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Abstract

We prove local existence and uniqueness results for the (space-homogeneous) 4-wave
kinetic equation in wave turbulence theory. We consider collision operators defined by radial,
but general dispersion relations satisfying suitable bounds, and we prove two local well-
posedness theorems in nearly critical weighted spaces.
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1 Introduction

1.1 Weak turbulence

Turbulence, as being understood today, describes the chaotic behavior of systems being in states
far away from thermodynamic equilibrium and having a large number of degrees of freedom.
It is not restrictive to hydrodynamics to be the only place where one can observe turbulence.
Recent advances in plasma physics, acoustics, superconductivity, nonlinear optics, and ferroma-
gentism have shown that turbulence is a universal phenomenon, which can be observed both
experimentally and naturally. Such turbulence systems can be studied under the framework of
Hamiltonian mechanics. In weak turbulence, the Hamiltonian can be expanded in an infinite
power series of normal variables, starting with quadratic terms. That means one usually be-
gins with a linear system of non-interacting small amplitude waves and the nonlinear terms are
treated using a perturbation methods. The nonlinear effects then lead to the stochastization of
waves phases and a slow modulation of the amplitudes. A kinetic equation of quantum Boltz-
mann types for the mean square amplitudes can then be written. There are two common types
of such kinetic equations: the 3-wave and the 4-wave ones. The first derivation of a kinetic model
of weak turbulence, which is a 3-wave one, was obtained, to our knowledge, in [51, 52] in the
study of phonon interactions in anharmonic crystal lattices. We refer to [65, 43, 63, 20, 44, 45]
for detailed discussions on the topics.

4-wave kinetic equations play an important role in the theory of weak turbulence and appear
in several contexts: gravity and capillary waves on the surface of a finite-depth fluid [64, 26,
27, 28, 12], Alfven wave turbulence in astrophysical plasmas [46], optical waves of diffraction in
nonlinear media [13, 40, 41], quantum fluids [33], Langmuir waves [62] to name only a few.

1.2 The kinetic wave equation and its first properties

The present article investigates the local well-posedness theory for the space-homogeneous 4-
wave kinetic equation

∂tf(t, p) = Q[f ](t, p), on R+ × R3,

f(0, p) =f0(p) on R3.
(1.1)

The trilinear operator Q is given by

Q[f ](p) =

˚
R3×3

δ(p+ p1− p2− p3)δ(ω+ω1−ω2−ω3)[f2f3(f1 + f)− ff1(f2 + f3)] dp1 dp2 dp3,

where we denoted

ω = ω(p), ωi = ω(pi), f = f(p), fi = f(pi).

In the above, p 7→ ω(p) is the dispersive relation of the underlying dispersive problem, to which
we will come back shortly.
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Notice that the nonlinear term can also be written

Q[f ](p) =

˚
R3×3

δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)

× ff1f2f3

[ 1

f
+

1

f1
− 1

f2
− 1

f3

]
dp1 dp2 dp3.

Writing the nonlinear term in this way makes it clear that the mass, momentum, and energy
are conserved; they are defined respectively as

ˆ
R3

f(p) dp,

ˆ
R3

pf(p) dp,

ˆ
R3

ω(p)f(p) dp.

Furthermore, the entropy, defined by

ˆ
R3

log f(p) dp,

is decreasing. Finally, the above form of the nonlinear term leads to the stationary solu-
tions

1

µ+ ν · p+ ξω(p)
, (1.2)

where (µ, ν, ξ) ∈ R× R3 × R are such that µ+ ν · p+ ξω(p) ≥ 0 for any p.

The equation (1.1) does not admit invariant scalings for general dispersion relations ω(p). How-
ever, for ω(p) = |p|2, a number of scalings arises, which leave the set of solutions invariant. The
most relevant one leaves the time variable untouched: it is given by the transformation

f(t, p) 7→ λ2f(t, λp). (1.3)

1.3 The dispersion relation

One of our aims is to allow more general dispersion relations which enjoy similar bounds to
ω(p) = |p|2. This is motivated by the following instances of physical interest:

• The basic example is the Schrödinger case

ω(p) = |p|2. (1.4)

• The Bogoliubov dispersion law [14, 45]

ϑ(p) =
√
θ1|p|2 + θ2|p|4, (1.5)

where θ1, θ2 are strictly positive constants.
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• The modified Bogoliubov dispersion law [14] and the Bohm-Pines dispersion law [5]

ϑ(p) =
√
θ0 + θ1|p|2 + θ2|p|4, (1.6)

where θ0, θ1, θ2 are strictly positive constants. In the very low temperature regime [15, 29,
5], ϑ can be replaced by the following approximated dispersion relation

ω(p) = λ0 + λ1|p|2 + λ2|p|4, (1.7)

with λ0, λ1, λ2 being strictly positive constants depending on θ0, θ1, θ2.

These examples are captured by the following general assumption.
Assumption 1.1. The dispersion relation is of the form

ω(p) = Ω(|p|), (1.8)

and satisfies:

(i) Ω(0) = 0 (this is simply a convenient normalization).

(ii) Ω ∈ C1(R+) and Ω(x) ≥ 0 for all x in R+.

(iii) There exists a constant c1 > 0 such that Ω′(x) ≥ c1x, for all x in R+.

(iv) There exists a constant c2 > 0 such that Ω(x) ≤ 1
2Ω(c2x), for all x in R+.

(1.9)

We notice that Assumption 1.1 is satisfied by all the dispersion relations (1.4)–(1.7).

1.4 Rigorous results on the isotropic 4-wave kinetic equation and related
models

The first question is that of the derivation of this kinetic equation from Hamiltonian dynamics:
it should arise in the weakly nonlinear, big box limit under the random phase approximation.
This is not the subject of this paper, but we refer to the classical textbooks [63, 43] for a heuristic
discussion, as well as to [39] for the latest rigorous results.

The question of the local existence and uniqueness of solutions to (1.1) was first studied in
[18], where the dispersive relation is of classical type ω(p) = |p|2, and the solution f is radial
(velocity-isotropic). Abusing notations by denoting p for |p| and f(p) for f(|p|), the equation
(1.1) reduces to a one-dimensional Boltzmann equation

∂tf =

ˆ
R2
+

p2p3 min{p, p1, p2, p3}
p

[f2f3(f + f1)− ff1(f2 + f3)] dp3 dp4, (1.10)

where p2
1 = p2

2 + p2
3 − p2.

