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Modélisation Mathématique et Analyse Numérique

PARALLELIZING THE KOLMOGOROV FOKKER PLANCK

EQUATION

Luca Gerardo-Giorda, Minh-Binh Tran1

Abstract. We design two parallel schemes, based on Schwarz Waveform Relaxation
(SWR) procedures, for the numerical solution of the Kolmogorov equation. The latter is
a simplified version of the Fokker-Planck equation describing the time evolution of the
probability density of the velocity of a particle. SWR procedures decompose the spatio-
temporal computational domain into subdomains and solve (in parallel) subproblems,
that are coupled through suitable conditions at the interfaces to recover the solution
of the global problem. We consider coupling conditions of both Dirichlet (Classical
SWR) and Robin (Optimized SWR) types. We prove well-posedeness of the schemes
subproblems and convergence for the proposed algorithms. We corroborate our findings
with some numerical tests.
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1. Introduction

The Fokker-Planck equation describes the time evolution of the probability density function of
the velocity of a particle. It reads for (t, x, v) ∈ Rd+ × Rd × Rd, (d ≥ 1)

∂tu+ v · ∇xu−∇xV (x) · ∇vu = ∇v · (∇vu+ vu), (1.1)

where V (x) is the external potential. Together with the theoretical study of the equation ( [11],
[12]), there are a lot of numerical studies on the Fokker-Plank and related equations ( [6], [5], [4],
[27], [30], [25], [9]), fractional Fokker-Plank equation ( [10]), Wigner-Fokker-Plank equation ( [15]),
Fokker-Planck-Landau equation ( [3], [28], [14]), Vlasov-Fokker-Planck system ( [1], [8]), Vlasov-
Poisson-Fokker-Planck system ( [32]), Maxwell-Fokker-Planck-Landau equation ( [13]), Vlasov-
Fokker-Planck-Landau equation ( [7]). However, up to our knowledge, there has been no domain
decomposition scheme to parallelize the numerical resolution of these types of kinetic equations.
Parallel computing is a form of computation in which calculations are carried out in parallel,
based on the principle that large problems can be divided into smaller ones. Due to the physical
constraints of computers, parallelism has got more and more attention in the recent years. In the

Keywords and phrases: Domain decomposition, Schwarz waveform relaxation methods, optimized Schwarz, Kol-

mogorov equation, Fokker-Plank equation, kinetic equations.

1 Basque Center for Applied Mathematics Mazarredo 14, 48009 Bilbao Spain Email: lgerardo@bcamath.org,
tbinh@bcamath.org

c© EDP Sciences, SMAI 1999



2 TITLE WILL BE SET BY THE PUBLISHER

last two decades, domain decomposition methods have become a very useful tool to parallelize
the numerical resolution of partial differential equations numerically. Schwarz waveform relaxation
methods, together with its accelerated version optimized Schwarz waveform relaxation algorithms,
is a new class of domain decomposition algorithms adapted to the context of studying evolution
equations numerically. For a survey on this, we refer to [23] and the pioneering works [22], [18],
[21], [19], [20], [17].
The main feature of our present work is to design parallel schemes based on the Schwarz waveform
relaxation methods to solve numerically a simplified version of the Fokker-Planck model (1.1): the
Kolmogorov equation

∂u

∂t
+ v

∂u

∂x
− ∂2u

∂v2
= f, (1.2)

where f is some external force. As we can see from its form, the Kolmogorov equation diffuses

not only in the velocity variable, since it contains the diffusion term ∂2u
∂v2 , but also in the space

variable, because of the hidden interaction between the transport term v ∂u∂x and the diffusion term
∂2u
∂v2 . The hypoellipticity and the asymptotic behavior of this operator have been studied in the
work of L. Hormander [24] and of C. Villani [38]. Recently, the null controllability property of this
operator has been explored deeply by K. Beauchard and E. Zuazua in [2].
Since the principal part of the operator involves the second derivatives in v, we design some
Schwarz waveform relaxation algorithms with Dirichlet (classical Schwarz method) or Robin (op-
timized Schwarz method) transmission condition for this equation, by splitting the domain in the
v direction. For the sake of simplicity, we only split the domain into two subdomains, however,
the extension to a larger number of subdomains does not present any theoretical difficulties.
We provide some results on the existence and uniqueness of a solution for the Kolmogorov equa-
tion with different boundary conditions, in order to prove that our algorithms are well-posed.
The convergence proof of Schwarz methods at the continuous level has been a very difficult task.
In [35], [36], [33], [34], [37] a new class of techniques has been introduced in order to study this
convergence problem of domain decomposition methods. Based on these techniques, we give a
new proof of the convergence of our algorithms by some maximum principles and some energy
estimates.
The structure of the paper is the following:
Section 2 is devoted to the definition of the equation and the algorithms. In Section 3 we prove
existence and uniqueness results for (2.1) with Dirichlet and Robin boundary conditions, ensuring
the well-posedenss of the algorithms introduced in Section 2. In Section 4 and 5 we prove con-
vergence for the Classical and Optimized Schwarz Waveform Relaxation algorithms, respectively.
Section 6 is devoted to numerical results, while the conclusions of the paper are drawn in Section
7.

2. General Setting

We are interested in the following 2 dimensional Kolmogorov model of [2]
∂u
∂t + v ∂u∂x −

