal, Convergent iterative schemes
for time parallelization, Mathematics of computation 75 (255) (2006) 1403–
1428.

[52] C. Farhat, M. Chandesris, Time-decomposed parallel time-integrators: the-
ory and feasibility studies for uid, structure, and fluid-structure applica-
tions, International Journal for Numerical Methods in Engineering 58 (9)
(2003) 1397–1434.

[53] Y. Maday, G. Turinici, A parareal in time procedure for the control of par-
tial differential equations, Comptes Rendus Mathematique 335 (4) (2002)
387–392.

[54] M. Minion, A hybrid parareal spectral deferred corrections method, Com-
munications in Applied Mathematics and Computational Science 5 (2)
(2011) 265–301.

32

[55] M. J. Gander, S. Vandewalle, Analysis of the parareal time-parallel time-
integration method, SIAM Journal on Scientific Computing 29 (2) (2007)
556–578.

[56] F. X. Giraldo, T. Warburton, A high-order triangular discontinous Galerkin
oceanic shallow water model, International Journal For Numerical Methods
In Fluids 56 (2008) 899–925.

[57] J. Chan, Z. Wang, A. Modave, J.-F. Remacle, T. Warburton, GPU-
accelerated discontinuous galerkin methods on hybrid meshes, Journal of
Computational Physics 318 (2016) 142–168.

[58] T. Warburton, J. S. Hesthaven, On the constants in hp-finite element trace
inverse inequalities, Comput. Methods Appl. Mech. Engrg. 192 (25) (2003)
2765–2773.

[59] M. Taylor, J. Tribbia, M. Iskandarani, The spectral element method for the
shallow water equations on the sphere, Journal of Computational Physics
130 (1) (1997) 92 – 108.

[60] L. C. Wilcox, G. Stadler, C. Burstedde, O. Ghattas, A high-order discon-
tinuous Galerkin method for wave propagation through coupled elastic-
acoustic media, Journal of Computational Physics 229 (24) (2010) 9373–
9396.

[61] C. Burstedde, O. Ghattas, M. Gurnis, T. Isaac, G. Stadler, T. Warburton,
L. C. Wilcox, Extreme-scale AMR, in: SC10: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis, ACM/IEEE, 2010.

[62] C. Burstedde, O. Ghattas, M. Gurnis, E. Tan, T. Tu, G. Stadler, L. C.
Wilcox, S. Zhong, Scalable adaptive mantle convection simulation on petas-
cale supercomputers, in: SC08: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis,
ACM/IEEE, 2008.

33

	Introduction
	Upwind HDG framework
	iHDG methods
	iHDG-II for hyperbolic PDEs
	Transport equation
	Time-dependent transport equation
	Comparison of space-time iHDG and parareal methods for the scalar transport equation

	iHDG as a locally implicit method
	iHDG-II for system of hyperbolic PDEs

	iHDG-II for convection-diffusion PDEs
	First order form

	Numerical results
	Transport equation
	Linearized shallow water equations
	Convection-diffusion equation

	Conclusions