It is proved in [18] that the above equation admits global, measure valued, weak solutions.
This functional framework allows in particular for condensation, namely the development of a
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point mass at the origin. It is furthermore showed that condensation can occur, and that, as
t→∞, most of the energy is transfered to high frequencies. The articles [32, 31] are dedicated
to a quadratic equation arising from (1.1) in the regime where a Dirac mass has formed, and
contains most of the mass. Note that the existence and uniqueness of radial weak solutions to
a slightly simplified version of the 4-wave kinetic equation for general power-law dispersion has
been proved in [42].

The reduction to the radial model (1.10) is restricted to the case ω(p) = |p|2. It is therefore the
goal of our paper to construct a local existence and uniqueness theory, which does not rely on
the various forms of the dispersion laws and is valid without the assumption that the solutions
are radial.

In the theory of the classical Boltzmann equation, the conservation laws

p+ p1 = p2 + p3, |p|2 + |p1|2 = |p2|2 + |p3|2 (1.11)

play a very important role. Since (1.11) implies that p, p1, p2, p3 are on the sphere centered

at p+p1
2 with radius |p−p1|2 , the Boltzmann collision operators can be considered as integrals on

spheres (see, for instance [61, 10]) and the Carleman representation [9] can be used. This is not
the case for more general dispersion relations, for which the resonant manifolds do not admit
such simple parameterizations.

Let us mention that (1.1) is very similar to the Boltzmann-Norheim (Uehling-Ulenbeck) equation
(cf. [49, 60]), which describes the evolution of the density function of a dilute Bose gas at high
temperature (above the Bose-Einstein condensate transition temperature)

∂tf(t, p) = Q[f ](t, p) +Q0[f ](t, p),

Q0[f ](t, p) =

˚
R3×3

δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)[f2f3 − ff1]dp1dp2dp3,

f(0, p) =f0(p).

(1.12)

Notice that Q0 is the classical Boltzmann collision operator. The study of (1.12) is also a subject
of rapidly growing interest in the kinetic community (cf. [3, 18, 17, 57, 56, 47, 34, 36, 37, 38,
6, 30, 54, 35, 53] and the references therein). Thanks to the stabilization effect of the classical
Boltzmann collision operator Q0, the classical method of moment production developed for the
classical Boltzmann equation can be applied (cf. [6, 35]) to studied the well-posedness of the
equation (1.12). However, this method cannot be used for the 4-wave kinetic equation since Q0

is missing there.

Besides the 4-wave kinetic equation, the 3-wave kinetic equation also plays an important role
in the theory of weak turbulence, and has been studied in [16, 2, 23, 11, 15] for the phonon
interactions in anharmonic crystal lattices, in [23] for stratified flows in the ocean, and in [48]
for capillary waves.

Finally, let us mention the (CR) equation, which is derived in [19, 8] and studied in [24, 7, 25],
which is a Hamiltonian equation whoses nonlinearity is given by the trilinear term T1 (defined
below).
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2 Main results

For the sake of simplicity, we impose the abbreviation f = f(t, p), f1 = f1(t, p), f2 = f2(t, p),
f3 = f3(t, p) and ω = ω(p), ω1 = ω(p1), ω2 = ω(p2), ω3 = ω(p3).

We consider the initial-value problems in R3 × [0, T ] of the 4-wave kinetic equation

∂tf = Q[f ] := T1(f, f, f) + T2(f, f, f)− 2T3(f, f, f),

f(0) = f0,
(2.1)

where

T1(f, g, h) :=

ˆ
R9

δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× f(p1)g(p2)h(p3) dp1dp2dp3,

T2(f, g, h) :=

ˆ
R9

δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× f(p)g(p2)h(p3) dp1dp2dp3,

T3(f, g, h) :=

ˆ
R9

δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× f(p)g(p1)h(p2) dp1dp2dp3.

(2.2)

We define the function spaces Lrs, r ∈ [1,∞], s ≥ 0 by the norms

‖f‖Lrs := ‖〈x〉sf‖Lr , 〈x〉 := (1 + |x|2)1/2. (2.3)

In the case r =∞ we require also that f is continuous, so we define

L∞s := {f ∈ C0(R3) : ‖f‖L∞s <∞}.

Our first main theorem concerns local well-posedness of the initial-value problem (2.1) in L∞s ,
s > 2. More precisely:
Theorem 2.1. (i) Assume that ω satisfies Assumption 1.1 and s > 2. Then the initial-value
problem (2.1) is locally well-posed in L∞s for s > 2, in the sense that for any R > 0 there is
T &s R

−2 such that for any initial-data f0 ∈ L∞s with ‖f0‖L∞s ≤ R, there is a unique solution
f in C1([0, T ] : L∞s ) of the initial-value problem (2.1). Furthermore, ‖f(t)‖L∞s ≤ 2R for any
t ∈ [0, T ] and the map f0 7→ f is continuous from L∞s to C1([0, T ] : L∞s ).

(ii) If furthermore f0 ≥ 0, then f(t) is non-negative for any t ∈ [0, T ].

In the special Schrödinger case, we prove also a stronger local-wellposedness theorem in L2
s,

s > 1/2. More precisely:
Theorem 2.2. (i) Assume that ω(p) = |p|2 and s > 1/2. Then the initial-value problem (2.1)
is locally well-posed in L2

s for s > 1/2: for any R > 0 there is T &s R
−2 such that for any

initial-data f0 ∈ L2
s with ‖f0‖L2

s
≤ R, there is a unique solution f in C1([0, T ] : L2

s) of the
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initial-value problem (2.1). Furthermore, ‖f(t)‖L2
s
≤ 2R for any t ∈ [0, T ] and the map f0 7→ f

is continuous from L2
s to C1([0, T ] : L2

s).

(ii) If f0 ≥ 0 then f(t) is non-negative for any t ∈ [0, T ].

Theorems 2.1 and 2.2 follow by fixed point arguments from the following propositions:
Proposition 2.3. Assume that ω satisfies Assumption 1.1, s > 2, and 0 ≤ γ < min(s − 2, 1).
Then the operators Tj, j ∈ {1, 2, 3}, defined in (2.2) are bounded from (L∞s )3 to L∞s+γ, i.e.