∂2u
∂v2 = f, for (t, x, v) in (0,∞)× Ω := (0,∞)× T× (−R,R),

u(t, x,−R) = u(t, x,R) = 0, for (t, x) in (0,∞)× T,

u(0, x, v) = u0(x, v), for (x, v) in T× (−R,R),

(2.1)

where T is the periodic domain R/Z, f ∈ C([0,∞), L2(T, L2(−R,R)))∩ C1(0,∞, L2(T, L2(−R,R)))
∩L∞(0,∞, L2(T, L2(−R,R))) ∩ L∞((0,∞) × T × (−R,R)) ∩ L2(0,∞, L2(T, L2(−R,R))), u0 ∈
L2(T, H2(−R,R)).
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It is proved in [2] that the fundamental solution of the 2 dimensional Kolmogorov equation has the
form of a Gaussian. Therefore, similar to the heat equation, in order to perform numerical compu-
tations, which only work for bounded domains, in this work we do a truncation of the whole space
R2 to a bounded domain (−R,R)× T and impose homogeneous Dirichlet and periodic boundary
conditions.
Notice that our results are valid for the general, multidimensional case. However, for the sake
of simplicity in presentation and to avoid unnecessarily heavy notations, we consider here the 2
dimensional case as studied in [2].
Parallel domain decomposition algorithms consist of dividing the domain Ω into a number of (pos-
sibly overlapping) regions, and solve (2.1) in parallel in each subdomain. The solution to the global
problem (2.1) in Ω is recovered through suitable coupling conditions at the interfaces between sub-
domains. For the sake of simplicity in presentation, we consider here the domain Ω divided into
two parts Ω1 := T× (−R,L2) and Ω2 := T× (L1, R), where −R < L1 < L2 < R, and solve (2.1)
parallely on each subdomain Ω1 and Ω2.
The classical Schwarz waveform relaxation algorithm for (2.1) is then written

∂un
1

∂t + v
∂un

1

∂x −
∂2un

1

∂v2 = f, for (t, x, v) in (0,∞)× Ω1,

un1 (t, x,−R) = 0, for (t, x) in (0,∞)× T,

un1 (0, x, v) = u0(x, v), for (x, v) in Ω1,

un1 (t, x, L1) = un−1
2 (t, x, L1), for (t, x) in (0,∞)× T,

(2.2)

and 

∂un
2

∂t + v
∂un

2

∂x −
∂2un

2

∂v2 = f, for (t, x, v) in (0,∞)× Ω2,

un2 (t, x,R) = 0, for (t, x) in (0,∞)× T,

un2 (0, x, v) = u0(x, v), for (x, v) in Ω2,

un2 (t, x, L2) = un−1
1 (t, x, L2), for (t, x) in (0,∞)× T,

the initial guess u0
1(t, x, L2) and u0

2(t, x, L1) are chosen arbitrarily in L∞(0,∞, L∞(T))∩L2(0,∞, L∞(T))∩
C1(0,∞, L∞(T)) ∩ C([0,∞), L∞(T)) and satisfy the compatibility conditions of the equations:

u0
1(0, x, L2) = u0(x, L2), on T

u0
2(0, x, L1) = u0(x, L1), on T.

When n tends to ∞, un1 and un2 are expected to converge to u on Ω1 and Ω2.
For any two positive numbers p, q, the optimized Schwarz waveform relaxation algorithm for (2.1)
is defined by replacing the Dirichlet transmission condition in (2.2)

∂un
1

∂t + v
∂un

1

∂x −
∂2un

1

∂v2 = f, for (t, x, v) in (0,∞)× Ω1,

un1 (0, x, v) = u0(x, v), for (x, v) in Ω1,

un1 (t, x,−R) = 0, for (t, x) in (0,∞)× T,

(p+ ∂
∂v )un1 (t, x, L2) = (p+ ∂

∂v )un−1
2 (t, x, L2), for (t, x) in (0,∞)× T,

(2.3)
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and 

∂un
2

∂t + v
∂un

2

∂x −
∂2un

2

∂v2 = f, in (0,∞)× Ω2,

un2 (0, x, v) = u0(x, v), for (x, v) in Ω2,

un2 (t, x,R) = 0, for (t, x) in (0,∞)× T,

(q − ∂
∂v )un2 (t, x, L1) = (q − ∂

∂v )un−1
1 (t, x, L1), for (t, x) in (0,∞)× T,

where at the first iteration the initial guesses u0
1, u0

2 ∈ L∞(0,∞, L∞(T, H2(−R,R)))∩L2(0,∞, L∞(T, H2(−R,R)))∩
C1(0,∞, L∞(T, H2(−R,R)))∩C([0,∞), L∞(T, H2(−R,R))) are chosen such that (p+ ∂

∂v )u0
1(t, x, L2)

and (q− ∂
∂v )u0

2(t, x, L1) are in C([0,∞), L∞(T))∩C1(0,∞, L∞(T))∩L∞(0,∞, L∞(T))∩L2(0,∞, L∞(T))
and satisfy the compatibility conditions of the equations:

u0
1(0, x, L2) = u0(x, L2), on T,

u0
2(0, x, L1) = u0(x, L1), on T.

Compared with the classical Schwarz waveform relaxation algorithm, optimized ones require less
iterations to converge to the solution of (2.1). Moreover, optimized Schwarz algorithms converge
also in the non-overlapping case, a feature not shared by the classical ones.

3. Existence and Uniqueness Results for the Kolmogorov Equations

In this section, we will prove the existence and uniqueness of a solution of the Kolmogorov
equation {

∂u
∂t + v ∂u∂x −

∂2u
∂v2 = f for (t, x, v) ∈ (0,∞)× T× (a, b) ⊂ Ω,

u(0, x, v) = u0 in T× (a, b).
(3.1)

where (a, b) could be (−R,R), (−R,L2) or (L1, R), f ∈ L∞loc((0,∞), L2(T×(a, b)))∩C1((0,∞), L2(T×
(a, b))) ∩ C([0,∞), L2(T× (a, b))), u0 ∈ L2(T, H2(a, b)).
Depending on each type of domains (−R,R), (−R,L2) or (L1, R), the boundary conditions are of
the following types:

• For the problem on (a, b) = (−R,R){
u(t, x,−R) = 0, on (0,∞)× T,

u(t, x,R) = 0, on (0,∞)× T.
(3.2)

• Dirichlet boundary condition
For (a, b) = (−R,L2){

u(t, x,−R) = 0, on (0,∞)× T,

u(t, x, L2) = h0(t, x), on (0,∞)× T,
(3.3)

and for (a, b) = (L1, R){
u(t, x,R) = 0, on (0,∞)× T,

u(t, x, L1) = h0(t, x), on (0,∞)× T.
(3.4)
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• Robin boundary condition
For (a, b) = (−R,L2){

u(t, x,−R) = 0, on (0,∞)× T,

p u(t, x, L2) + ∂u(t,x,L2)
∂v = h1(t, x), on (0,∞)× T,

(3.5)

and for (a, b) = (L1, R){
u(t, x,R) = 0, on (0,∞)× T,

q u(t, x, L1)− ∂u(t,x,L1)
∂v = h1(t, x), on (0,∞)× T,

(3.6)

for h0, h1 ∈ L∞loc((0,∞), L2(T))∩C1((0,∞), L2(T))∩C([0,∞), L2(T)) and p, q are positive
constants.