‖Tj(f, g, h)‖L∞s .s ‖f‖L∞s ‖g‖L∞s ‖h‖L∞s .

Proposition 2.4. Assume that ω(p) = |p|2 and s > 1/2. Then the operators Tj, j ∈ {1, 2, 3},
defined in (2.2) are bounded from (L2

s)
3 to L2

s, i.e.

‖Tj(f, g, h)‖L2
s
.s ‖f‖L2

s
‖g‖L2

s
‖h‖L2

s
.

Propositions 2.3 and 2.4 and Theorems 2.1 and 2.2 are proved in the next three sections. We
conclude this section with several remarks:
Remark 2.5. The above theorems are optimal in terms of the exponent s because it is not
possible to define the operators Tj if ω(p) = |p|2 and the input functions have general tails
decaying like |p|−2. The two theorems are also nearly critical since the spaces L∞s , s > 2, and
L2
s, s > 1/2, are nearly critical with respect to the scaling (1.3) of the equation.

Remark 2.6. We are working in dimension d = 3 mostly for the sake of concreteness. Similar
theorems hold in any dimension d ≥ 2, with the corresponding ranges of exponents s > d− 1 for
the L∞s local well-posedness theory, and s > (d− 2)/2 for the L2

s local well-posedness theory.
Remark 2.7. As long as ω(p) ∼ |p|2 for |p| → ∞, the stationary solutions (1.2) are on the
borderline of the local well-posedness theory, since they belong to the scale-invariant space L∞2 .
This only occurs in dimension 3, thus making dimension 3 critical in some sense.
Remark 2.8. It is probably possible to prove nearly critical L2

s local well-posedness theorems
for more general radial dispersion relations ω. However, one would likely have to assume some
additional curvature assumptions on ω, expressed in terms of bounds on the second derivative Ω′′,
in order to be able to run TT ∗ arguments for Radon transforms, as in section 4. For simplicity,
we consider here only the Schrödinger case ω(p) = |p|2.
Remark 2.9. It would be possible to prove identical local well-posedness results for the more
general equation ∂tf = a1T1(f, f, f) + a2T2(f, f, f) + a3T3(f, f, f), but the conservation law and
the positivity of the solution would be lost.
Remark 2.10. The solution given by Theorem 2.1 has the property that

f(t, p)− f0(p) ∈ C1([0, T ), L∞s+γ)

for some γ > 0 (as a consequence of Proposition 2.3). This means that the decay at ∞ of f(t)
is exactly the same as that of the data f0. This should of course be contrasted with the cases of
the classical Boltzmann equation [1, 4, 21, 22] and the quantum Boltzmann equation for bosons
at very low temperature [2] (this is also the weak turbulence kinetic equation for anharmonic
crystal lattices), for which the decay of the solution is immediately improved.
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Remark 2.11. For some data one can prove additional properties of the solution, such as
conservation laws. See section 6.

3 Proof of Proposition 2.3: L∞s (s > 2) boundedness of Tj

Notice that, in the case ω(p) = |p|2, the desired bound follows easily from the formulation (1.10).
The aim of this section is to explore the case of more general dispersion relations ω, for which
no such simple representation of the collision operator is available.

3.1 Boundedness of T1

Proposition 3.1. For s > 2 and 0 ≤ γ < min(s − 2, 1), and under Assumption 1.1, the
operator T1 is bounded from (L∞s )3 to L∞s+γ.

Proof. Step 1: first reduction. It suffices to prove that the following integral is bounded:

J := sup
p

˚
R9

〈p〉s+γ

〈p1〉s〈p2〉s〈p3〉s
δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3) dp1 dp2 dp3. (3.1)

Since in the above integral ω(p) ≤ ω(p2) + ω(p3), then either ω(p) ≤ 2ω(p2) or ω(p) ≤ 2ω(p3).
Suppose that ω(p) ≤ 2ω(p3), which implies, by Assumption 1.1, that 〈p〉 . 〈p3〉. We then infer
that

J . sup
p

˚
R9

〈p〉γ

〈p1〉s〈p2〉s
δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3) dp1 dp2 dp3.

Integrating out the p3 variable results in

J . sup
p

¨
R6

〈p〉γ

〈p1〉s〈p2〉s
δ(ω + ω1 − ω2 − ω(p+ p1 − p2)) dp1 dp2. (3.2)

Let us now set z = p2 and define the resonant manifold Sp,p1 to be the zero set of

G(z) := ω(p+ p1 − z) + ω(z)− ω(p)− ω(p1) = 0, (3.3)

which leads to the following representation of the right hand side of (3.2), (see [50], section 1.5)

J . sup
p

ˆ
R3

(ˆ
Sp,p1

〈p〉γ

〈p1〉s〈z〉s|∇zG(z)|
dµ(z)

)
dp1, (3.4)

where µ is the surface measure on Sp,p1 .
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Step 2: parameterizing the resonant manifold. Setting p + p1 = ρ, we now parameterize the
resonant manifold Sp,p1 . In order to do this, we compute the derivative of G

∇zG =
z − ρ
|z − ρ|

Ω′(|ρ− z|) +
z

|z|
Ω′(|z|).

In particular, let q be any vector orthogonal to ρ i.e. ρ · q = 0. The directional derivative of G
in the direction of q, with z = αρ+ q, α ∈ R, satisfies

q · ∇zG = |q|2
[Ω′(|ρ− z|)
|ρ− z|

+
Ω′(|z|)
|z|

]
> 0,

which means that G(z) is strictly increasing in any direction that is orthogonal to ρ. This proves
that the intersection between the surface Sp,p1 and the plane

Pα =
{
αρ+ q, ρ · q = 0

}
is either empty or the circle centered at αρ and of a finite radius rα, for α ∈ R.

As a consequence, we can parametrize Sp,p1 as follows. Let ρ⊥ be the vector orthogonal to both
ρ and a fixed vector e of R3 and let eθ be the unit vector in P0 = {ρ · q = 0} such that the angle
between ρ⊥ and eθ is θ. We parameterize Sp,p1 by (cf. [47]){

z = αρ+ rαeθ : θ ∈ [0, 2π], α ∈ Ap,p1
}
, (3.5)

where Ap,p1 is the set of α for which a solution to G(z) = 0 exists.