Theorem 3.1. Suppose that h0, h1 ∈ L∞loc((0,∞), L2(T)) ∩C1((0,∞), L2(T)) ∩C([0,∞), L2(T)),
f ∈ L∞loc((0,∞), L2(T× (a, b)))∩C1((0,∞), L2(T× (a, b)))∩C([0,∞), L2(T× (a, b))), u0 ∈ L2(T×
(a, b)), Equation (3.1), with one of the boundary conditions (3.2), (3.3), (3.4), (3.5), (3.6) has a
unique solution in L∞loc(0,∞, L2(T, H2(a, b)))∩C1((0,∞), L2(T×(a, b)))∩C([0,∞), L2(T×(a, b))).

Proof. Since there exist functions ũ1, ũ2, ũ3 and ũ4 in L∞loc((0,∞), L2(T, H2(a, b)))∩C1((0,∞), L2(T))∩
C([0,∞), L2(T)) such that{

ũ1(t, x,−R) = 0, on (0,∞)× T,

ũ1(t, x, L2) = h0(t, x), on (0,∞)× T,

{
ũ2(t, x,R) = 0, on (0,∞)× T,

ũ2(t, x, L1) = h0(t, x), on (0,∞)× T,

and{
ũ3(t, x,−R) = 0, on (0,∞)× T,

p ũ3(t, x, L2) + ∂ũ3(t,x,L2)
∂v = h1(t, x),

{
ũ4(t, x,R) = 0, on (0,∞)× T,

q ũ4(t, x, L1)− ∂ũ4(t,x,L1)
∂v = h1(t, x), on (0,∞)× T,

then by subtracting u with ũ1, ũ2, ũ3 or ũ4, we can suppose that h0 = h1 = 0.
Take the Fourier transform in x of (3.1),

∂û

∂t
+ ivζû− ∂2û

∂v2
= f̂ , for (t, ζ, v) in(0,∞)× R× (a, b). (3.7)

Split û and f̂ into their real and imaginary parts

û = û1 + iû2, f̂ = f̂1 + if̂2.

Equation (3.7) becomes
∂û1(ζ)
∂t − vζû2(ζ)− ∂2û1(ζ)

∂v2 = f̂1(ζ), on (0,∞)× (a, b),

∂û2(ζ)
∂t + vζû1(ζ)− ∂2û2(ζ)

∂v2 = f̂2(ζ), on (0,∞)× (a, b),
(3.8)

the four boundary conditions remain the same after this transformation.

• For the problem on (a, b) = (−R,R){
û1(t, ζ,−R) = û2(t, ζ,−R) = 0, on (0,∞)× R,

û1(t, ζ, R) = û2(t, ζ, R) = 0, on (0,∞)× R.
(3.9)
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• Dirichlet boundary condition
For (a, b) = (−R,L2){

û1(t, ζ,−R) = û2(t, ζ,−R) = 0, on (0,∞)× R,

û1(t, ζ, L2) = û2(t, ζ, L2) = 0, on (0,∞)× R,
(3.10)

and for (a, b) = (L1, R){
û1(t, ζ, R) = û2(t, ζ, R) = 0, on (0,∞)× R

û1(t, ζ, L1) = û2(t, ζ, L1) = 0, on (0,∞)× R.
(3.11)

• Robin boundary condition
For (a, b) = (−R,L2){
û1(t, ζ,−R) = û2(t, ζ,−R) = 0, on (0,∞)× R,

p û1(t, ζ, L2) + ∂û1(t,ζ,L2)
∂v = p û2(t, ζ, L2) + ∂û2(t,ζ,L2)

∂v = 0, on (0,∞)× R,
(3.12)

and for (a, b) = (L1, R){
û1(t, ζ, R) = û2(t, ζ, R) = 0, on (0,∞)× R,

q û1(t, x, L1)− ∂û1(t,ζ,L1)
∂v = q û2(t, x, L1)− ∂û2(t,ζ,L1)

∂v = 0, on (0,∞)× R.
(3.13)

For any given ζ, since f̂1(ζ), f̂2(ζ) ∈ L∞loc((0,∞), L2(a, b))∩C1([0,∞), L2(a, b))∩C((0,∞), L2(a, b)),
there exists a solution (û1(ζ), û2(ζ)) in L∞loc((0,∞), H2(a, b)) ∩C1((0,∞), L2(a, b)) ∩C([0,∞), L2(a, b))
of (3.8) (see, for example [26, Chapter VII]).
Choose ζ to be an integer n and use û1(n) and û2(n) as test functions for the system (3.8),

1
2

∫ b
a
∂|û1(n)|2

∂t dv −
∫ b
a
vnû2(n)û1(n)dv −

∫ b
a
∂2û1(n)
∂v2 û1(n)dv =

∫ b
a
f̂1(n)û1(n)dv,

1
2

∫ b
a
∂|û2(n)|2

∂t dv +
∫ b
a
vnû1(n)û2(n)dv −

∫ b
a
∂2û2(n)
∂v2 û2(n)dv =

∫ b
a
f̂2(n)û2(n)dv,

which implies

1
2

∫ b
a
∂|û1(n)|2

∂t dv −
∫ b
a
vnû2(n)û1(n)dv +

∫ b
a

∣∣∣∂û1(n)
∂v

∣∣∣2 dv =
∫ b
a
f̂1(n)û1(n)dv

+∂û1(n)(b)
∂v û1(n)(b)− ∂û1(n)(a)

∂v û1(n)(a),

1
2

∫ b
a
∂|û2(n)|2

∂t dv +
∫ b
a
vnû1(n)û2(n)dv +

∫ b
a

∣∣∣∂û2(n)
∂v

∣∣∣2 dv =
∫ b
a
f̂2(n)û2(n)dv

+∂û2(n)(b)
∂v û2(n)(b)− ∂û2(n)(a)

∂v û2(n)(a).

(3.14)

For the boundary conditions (3.9), (3.10), (3.11), we have

∂ûj(n)(b)

∂v
ûj(n)(b) =

∂ûj(n)(a)

∂v
ûj(n)(a) = 0, j = {1, 2}.

For the boundary condition (3.12), (3.13), the quantity

∂ûj(n)(b)

∂v
ûj(n)(b)− ∂ûj(n)(a)

∂v
ûj(n)(a) is either − p|ûj(n)(b)|2 or − q|ûj(n)(a)|2, j = {1, 2}.
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Adding the two equations (3.14), and taking into account the fact that p and q are positive, we get

1

2

∫ b

a

∂|û1(n)|2

∂t
dv +

1

2

∫ b

a

∂|û2(n)|2

∂t
dv +

∫ b

a

∣∣∣∣∂û1(n)

∂v

∣∣∣∣2 dv +

∫ b

a

∣∣∣∣∂û2(n)

∂v

∣∣∣∣2 dv
≤

∫ b

a

f̂1(n)û1(n)dv +

∫ b

a

f̂2(n)û2(n)dv (3.15)

≤ 1

2

∫ b

a

|f̂1(n)|2dv +
1

2

∫ b

a

|û1(n)|2dv +
1

2

∫ b

a

|f̂2(n)|2dv +
1

2

∫ b

a

|û2(n)|2dv,

then∫ b

a

(
∂|û1(n)|2

∂t
dv +

∂|û2(n)|2

∂t

)
dv −

∫ b

a

(
|û1(n)|2 + |û2(n)|2

)
dv ≤

∫ b

a

(|f̂1(n)|2dv + |f̂2(n)|2)dv.

The previous inequality implies

∂

∂t

(∫ b

a

(|û1(n)|2dv + |û2(n)|2)dv exp(−t)

)
≤

∫ b

a

(
|f̂1(n)|2dv + |f̂2(n)|2

)
dv exp(−t).

Thus ∫ b

a

(|û1(n, t)|2 + |û2(n, t)|2)dv

≤
∫ t

0

∫ b

a

exp(t− s)(|f̂1(n)|2 + |f̂2(n)|2)dvds+ exp(t)

∫ b

a

(|û1(n, 0)|2 + |û2(n, 0)|2)dv

≤ exp(t)

∫ t

0

∫ b

a

(|f̂1(n)|2 + |f̂2(n)|)dvds+ exp(t)

∫ b

a

(|û1(n, 0)|2 + |û2(n, 0)|2)dv,

Summing up in Z the previous inequalities yields∫ b

a

∑
n∈Z

(|û1(n, t)|2 + |û2(n, t)|2)dv ≤ exp(t)

∫ t

0

∫ b

a

∑
n∈Z

(|f̂1(n)|2 + |f̂2(n)|2)dvds

+ exp(t)

∫ b

a

∑
n∈Z

(|û1(n, 0)|2 + |û2(n, 0)|2)dvds,

which together with the Parseval’s theorem implies∫ b

a

∫
R
|û(ζ, t)|2dζdv ≤ exp(t)

∫ b

a

∫
R
‖f̂(ζ)‖2L2(0,t)dζdv + exp(t)

∫ b

a

∫
R
|û0(ζ)|2dζdv.

Therefore, the inverse Fourier transform u of û1 and û2 exists and∫
T

∫ b

a

|u(t)|2dvdx ≤ exp(t)

∫ b

a

∫
T
‖f(x)‖2L2(0,t)dvdx+ exp(t)

∫ b

a

∫
T
|u0|2dvdx. (3.16)

The existence and uniqueness of a solution of (3.1) with one of the above boundary conditions then
follow by a classical argument as in [26, Chapter VII]. �

By a classical induction argument as in [16], we have also the well-posedness of the algorithm.
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Theorem 3.2. Suppose that f ∈ L∞(0,∞, L2(T, L2(−R,R))) ∩ L∞((0,∞) × T × (−R,R)) ∩
L2(0,∞, L2(T, L2(−R,R)))∩C1((0,∞), L2(T×(−R,R)))∩C([0,∞), L2(T×(−R,R))), u0 ∈ L2(T×
(−R,R)) and the initial guesses for the Dirichlet transmission condition u0

1, u0
2 ∈ L∞loc((0,∞), L2(T))∩

C1((0,∞), L2(T)) ∩ C([0,∞), L2(T)), the initial guesses for the Robin transmission condition u0
1,

u0
2 ∈ L∞(0,∞, L∞(T, H2(−R,R))) ∩L2(0,∞, L∞(T, H2(−R,R))) ∩C1(0,∞, L2(T × (−R,R)))
∩C([0,∞), L2(T×(−R,R))) are chosen such that (p+ ∂

∂v )u0
1(t, x, L2) and (q− ∂

∂v )u0
2(t, x, L1) are in

L∞loc(0,∞, L2(T)), Equations (2.2) and (2.3) have unique solutions in L∞loc(0,∞, L2(T, H2(−R,L2)))
∩C1(0,∞, L2(T×(−R,L2))) ∩C([0,∞), L2(T×(−R,L2))) and L∞loc(0,∞, L2(T, H2(L1, R))) ∩ C1

(0,∞, L2(T× (L1, R))) ∩C([0,∞), L2(T× (L1, R))).

4. Convergence of the Classical Schwarz Waveform Relaxation
Algorithm

Theorem 4.1. Suppose that L1 < L2. For all positive number T , the algorithm converges in the
following sense

lim
n→∞

‖un1 − u‖L∞((0,T )×Ω1) = 0,

and

lim
n→∞

‖un2 − u‖L∞((0,T )×Ω2) = 0.