We can think of G as a function of α and r: G = G(r, α). We just saw that ∂rG > 0 for r > 0.
Therefore, by the implicit function theorem, the zero set of G can be parameterized as

{(α, r = rα), α ∈ Ap,p1},

where α 7→ rα is a smooth function on Ap,p1 vanishing on its boundary.

Next, we have by definition that G(zα) = 0 for all α and therefore, keeping θ fixed,

0 = ∂αzα · ∇zG = ∂αzα ·
(
zα − ρ
|zα − ρ|

Ω′(|zα − ρ|) +
zα
|zα|

Ω′(|zα|)
)

= ∂αzα ·
(

zα
|zα − ρ|

Ω′(|zα − ρ|) +
zα
|zα|

Ω′(|zα|)
)
− ∂αzα ·

ρ

|zα − ρ|
Ω′(|zα − ρ|)

=
1

2
∂α|zα|2

[Ω′(|ρ− zα|)
|ρ− zα|

+
Ω′(|zα|)
|zα|

]
− |ρ|2 Ω′(|ρ− zα|)

|ρ− zα|
.

(3.6)

Therefore,

∂α|zα|2 = 2

Ω′(|ρ−zα|)
|ρ−zα| |ρ|

2

Ω′(|ρ−zα|)
|ρ−zα| + Ω′(|zα|)

|zα|

. (3.7)
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This implies in particular that α 7→ |zα| is increasing on Ap,p1 . Defining r to be zero on the
complement of Ap,p1 , we get that α 7→ |zα| is an increasing function on R; therefore, the change
of coordinates α→ |zα| is well-defined.

Step 3: the surface measure on the resonant manifold Since ∂θeθ is orthogonal to both ρ and eθ,
we compute the surface area

dµ(z) = |∂αz × ∂θz|dαdθ =
∣∣∣(ρ+ ∂αrαeθ)× rα∂θeθ

∣∣∣dαdθ
=

√
|ρ|2r2

α +
1

4
|∂α(r2

α)|2dαdθ.
(3.8)

Using |z|2 = α2|ρ|2 + r2
α, we learn from the last line of (3.6) that

∂αr
2
α = 2|ρ|2

αΩ′(|zα|)
|zα| + (α− 1)Ω′(|ρ−zα|)

|ρ−zα|
Ω′(|ρ−zα|)
|ρ−zα| + Ω′(zα)

|zα|

. (3.9)

Now, let us compute |∇zG| under the new parameterization:

|∇zG|2 =

∣∣∣∣ zα|zα|Ω′(|zα|) +
zα − ρ
|zα − ρ|

Ω′(|zα − ρ|)
∣∣∣∣2

=

∣∣∣∣αρ+ q

|zα|
Ω′(|zα|) +

(α− 1)ρ+ q

|zα − ρ|
Ω′(|zα − ρ|)

∣∣∣∣2
= |ρ|2

[
α

Ω′(|zα|)
|zα|

+ (α− 1)
Ω′(|ρ− zα|)
|ρ− zα|

]2

+ r2
α

[
Ω′(|ρ− zα|)
|ρ− zα|

+
Ω′(|zα|)
|zα|

]2

.

In addition to (3.9), this implies that

|∇zG|2 =

∣∣∂αr2
α

∣∣2
4|ρ|2

[
Ω′(|ρ− zα|)
|ρ− zα|

+
Ω′(|zα|)
|zα|

]2

+ r2
α

[
Ω′(|ρ− zα|)
|ρ− zα|

+
Ω′(|zα|)
|zα|

]2

. (3.10)

Therefore
dµ(z)

|∇zG|
=

|ρ|
Ω′(|ρ−zα|)
|ρ−zα| + Ω′(|zα|)

|zα|

dα dθ. (3.11)

Introduce the variable u = |zα| =
√
α2|ρ|2 + r2

α as explained in Step 2; by (3.7) we get

dµ(z)

|∇zG|
=

|ρ− zα|
Ω′(|ρ− zα|)|ρ|

u du dθ.

By Assumption 1.1, |ρ−zα|
Ω′(|ρ−zα|) . 1, and therefore

dµ(z)

|∇zG|
.

u

|ρ|
dudθ. (3.12)
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Step 4: finiteness of the integral. Adopting the coordinates defined above and using (3.12) yields

J . sup
p

ˆ
R3

〈p〉γ

〈p1〉s

ˆ ∞
0

ˆ 2π

0
〈u〉−s |u|

|ρ|
dθ du dp1,

Changing variables p1 → ρ = p+ p1, this becomes

J . sup
p

ˆ
R3

〈p〉γ

〈ρ− p〉s

ˆ ∞
0

ˆ 2π

0
〈u〉−s |u|

|ρ|
dθ du dρ.

Performing the integrations in z and θ, this leads to

J . sup
p

ˆ
R3

〈p〉γ

〈ρ− p〉s
1

|ρ|
dρ.

Writing ρ = |ρ|σ where σ ∈ S2 and using the inequality∗

ˆ
S2

1

〈A+ rσ〉s
dσ . 〈|A| − r〉2−s〈r〉−2 ∀A ∈ R3, r > 0, s > 2, (3.13)

we get

J . sup
p

ˆ ∞
0

|ρ|〈p〉γ

〈|ρ| − |p|〉s−2〈ρ〉2
d|ρ|,

which is bounded when s > 2 and 0 ≤ γ < min(s− 2, 1).

3.2 Boundedness of T2

Proposition 3.2. For s > 2 and 0 ≤ γ < s− 2, and under Assumption 1.1, the operator T2 is
bounded from (L∞s )3 to L∞s+γ.

Proof. Step 1: reduction to the boundedness of Q1. Defining

Q1(g, h)(p) =

¨
R6

δ(ω + ω1 − ω2 − ω(p+ p1 − p2))g(p2)h(p+ p1 − p2) dp1 dp2, (3.14)

it suffices to prove that
‖Q1(g, h)‖L∞γ . ‖g‖L∞s ‖h‖L∞s ,

∗In order to prove this inequality, simply observe that
ˆ
S2

1

〈A+ rσ〉s dσ =

ˆ π

0

sinφ

(|A|2 + r2 − 2|A|r cosφ+ 1)s/2
dφ.

The main contribution is
ˆ π/2

0

sinφ

(|A|2 + r2 − 2|A|r cosφ+ 1)s/2
dφ =

ˆ 1

0

dt

(〈|A| − r〉2 + 2|A|rt)s/2
.
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Taking the L∞ norm of Q1(g, h), we obtain

‖Q1(g, h)‖L∞γ ≤ sup
p∈R3

‖g‖L∞s ‖h‖L∞s ×

×
¨

R6

δ(ω + ω1 − ω2 − ω(p+ p1 − p2))〈p2〉−s〈p+ p1 − p2〉−s〈p〉γ dp1 dp2.
(3.15)

Step 2: upper bound on |p|. Keeping the notations of Section 3.1, we deduce from the inequali-
ties ω(p) + ω(p1) = ω(p2) + ω(p3) and p+ p1 = p2 + p3 that

ω(p) ≤ ω(z) + ω(ρ− z).

We now use Assumption 1.1 to bound

ω(p) ≤ ω(z) + ω(ρ− z) ≤ 2Ω (max(|ρ|, |ρ− z|)) ≤ Ω(c2 max(|ρ|, |ρ− z|)).

Since Ω is increasing, this implies that

|p| . |ρ|+ |ρ− z|.

Step 3: parameterizing the integral. Adopting the same parameterization as in Section 3.1, it
appears that (3.15) would follow from a bound on

sup
p∈R3

ˆ
R3

(ˆ
Sp,p1

〈p〉γ〈z〉−s〈p+ p1 − z〉−s

|∇zG(z)|
dµ(z)

)
dp1. (3.16)

By the parametrization (3.5) and Step 2, matters reduce to bounding

sup
p∈R3

ˆ
R3

ˆ ∞
0

ˆ 2π

0
1|p|.|ρ|+|ρ−z|

〈p〉γ |z|
〈z〉s〈ρ− z〉s|ρ|

dθ d|z| dp1,

where 1|p|.|ρ|+|ρ−z| is the characteristic function of {|p| . |ρ| + |ρ − z|}. On the one hand,
integrating in θ is harmless; and on the other hand, in the above integral, either |p| . |z| or
|p| . |ρ− z|. Therefore, it suffices to bound

sup
p∈R3

ˆ
R3

ˆ ∞
0

|z|
〈z〉s1〈ρ− z〉s2 |ρ|

d|z| dp1,

where s1, s2 > 2. Changing variables from p1 to ρ, this becomes

sup
p∈R3

ˆ
R3

ˆ ∞
0

|z|
〈z〉s1〈ρ− z〉s2 |ρ|

d|z|dρ.

Writing ρ as |ρ|ω and using (3.13), we obtain that the above is bounded by

sup
p∈R3

ˆ ∞
0

ˆ ∞
0

|z||ρ|
〈z〉s1〈|ρ| − |z|〉s2−2〈ρ〉2

d|z|d|ρ|, (3.17)

which is finite for s1, s2 > 2. This is the desired result!
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3.3 Boundedness of T3

Proposition 3.3. For s > 2 and 0 ≤ γ < min(s − 2, 1), and under Assumption 1.1, the
operator T3 is bounded from (L∞s )3 to L∞s+γ.

Proof. Defining

Q2(g, h) =

ˆ
R6

δ(ω(p) + ω(p1)− ω(p2)− ω(p+ p1 − p2))g(p1)h(p2) dp1 dp2, (3.18)

it suffices to show that
‖Q2(g, h)‖L∞γ ≤ C‖g‖L∞s ‖h‖L∞s .

Similar as in section 3.2, we set ρ = p+ p1, and define G and Sp,p1 in exactly the same way with
(3.3). As a result, Q2(g, h) can be recast under the following form.

Q2(g, h) =

ˆ
R3

g(p1)

(ˆ
Sp,p1

h(z)

|∇G(z)|
dz

)
dp1. (3.19)

Proceeding as in the proof of Proposition 3.1, it suffices to prove the boundedness of

J = sup
p∈R3

(ˆ
R3

〈p1〉−s〈p〉γ
(ˆ c2(|p|+|p1|)

0

ˆ 2π

0
〈z〉−s |z|

|ρ|
dθd|z|

)
dp1

)
. (3.20)

The right hand side of (3.20) contains an integral with respect to p1, which can be switched into
an integral in ρ by the change of variable p1 → ρ, in the following way

J . sup
p∈R3

(ˆ
R3

〈ρ− p〉−s〈p〉γ
(ˆ c2(|p|+|ρ−p|)

0

ˆ 2π

0
〈z〉−s |z|

|ρ|
dθd|z|

)
dρ

)

. sup
p∈R3

(ˆ
R3

ˆ ∞
0
〈ρ− p〉−s〈p〉γ〈z〉−s |z|

|ρ|
d|z|dρ

)
. sup

p∈R3

(ˆ
R3

〈ρ− p〉−s〈p〉γ 1

|ρ|
dρ

)
,

(3.21)

where the last inequality is due to the fact that s > 2.

Writing ρ as |ρ|ω and using (3.13), we obtain

J . sup
p∈R3

(ˆ
R3

〈ρ− p〉−s〈p〉γ 1

|ρ|
dρ

)
. sup

p∈R3

(ˆ ∞
0

〈p〉γ |ρ|
〈ρ〉2〈|ρ| − |p|〉s−2

d|ρ|
)
.

(3.22)

which is bounded when s > 2 and 0 ≤ γ < min(2− s, 1).
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4 Proof of Proposition 2.4: L2
s(s > 1/2) boundedness of Tj

In this section we assume that ω(p) = |p|2 and prove the L2
s bounds in Proposition 2.4. One

can think of the operators Tj as bilinear and trilinear operators defined by integrating along
moving surfaces in Euclidean spaces. Such operators are called Radon transforms, and their
boundedness properties have been studied extensively in Harmonic Analysis (see for example
the classical papers [55, 58, 59]).

One of the main ideas in the study of Radon transforms on Euclidean spaces is the use of TT ∗

arguments. We adapt this technique in our setting to bound the trilinear operators Tj . We
remark that TT ∗ arguments are usually optimal if one uses L2 based spaces; this is the main
reason for choosing the spaces L2

s as the local well-posedness spaces in Theorem 2.2.

4.1 The operator T1

We consider first the trilinear operator T1 and we prove the following:
Lemma 4.1. If s > 1/2 and T1 is defined as in (2.2) then

‖T1‖L2
s×L2

s×L2
s→L2

s
.s 1. (4.1)

Proof. We adapt an argument from [7]. We start from the identity

δ(q) =
1

2π

ˆ
R
eiqξ dξ.