Proof. Since the problems are linear in u, we can prove the convergence on the error equation by
letting en1 = un1 − u and en2 = un2 − u, then

∂en1
∂t + v

∂en1
∂x −

∂2en1
∂v2 = 0, in (0,∞)× Ω1,

en1 (0, x, v) = 0, on Ω1,

en1 (t, x,−R) = 0, on (0,∞)× T,

en1 (t, x, L2) = en−1
2 (t, x, L2), on (0,∞)× T,



∂en2
∂t + v

∂en2
∂x −

∂2en2
∂v2 = 0, in (0,∞)× Ω2,

en2 (0, x, v) = 0, on Ω2,

en2 (t, x,R) = 0, on (0,∞)× T,

en2 (t, x, L1) = en−1
1 (t, x, L1), on (0,∞)× T.

(4.1)
Let α be a constant to be chosen later, following the classical strategy in [33], [34], [37], we define

Φn1 = (en1 )2 exp(−α2t) exp(αv), Φn2 = (en2 )2 exp(−α2t) exp(αv).

Again, following the classical routine of [33], [34], [37], we develop

∂

∂t
Φn1 = −α2(ek1)2 exp(−α2t) exp(αv) + 2∂te

k
1e
k
1 exp(−α2t) exp(αv),

∂

∂x
Φn1 = 2∂xe

k
1e
k
1 exp(−α2t) exp(αv),

∂

∂v
Φn1 = α(ek1)2 exp(−α2t) exp(αv) + 2∂ve

k
1e
k
1 exp(−α2t) exp(αv),

∂2

∂v2
Φn1 = α2(ek1)2 exp(−α2t) exp(αv) + 4α∂ve

k
1e
k
1 exp(−α2t) exp(αv)

+2(∂ve
k
1)2 exp(−α2t) exp(αv) + 2∂vve

k
1e
k
1 exp(−α2t) exp(αv)

to get

∂

∂t
Φn1 −

∂2

∂v2
Φn1 + v

∂

∂x
Φn1 + 2α

∂

∂v
Φn1 = −2(∂ve

n
1 )2 exp(−α2t) exp(αv) ≤ 0, (4.2)
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and similarly
∂

∂t
Φn2 −

∂2

∂v2
Φn2 + v

∂

∂x
Φn2 + 2α

∂

∂v
Φn2 ≤ 0. (4.3)

Step 1: The maximum principle.
We prove that the solution u of (2.1) belongs to L∞([0, T ]×T× (−R,R)). Let K be greater than
‖f‖L∞([0,T ]×T×(−R,R)) and ‖u0‖L∞(T×(−R,R)), then

∂(u−Kt)
∂t + v ∂(u−Kt)

∂x − ∂2(u−Kt)
∂v2 = f −K, in (0, T )× Ω,

(u−Kt)(0, x, v) = u0(x, v), on T× (−R,R).

Set (u−Kt)+ = u−Kt for u ≥ Kt and 0 for u < Kt. Using (u−Kt)+ as a test function for the
above equation, we get

0 ≥
∫ T

0

∫ R

−R

∫
T

∂

∂t
(u−Kt)(u−Kt)+dxdvdt+

∫ T

0

∫ R

−R

∫
T
v
∂

∂x
(u−Kt)(u−Kt)+dxdvdt

+

∫ T

0

∫ R

−R

∫
T

∂

∂v
(u−Kt) ∂

∂v
(u−Kt)+dxdvdt,

which yields

0 ≥
∫ T

0

∫ R

−R

∫
T

∂

∂t
(u−Kt)+(u−Kt)+dxdvdt+

∫ T

0

∫ R

−R

∫
T
v
∂

∂x
(u−Kt)+(u−Kt)+dxdvdt

+

∫ T

0

∫ R

−R

∫
T

∂

∂v
(u−Kt)+

∂

∂v
(u−Kt)+dxdvdt.

Therefore

0 ≥
∫ R

−R

∫
T

(u−Kt)2
+

2
|T0 dxdv +

∫ T

0

∫ R

−R

∫
T

(
∂

∂v
(u−Kt)+

)2

dxdvdt.

Hence (u−Kt)+ = 0, then u ≤ KT or u is bounded from above. By a similar argument, we can
prove that u is bounded from below, and u ∈ L∞([0, T ]× T× (−R,R)).
Let M = sup(t,x)∈(0,T )×T{Φn−1

2 (t, x, L2)} and suppose that M <∞. Notice that u0
2 ∈ L∞([0, T ]×

T) and u ∈ L∞([0, T ] × T × (−R,R)), then M < ∞ for n = 1. Set (Φn1 −M)+ = Φn1 −M for
Φn1 ≥M and 0 for Φn1 < M . Using it as a test function for (4.2), we obtain

0 ≥
∫ T

0

∫ L2

−R

∫
T

∂

∂t
(Φn1 −M)(Φn1 −M)+dxdvdt+

∫ T

0

∫ L2

−R

∫
T
v
∂

∂x
(Φn1 −M)(Φn1 −M)+dxdvdt

+

∫ T

0

∫ L2

−R

∫
T

∂

∂v
(Φn1 −M)

∂

∂v
(Φn1 −M)+dxdvdt+ 2α

∫ T

0

∫ L2

−R

∫
T

∂

∂v
(Φn1 −M)(Φn1 −M)+dxdvdt.

This leads to

0 ≥
∫ L2

−R

∫
T

(Φn1 −M)2
+

2
|T0 dxdv +

∫ T

0

∫ L2

−R

∫
T

(
∂

∂v
(Φn1 −M)+

)2

dxdvdt

+α

∫ T

0

∫
T
(Φn1 −M)2

+|
L2

−Rdxdt,
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which gives (Φn1 −M)+ = 0. As a consequence,

Φn1 ≤M,

or

Φn1 (t, x, v) ≤ sup
(t,x′)∈(0,T )×T

{Φn−1
2 (t, x′, L2)} on Ω1. (4.4)

A similar argument leads to

Φn2 (t, x, v) ≤ sup
(t,x′)∈(0,T )×T

{Φn−1
1 (t, x′, L1)} on Ω2. (4.5)

Step 2: The convergence estimates.
Denote

En = max
i∈{1,2}

(
sup

(t,x)∈((0,T )×Ωi)

(eni )
2

exp(−α2t)

)
.