For simplicity of notation, let Q := T1[f, g, h]. We have

Q(p) = C

ˆ
(Rd)3×R×R

eiy·(p+p1−p2−p3)eit(ω(p)+ω(p1)−ω(p2)−ω(p3))f(p1)g(p2)h(p3) dp1dp2dp3dtdy

= C

ˆ
R×R

eiy·peitω(p)Lf(y, t)Lg(y, t)Lh(y, t) dtdy,

where

La(x, t) :=

ˆ
Rd
a(q)e−iq·xe−iω(q)t dq. (4.2)

Therefore, with G(y, t) := Lf(y, t)Lg(y, t)Lh(y, t),

‖〈p〉sQ(p)‖L2 .
∥∥∥ˆ

R
F−1(G)(p, t)eitω(p)〈p〉s dt

∥∥∥
L2

.
ˆ
R
‖G(., t)‖Hs dt,

where Hs denote the usual Sobolev spaces on R3. Notice that, for any t ∈ R,

‖G(., t)‖Hs .
∑

{a,b,c}={f,g,h}

‖La(., t)‖Hs‖Lb(., t)‖L∞‖Lc(., t)‖L∞ .
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Moreover, for any a ∈ {f, g, h},

sup
t∈R
‖La(., t)‖Hs . ‖a‖L2

s
.

In view of the last three inequalities, for (4.1) it suffices to prove the linear estimates[ ˆ
R
‖Lb(., t)‖2L∞ dt

]1/2
.s ‖b‖L2

s
(4.3)

for any s > 1/2 and b ∈ L2
s.

The estimates (4.3) are Strichartz-type linear estimates. To prove them we use a TT ∗-type
argument. We may assume that ‖b‖L2

s
= 1 and b(p) = h(p)〈p〉−s, ‖h‖L2 = 1. For (4.3) it suffices

to show that ∣∣∣ ˆ
R3×R

Lb(x, t)F (x, t) dxdt
∣∣∣ .s 1

provided that
[ ´

R ‖F (., t)‖2L1 dt
]1/2

. 1. Using (4.2), this is equivalent to proving that∥∥∥〈p〉−s ˆ
R3×R

F (x, t)e−ip·xe−itω(p) dxdt
∥∥∥
L2

.s 1,

where the L2 norm is taken in the p variable. Expanding the L2 norm in p, this is equivalent to
showing that∣∣∣ ˆ

R3

ˆ
R3×R

ˆ
R3×R

〈p〉−2sF (x, t)e−ip·xe−itω(p)F (x′, t′)eip·x
′
eit
′ω(p) dxdtdx′dt′dp

∣∣∣ .s 1. (4.4)

Let

K(y, t) :=

ˆ
R3

〈p〉−2se−ip·ye−itω(p) dp, (4.5)

so the left-hand side of (4.4) is bounded by

C

ˆ
R3×R

ˆ
R3×R

|F (x, t)||F (x′, t′)||K(x− x′, t− t′)| dxdtdx′dt′.

Since
[ ´

R ‖F (., t)‖2L1 dt
]1/2

. 1, and recalling that s > 1/2, for (4.3) it suffices to prove that
there is δ = δ(s) > 0 such that

|K(y, t)| .δ |t|−1+δ〈t〉−2δ, (4.6)

for any (y, t) ∈ R3 × R. Recalling that ω(p) = |p|2, this is a standard dispersive bound on the
kernel of the Schrödinger evolution and can be proved by oscillatory integral estimates.
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4.2 The operator T2

Notice that T2(f, g, h) = f ·Q2(g, h) where, by definition,

Q2(F,G)(p) :=

ˆ
R3×R3×R3

δ(p+ p1 − x− y)δ(ω(p) + ω(p1)− ω(x)− ω(y))F (x)G(y) dxdydp1

=

ˆ
R3×R3

δ(ω(p) + ω(x+ y − p)− ω(x)− ω(y))F (x)G(y) dxdy.

(4.7)

The boundedness of the operator T2 follows from the following lemma:
Lemma 4.2. If ω(x) = |x|2 and s > 1/2 then

‖Q2(F,G)‖L∞ .s ‖F‖L2
s
‖G‖L2

s
. (4.8)

Proof. We replace the δ0 function with a smooth version. More precisely, we fix a smooth even
function ψ : R→ [0,∞) supported in the interval [−1, 1] with

´
R ψ(t) dt = 1. For any ε ∈ (0, 1]

let ψε(t) := (1/ε)ψ(t/ε). Since

ω(p) + ω(x+ y − p)− ω(x)− ω(y) = 2(x− p) · (y − p),

for (4.8) it suffices to prove that∣∣∣ˆ
R3×R3

ψε((x− p) · (y − p))F (x)G(y) dxdy
∣∣∣ .s ‖F‖L2

s
‖G‖L2

s
(4.9)

for any p ∈ R3 and ε ∈ (0, 1]. We let

f(x) := 〈x+ p〉sF (x+ p), g(y) := 〈y + p〉sG(y + p).

After changes of variables, for (4.9) it suffices to prove that∣∣∣ˆ
R3×R3

ψε(x · y)
f(x)

〈x+ p〉s
g(y)

〈y + p〉s
dxdy

∣∣∣ .s ‖f‖L2‖g‖L2 . (4.10)

This is equivalent to proving L2 boundedness of a linear operator, i.e.

‖L2g‖L2 .s ‖g‖L2 where L2g(x) :=

ˆ
R3

ψε(x · y)
1

〈x+ p〉s
g(y)

〈y + p〉s
dy, (4.11)

uniformly for any p ∈ R3 and ε ∈ (0, 1].

To prove (4.11) we use a TT ∗-type argument. We may assume g ≥ 0 and write

‖L2g‖2L2 =

ˆ
R3×R3×R3

ψε(x · y)ψε(x · y′)
1

〈x+ p〉2s
g(y)

〈y + p〉s
g(y′)

〈y′ + p〉s
dydy′dx

=

ˆ
R3×R3

Ks(y, y
′)

g(y)

〈y + p〉s
g(y′)

〈y′ + p〉s
dydy′,
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where

Ks(y, y
′) = Ks,ε,p(y, y

′) :=

ˆ
R3

ψε(x · y)ψε(x · y′)
1

〈x+ p〉2s
dx.