Since e0
1 and e0

2 are bounded, En is bounded.
Inequality (4.4) implies that for (t, x) in (0, T )× T

(en1 (t, x, L1))
2

exp(−α2t) exp(αL1) ≤ sup
(t,x)∈(0,T )×T

(en−1
2 (t, x, L2))2 exp(−α2t) exp(αL2),

which yields

(en1 (t, x, L1))
2

exp(−α2t) ≤ exp((L2 − L1)α) sup
(t,x)∈(0,T )×T

(en−1
2 (t, x, L2))2 exp(−α2t).

Choosing α = −α0 where α0 is a positive constant to get

(en1 (t, x, L1))
2

exp(−α2t) ≤ exp((L1 − L2)α0) sup
(t,x)∈(0,T )×T

(en−1
2 (t, x, L2))2 exp(−α2t).

Similarly, by using the same argument and replacing α by α0

(en2 (t, x, L2))
2

exp(−α2t) ≤ exp((L1 − L2)α0) sup
(t,x)∈(0,T )×T

(en−1
1 (t, x, L1))2 exp(−α2t).

Choose α = 0, (4.4) and (4.5) imply

En+1 ≤ max{ sup
(t,x)∈(0,T )×T

(en1 (t, x, L2))
2

exp(−α2t), sup
(t,x)∈(0,T )×T

(en2 (t, x, L1))
2

exp(−α2t)}.

The above inequality implies

En+1 ≤ exp((L1 − L2)α0) max{ sup
(t,x)∈(0,T )×T

(en−1
2 (t, x, L2))2 exp(−α2t),

sup
(t,x)∈(0,T )×T

(en−1
2 (t, x, L2))2 exp(−α2t)}.

≤ exp((L1 − L2)α0)En−1,
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which shows that the errors converge geometrically

lim
k→∞

Ek = 0.

�

5. Convergence of the Schwarz Waveform Relaxation Methods with
Robin Transmission Conditions

Again, we prove the convergence on the error equation by letting en1 = un1 − u and en2 = un2 − u,
we consider 

∂en1
∂t + v

∂en1
∂x −

∂2en1
∂v2 = 0, in (0,∞)× Ω1,

en1 (0, x, v) = 0, on Ω1,

en1 (t, x,−R) = 0, on (0,∞)× T,

(p+ ∂
∂v )en1 (t, x, L2) = (p+ ∂

∂v )en−1
2 (t, x, L2), on (0,∞)× T,

(5.1)



∂en2
∂t + v

∂en2
∂x −

∂2en2
∂v2 = 0, in (0,∞)× Ω2,

en2 (0, x, v) = 0, on Ω2,

en2 (t, x,R) = 0, on (0,∞)× T,

(q − ∂
∂v )en2 (t, x, L1) = (q − ∂

∂v )en−1
1 (t, x, L1), on (0,∞)× T.

Let α be a constant larger than 1. For ϕ in L2(0,∞), we recall the following norm first introduced
in [35]

|||ϕ|||α = sup
α′>α

[∫ α′+1

α′

(∫ ∞
0

ϕ(x) exp(−yx)dx

)2

dy

] 1
2

,

and the space
L2
α(0,∞) = {ϕ : ϕ ∈ L2(0,∞), |||ϕ|||α <∞}.

Remark 5.1. Notice that in order to check |||.|||α is a norm, the properties

|||ϕ1 + ϕ2|||α ≤ |||ϕ1|||α + |||ϕ2|||α, ∀ϕ1, ϕ2 ∈ L2
α(0,∞),

|||λϕ|||α = |λ||||ϕ|||α, ∀ϕ ∈ L2
α(0,∞), λ ∈ R,

are easy to check. And the fact that |||ϕ|||α = 0 if and only if ϕ = 0 is classical (see, for example
the book [39]). The norm was introduced in [35] to overcome, provided α is large enough, the lack
of energy structure in the equation due to the coexistence of different boundary conditions.

For ς ∈ H1(−R,L2), % ∈ H1(L1, R) there exist the extensions ς̄ ∈ H1(L2, R), %̄ ∈ H1(−R,L1)
and a constant C not depending on ς and % such that ς(L2) = ς̄(L2), %(L1) = %̄(L1), and

‖ς̄‖H1(L2,R) ≤ C‖ς‖H1(−R,L2), ‖ς̄‖L2(L2,R) ≤ C‖ς‖L2(−R,L2),

‖%̄‖H1(−R,L1) ≤ C‖%‖H1(L1,R), ‖%̄‖L2(−R,L1) ≤ C‖%‖L2(L1,R). (5.2)

Define C∗ to be the constant in the trace theorem

|ς(L1)| ≤ C∗‖ς‖H1(−R,L1), |%(L2)| ≤ C∗‖%‖H1(L2,R).
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Let f3, f4 be strictly positive functions in C2([−R,R]) such that f3, f4 > β, where β is some
positive constant. Suppose that f3, f4 satisfy the following assumptions on [−R,R]

f ′3(L2) = f ′3(L1) = f ′4(L1) = f ′4(L2) = 0, (5.3)

f4(L1)

f3(L1)
max{1, C} (3 + qC∗) < 1

8
,
f3(L2)

f4(L2)
max{1, C} (3 + pC∗) < 1

8
.

Let k be an integer, set

αk ≥ Ak : = (6Rπ|k|+ 2)3 + 2

(∥∥∥∥f ′3f3

∥∥∥∥
∞

+

∥∥∥∥f ′4f4

∥∥∥∥
∞

+ 1

)2

, (5.4)

f1,k(t) = exp(−2αkt),

f2,k(x) = exp(2iπkx).

For θ ∈ L2((0,∞)× T), decompose θ under the form of a Fourier series in x

θ(t, x) =

∞∑
−∞

θ̂(t, k) exp(2iπkx),

where

θ̂(t, k) =

∫
T
θ(t, x) exp(−2iπkx)dx.

Define the norm

‖θ‖2t,x =

∞∑
k=−∞

|||θ̂(t, k)|||2Ak
,

and the space

H = {θ : θ ∈ L2((0,∞)× T), ‖θ‖t,x <∞}.
For a function f(t, x, v) with (t, x, v) ∈ (0,∞)× T× (a, b), with (a, b) = (−∞, L2) or (L1,∞), we
define the following norm and space

‖f‖L((0,∞)×T×(a,b)) =

(∫ b

a

‖f(., ., v)‖2t,xdv

)1/2

,

L((0,∞)× T× (a, b)) = {f(t, x, v) | ‖f‖L((0,∞)×T×(a,b)) < 0}.

Theorem 5.1. The algorithm converges in the following sense

lim
n→∞

‖un1 − u‖L((0,∞)×T×(−∞,L2)) = 0,

and

lim
n→∞

‖un2 − u‖L((0,∞)×T×(L1,∞)) = 0.

Proof. Define

Φn+1
1,k (v) =

∫ ∞
0

∫
T
en+1

1 (t, x, v)f1,k(t)f2,k(x)f3(v)dxdt,

Φn+1
2,k (v) =

∫ ∞
0

∫
T
en+1

2 (t, x, v)f1,k(t)f2,k(x)f4(v)dxdt.
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Following the strategy in [35], [36], [33], [34], [37], we compute∫ ∞
0

∫
T

∂

∂t
en+1

1 f1,kf2,kf3dxdt = −
∫ ∞

0

∫
T
en+1

1 f ′1,kf2,kf3dxdt = 2αkΦn+1
1,k∫ ∞

0

∫
T

∂

∂x
en+1

1 f1,kf2,kf3dxdt = −
∫ ∞

0

∫
T
en+1

1 f1,kf
′
2,kf3dxdt = −i2πkΦn+1

1,k ,

∂

∂v
Φn+1

1,k =

∫ ∞
0

∫
T

∂

∂v
en+1

1 f1,kf2,kf3dxdt+
f ′3
f3

Φn+1
1,k ,

∂2

∂v2
Φn+1

1,k =
f ′′3
f3

Φn+1
1,k +

∫ ∞
0

∫
T

∂2

∂v2
en+1

1 f1,kf2,kf3dxdt+ 2
f ′3
f3

∂

∂v
Φn+1

1,k − 2

(
f ′3
f3

)2

Φn+1
1,k ,

which implies∫ ∞
0

∫
T
en+1

1 f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
dxdt− ∂2

∂v2
Φn+1

1,k +2
f ′3
f3

∂

∂v
Φn+1

1,k = 0, (5.5)

and∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′4
f4

)2

+
f ′′4
f4

)
dxdt− ∂2

∂v2
Φn+1

2,k +2
f ′4
f4

∂

∂v
Φn+1

2,k = 0. (5.6)

The Robin boundary conditions become(
p+

∂

∂v

)
Φn+1

1,k (L2) =

∫ ∞
0

∫
T

(
p+

∂

∂v

)
en+1

1 f1,kf2,kf3dxdt+

∫ ∞
0

∫
T
en+1

1 f1,kf2,kf
′
3dxdt

=
f3(L2)

f4(L2)

(
p+

∂

∂v

)
Φn2,k(L2),

and (
−q +

∂

∂v

)
Φn+1

2,k (L1) =
f4(L1)

f3(L1)

(
−q +

∂

∂v

)
Φn1,k(L1). (5.7)

Define

Sn =

∞∑
k=−∞

(∫ L2

−R
|Φn1,k|2dv +

1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv +

∫ R

L1

|Φn2,k|2dv +
1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦn2,k

∣∣∣∣2 dv
)
,

we will prove that

Sn ≤
1

3
Sn−1, (5.8)

which implies Sn ≤ 1
3nS0, Therefore, if S0 is bounded, then Sn is also bounded for all n. Moreover,

Sn converges geometrically to 0 with the rate 1
3n . We divide the rest of the proof into three steps:

Step 1: We prove that S0 is bounded. Denote

S0 = S1
0 + S2

0 ;

S1
0 =

∞∑
k=−∞

(∫ L2

−R
|Φ0

1,k|2dv +
1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦ0
1,k

∣∣∣∣2 dv
)

;
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S2
0 =

∞∑
k=−∞

(∫ R

L1

|Φ0
2,k|2dv +

1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦ0
2,k

∣∣∣∣2 dv
)
.

We prove that S1
0 is bounded, and the fact that S2

0 is bounded will follow by the same argument.
We have that

S1
0 =

∞∑
k=−∞

∫ L2

−R

(∣∣∣∣∫ ∞
0

∫
T
e0

1 exp(−2αkt) exp(i2πkx)f3(v)dxdt

∣∣∣∣2 (5.9)

+
1

αk

∣∣∣∣∫ ∞
0

∫
T

(
∂

∂v
e0

1f3(v) + e0
1f
′
3(v)

)
exp(−2αkt) exp(i2πkx)dxdt

∣∣∣∣2
)
dv

=

∞∑
k=−∞

∫ L2

−R

(∣∣∣∣∫ ∞
0

ê0
1(k) exp(−2αkt)f3(v)dt

∣∣∣∣2

+
1

αk

∣∣∣∣∫ ∞
0

(
∂

∂v
ê0

1(k)f3(v) + ê0
1(k)f ′3(v)

)
exp(−2αkt)dt

∣∣∣∣2
)
dv,

where ê0
1(k) denotes the Fourier transform of e0

1 in the x variable.
Since f3 and f ′3 are continuous, they are bounded on [−R,L2], then bounding f3 and f ′3 by ‖f3‖∞
and ‖f ′3‖∞ in (5.9) and using the fact that αk > 1 we have

S1
0 ≤ C

∞∑
k=−∞

∫ L2

−R

(∣∣∣∣∫ ∞
0

|ê0
1(k)| exp(−2αkt)dt

∣∣∣∣2 (5.10)

+C
1

αk

∣∣∣∣∫ ∞
0

(∣∣∣∣ ∂∂v ê0
1(k)

∣∣∣∣+ |ê0
1(k)|

)
exp(−2αkt)dt

∣∣∣∣2
)
dv

≤ C

∞∑
k=−∞

∫ L2

−R

(∣∣∣∣∫ ∞
0

|ê0
1(k)| exp(−2αkt)dt

∣∣∣∣2 +
1

αk

∣∣∣∣∫ ∞
0

∣∣∣∣ ∂∂v ê0
1(k)