Using Lemma 4.3 (ii) below, we have

|Ks(y, y
′)| .s

1

|y||y′|

( 1

|ŷ − ŷ′|
+

1

|ŷ + ŷ′|

)
,

where x̂ := x/|x| for any x ∈ R3. For (4.11) it suffices to prove that∣∣∣ ˆ
R3×R3

1

|y||y′|
1

|ŷ − ŷ′|
· g(y)

〈y + p〉s
h(y′)

〈y′ + p′〉s
dydy′

∣∣∣ .s ‖g‖L2‖h‖L2 , (4.12)

for any g, h ∈ L2(R3) and any p, p′ ∈ R3.

For θ, θ′ ∈ S2 let

g̃(θ) :=
[ˆ ∞

0
|g(rθ)|2r2 dr

]1/2
, h̃(θ′) :=

[ˆ ∞
0
|h(rθ′)|2r2 dr

]1/2
.

We make the changes of variables y = rθ and y′ = r′θ′ in the integral in the left-hand side of
(4.12). Notice that

ˆ ∞
0

g(rθ)

〈rθ + p〉s
r dr .s g̃(θ),

ˆ ∞
0

h(r′θ′)

〈r′θ′ + p′〉s
r′ dr′ .s h̃(θ′),

using the Cauchy-Schwarz inequality and (4.13). Thus the integral in the left-hand side of (4.12)
is bounded by

Cs

∣∣∣ ˆ
S2×S2

1

|θ − θ′|
· g̃(θ)h̃(θ′) dθdθ′

∣∣∣.
Using Schur’s lemma this is bounded by ‖g̃‖L2(S2)‖h̃‖L2(S2), and the desired estimates (4.12)
follow. This completes the proof.

We summarize below two technical estimates we used in the proof of Lemma 4.2.
Lemma 4.3. (i) If θ ∈ S2 and p ∈ R then

ˆ
R

1

〈rθ + p〉2s
dr .s 1. (4.13)

(ii) Assume that ε1, ε2 ∈ [0, 1), a, b ∈ R, p ∈ R3, u, v ∈ S2, and s > 1/2. Then

ˆ
R3

1[0,ε1](x · v − a)1[0,ε2](x · w − b)
1

〈x+ p〉2s
dx .s

ε1ε2

|v − w|
+

ε1ε2

|v + w|
. (4.14)
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Proof. (i) By rotation invariance, we may assume ω = (1, 0, 0). The bound (4.13) is then implied
by the easy estimate

sup
q1,q2,q3∈R

ˆ
R

1[
(r + q1)2 + q2

2 + q2
3 + 1

]s dr .s 1. (4.15)

(ii) We may assume ε1 ≤ ε2. By rotation invariance, we may assume v = (1, 0, 0) and w =
(w1, w2, 0). Clearly, |w2| ≈ min(|v − w|, |v + w|). Notice also that

x · w − b = x1w1 + x2w2 − b = x2w2 − (b− aw1) + (x1 − a)w1.

Since |w1| ≤ 1, the integral in the left-hand side of (4.14) is bounded by
ˆ
R3

1[0,ε1](x1 − a)1[−4ε2,4ε2](x2w2 − b′)
1

〈x+ p〉2s
dx.

The desired conclusion follows using (4.15) and integrating first the variable x3.

4.3 The operator T3

As in the previous subsection we notice that T3(f, g, h) = f ·Q3(g, h) where

Q3(F,G)(p) :=

ˆ
R3×R3×R3

δ(p− p3 + x− y)δ(ω(p)− ω(p3) + ω(x)− ω(y))F (x)G(y) dxdydp3

=

ˆ
R3×R3

δ(ω(p)− ω(x− y + p) + ω(x)− ω(y))F (x)G(y) dxdy.

(4.16)

In view of the definitions, boundedness of T3 follows from the following lemma:
Lemma 4.4. If ω(x) = |x|2 as before and s > 1/2 then

‖Q3(F,G)‖L∞ .s ‖F‖L2
s
‖G‖L2

s
. (4.17)

Proof. As before we replace δ with ψε and notice that

ω(p)− ω(x− y + p) + ω(x)− ω(y) = 2(x− y) · (y − p).

We let f(x) = 〈x+ p〉sF (x+ p) and g(y) = 〈y+ p〉sG(y+ p) as in the proof of Lemma 4.2. After
changes of variables, for (4.17) it suffices to prove that

‖L3g‖L2 .s ‖g‖L2 where L3g(x) :=

ˆ
R3

ψε((x− y) · y)
1

〈x+ p〉s
g(y)

〈y + p〉s
dy, (4.18)

uniformly for p ∈ R3 and ε ∈ (0, 1]. This follows using the TT ∗ argument as in Proposition 4.2,
the uniform bounds in Lemma 4.3 (ii), and (4.12).
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5 Proof of Theorems 2.1 and 2.2

The two theorems follow by similar arguments from Propositions 2.3 and 2.4. For concreteness,
we provide all the details only for the proof of Theorem 2.2.

Proof of Theorem 2.2. (i) Let T := A−1
s R−2 for a sufficiently large constant As. We define the

approximating sequence

f0(t) := f0, fn+1(t) := f0 +

ˆ t

0
Q(fn(τ)) dτ, (5.1)

on the interval [0, T ]. Using Proposition 2.4 it follows easily, by induction that fn ∈ C1([0, T ] :
L2
s) and supt∈[0,T ] ‖fn(t)‖L2

s
≤ 2R. Using again Proposition 2.4 it follows that the sequence fn is

Cauchy in C([0, T ] : L2
s), thus convergent to a function f ∈ C([0, T ] : L2

s) that has the properties

f(0) = f0, f(t) = f0 +

ˆ t

0
Q[f(τ)] dτ, sup

t∈[0,T ]
‖f(t)‖L2

s
≤ 2R. (5.2)

In particular ∂tf = Q[f ], thus f ∈ C1([0, T ] : L2
s). Uniqueness and continuity of the flow map

f0 → f follow again from the contraction principle.

(ii) Clearly, f is real-valued if f0 is real-valued. To prove non-negativity, we need to be slightly
more careful because the simple recursive scheme (5.1) does not preserve non-negativity.

Step 1: We construct a different approximating sequence, based on the temporal forward Euler

scheme: for any n ∈ N we set ∆n = T/n and define the sequence {gn,m}n−1
i=0 by

gn,0 := f0, gn,m+1 := gn,m + ∆nQ[gn,m]. (5.3)

Then we define gn for t ∈ [m∆n, (m+ 1)∆n] by the formula

gn(t) := gn,m + (t−m∆n)Q[gn,m]

=
1

∆n

(
(t−m∆n)gn,m+1 + ((m+ 1)∆n − t)gn,m

)
.

(5.4)

Using Proposition 2.4 inductively and the assumption T = A−1
s R−2, it is easy to verify that

‖gn,m‖L2
s
≤ 2R for any n ≥ 1 and m ∈ {0, . . . , n− 1}. (5.5)

In particular, using the definition (5.4),

gn ∈ C([0, T ] : L2
s) for any n ≥ 1 and sup

t∈[0,T ]
‖gn(t)‖L2

s
≤ 2R. (5.6)

Step 2: We show now that

lim
n→∞

gn = f in C([0, T ] : L2
s). (5.7)
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Let δn := supt∈[0,T ] ‖gn(t) − f(t)‖L2
s
. Given t ∈ [0, T ] we fix m ∈ {0, 1, . . . , n − 1} such that

mT/n ≤ t ≤ (m+ 1)T/n. Then we write, using (5.2)–(5.4),

gn(t)− f(t)

= {gn(t)− gn,m}+
{
gn,m − f0 −

ˆ mT/n

0
Q[f(τ)] dτ

}
−
ˆ t

mT/n
Q[f(τ)] dτ

= I(t) + II(t) + III(t),

(5.8)

where

I(t) := (t−mT/n)Q[gn,m],

II(t) :=

m−1∑
j=0

ˆ (j+1)T/n

jT/n

{
Q[gn,j ]−Q[f(τ)]

}
dτ,

III(t) := −
ˆ t

mT/n
Q[f(τ)] dτ.

Using Proposition 2.4 and the bounds (5.2) and (5.5) we estimate

‖I(t)‖L2
s

+ ‖III(t)‖L2
s
. (T/n)R3 . R/n. (5.9)

We estimate also, for any τ ∈ [jT/n, (j + 1)T/n],∥∥Q[gn,j ]−Q[f(τ)]
∥∥
L2
s
.
∥∥Q[gn,j ]−Q[gn(τ)]

∥∥
L2
s

+
∥∥Q[gn(τ)]−Q[f(τ)]

∥∥
L2
s

. (T/n)R5 + δnR
2,

using Proposition 2.4 and recalling the definition δn := supt∈[0,T ] ‖gn(t)− f(t)‖L2
s
. Thus

‖II(t)‖L2
s
. R/n+ δn(TR2). (5.10)

Since TR2 ≤ A−1
s � 1, it follows from (5.8)–(5.10) that δn . R/n. The desired conclusion (5.7)

follows.

Step 3: Finally, we show that all the functions gn are non-negative. In view of the defintion (5.4),
it suffices to prove that the functions gn,m are non-negative for any n ≥ 1 and m ∈ {0, . . . , n−1}.
We prove this by induction over m. The case m = 0 follows from the hypothesis f0 ≥ 0.
Moreover, recalling the definition (2.1),

gn,m+1 ≥ gn,m + ∆n

[
T2(gn,m, gn,m, gn,m) + T3(gn,m, gn,m, gn,m)

]
.

Recall that Tk(gn,m, gn,m, gn,m) = gn,m · Qk(gn,m, gn,m), k ∈ {1, 2}, see definitions (4.7) and
(4.16). Using Lemmas 4.2 and 4.4, it follows that

gn,m+1 ≥ (1− CsR2T/n)gn,m ≥ (1− 1/(2n))gn,m.

The non-negativity of the functions gn,m follows. This implies the non-negativity of the solution
f , as a consequence of (5.7).
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6 Further results

Define the function space Lrs by the norm

‖f‖Lrs = ‖(1 + ωp)
sf‖Lr .

Notice that our theorems 2.1 and 2.2 are valid for the case where the initial condition does not
belong to L1

1. In this case, moment estimate techniques, such as those used in [6, 2] are not
applicable.

Now, if we consider the 4-wave turbulence kinetic equation (1.1) (or (2.1)), and suppose in
addition that f0 ∈ L1

1; similar to the case of the classical Boltzmann equation [61], we also have
the conservation of mass, momentum and energy of solutions to (1.1).

Taking any ϕ ∈ Cc(R3) as a test function in (1.1), the following weak formulation holds
true ˆ

R3

Q[f ]ϕdp =

ˆ
R9

δ(p+ p1 − p2 − p3)δ(ω + ω1 − ω2 − ω3)×

× ff1(f2 + f3)[ϕ2 + ϕ3 − ϕ− ϕ1]dp1dp2dp3dp,

(6.1)

in which, again, we have used the abbreviation ϕ = ϕ(t, p), ϕ1 = ϕ(t, p1), ϕ2 = ϕ(t, p2),
ϕ3 = ϕ(t, p3). By choosing ϕ to be 1, p or ω, the right hand side of (6.1) vanishes.

Since

∂t

ˆ
R3

fϕdp =

ˆ
R3

Q[f ]ϕdp,

the following conservation laws are then satisfied

∂t

ˆ
R3

fdp = ∂t

ˆ
R3

fpidp = ∂t

ˆ
R3

fωdp = 0, (6.2)

with p = (p1, p2, p3), i ∈ {1, 2, 3}, or equivalently

ˆ
R3

f(t, p)dp =

ˆ
R3

f0(p)dp,

ˆ
R3

f(t, p)pidp =

ˆ
R3

f0(p)pidp,

ˆ
R3

f(t, p)ωpdp =

ˆ
R3

f0(p)ωpdp.

(6.3)

By the same argument used in (ii) of the proofs of Theorem 2.1 and Theorem 2.2, we obtain the
following theorem.
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Theorem 6.1. Assume that ω and the positive initial condition f0 satisfy the assumptions of
Theorem 2.1 and Theorem 2.2. In addition, suppose f0 ∈ L1

1. Then the same conclusion of
Theorem 2.1 and Theorem 2.2 holds true. Furthermore, f ∈ C([0, T ] : L1

1) and f also satisfies
the conservation laws (6.3).
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