∣∣∣∣ exp(−2αkt)dt

∣∣∣∣2
)
dv,

where C is some constant varying from lines to lines. Now, applying Holder’s inequality for the
integrals in t in (5.10), we obtain

S1
0 ≤ C

∞∑
k=−∞

∫ L2

−R

(∫ ∞
0

|ê0
1(k)|2 exp((−2αk + 1)t)dt

∫ ∞
0

exp(−t)dt (5.11)

+
1

αk

∫ ∞
0

∣∣∣∣ ∂∂v ê0
1(k)

∣∣∣∣2 exp((−2αk + 1)t)dt

∫ ∞
0

exp(−t)dt

)
dv

≤ C

∞∑
k=−∞

∫ L2

−R

(∫ ∞
0

|ê0
1(k)|2 exp((−2αk + 1)t)dt+

1

αk

∫ ∞
0

∣∣∣∣ ∂∂v ê0
1(k)

∣∣∣∣2 exp((−2αk + 1)t)dt

)
dv

= C

∫ ∞
0

∫ L2

−R

∞∑
k=−∞

(
|ê0

1(k)|2 exp((−2αk + 1)t) +
1

αk

∣∣∣∣ ∂∂v ê0
1(k)

∣∣∣∣2 exp((−2αk + 1)t)

)
dvdt

≤ C

∫ ∞
0

∫ L2

−R

∞∑
k=−∞

(
|ê0

1(k)|2 +

∣∣∣∣ ∂∂v ê0
1(k)

∣∣∣∣2
)
dv exp(−8t)dt = C

∫ ∞
0

‖e0
1‖2L2(T,H1(−R,L2)) exp(−8t)dt,
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where in the last inequality, we use the fact that αk ≥ 8. Since according to the hypothesis (2.1)
f ∈ L2(0,∞, L2(T, L2(−R,L2)), Inequality (3.16) implies∫

T

∫ b

a

|u(t)|2dvdx ≤ exp(t)

∫ b

a

∫
T
‖f‖2L2(0,∞)dvdx+ exp(t)

∫ b

a

∫
T
|u0|2dvdx.

Therefore ∫ ∞
0

‖u‖2L2(T,L2(−R,L2)) exp(−8t)dt <∞, (5.12)

Moreover, (3.15) implies∫ b

a

(
∂|û1(n)|2

∂t
dv +

∂|û2(n)|2

∂t

)
dv +

∫ b

a

(∣∣∣∣∂û1(n)

∂v

∣∣∣∣2 +

∣∣∣∣∂û2(n)

∂v

∣∣∣∣2
)
dv

−
∫ b

a

(
|û1(n)|2dv + |û2(n)|2

)
dv ≤

∫ b

a

(|f̂1(n)|2dv + |f̂2(n)|2)dv.

We argue similarly as to obtain (3.16)

∂

∂t

(∫ b

a

(|û1(n)|2dv + |û2(n)|2)dv exp(−t)

)
+

∫ b

a

(∣∣∣∣∂û1(n)

∂v

∣∣∣∣2 +

∣∣∣∣∂û2(n)

∂v

∣∣∣∣2
)
dv exp(−t)

≤
∫ b

a

(
|f̂1(n)|2dv + |f̂2(n)|2

)
dv exp(−t),

which leads to

exp(−t)
∫ b

a

(|û1(n, t)|2 + |û2(n, t)|2)dv +

∫ t

0

∫ b

a

(∣∣∣∣∂û1(n)

∂v

∣∣∣∣2 +

∣∣∣∣∂û2(n)

∂v

∣∣∣∣2
)

exp(−s)dvds

≤
∫ t

0

∫ b

a

exp(−s)(|f̂1(n)|2 + |f̂2(n)|)dvds+

∫ b

a

(|û1(n, 0)|2 + |û2(n, 0)|2)dv.

Therefore ∫ t

0

∫ b

a

(∣∣∣∣∂û1(n)

∂v

∣∣∣∣2 +

∣∣∣∣∂û2(n)

∂v

∣∣∣∣2
)

exp(−s)dvds

≤
∫ ∞

0

∫ b

a

exp(−s)(|f̂1(n)|2 + |f̂2(n)|2)dvds+

∫ b

a

(|û1(n, 0)|2 + |û2(n, 0)|2)dv

≤
∫ ∞

0

∫ b

a

(|f̂1(n)|2 + |f̂2(n)|2)dvds+

∫ b

a

(|û1(n, 0)|2 + |û2(n, 0)|2)dv. ∀t ∈ R+.

Let t tend to infinity, we deduce from the above inequality that∫ ∞
0

‖∇u‖2L2(T,L2(−R,L2)) exp(−t)dt <∞. (5.13)

Since u0
1, u0

2 ∈ L∞(0,∞, L∞(T, H2(−R,R))) ∩ L2(0,∞, L∞(T, H2(−R,R))), we deduce from the
two inequalities (5.12) and (5.13) that∫ ∞

0

‖e0
1‖2L2(T,H1(−R,L2)) exp(−8t)dt <∞,
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which means (5.11) implies

S1
0 < C

∫ ∞
0

‖e0
1‖2L2(T,H1(−R,L2)) exp(−8t)dt <∞.

Similarly

S2
0 < C

∫ ∞
0

‖e0
2‖2L2(T,H1(L1,R)) exp(−8t)dt <∞.

Step 2: We prove (5.8).
Consider (5.5) with the index n instead of n+ 1 on T× (−R,L1) and take ϕn1 in H1(−R,L1) as a
test function, then

0 =

∫ L1

−R

∫ ∞
0

∫
T
en1f1f2f3

(
2α− iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
ϕn1dxdtdv

−
∫ L1

−R

∂2

∂v2
Φn1,kϕ

n
1dv +

∫ L1

−R
2
f ′3
f3

∂

∂v
Φn1,kϕ

n
1dv.

Intergrating by parts the term
∫ L1

−R
∂2

∂v2 Φn1,kϕ
n
1dv in the above intergral, we get

∂

∂v
Φn1,k(L1)ϕn1 (L1)− qΦn1,k(L1)ϕn1 (L1) (5.14)

=

∫ L1

−R

∫ ∞
0

∫
T
en1f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
ϕn1dxdtdv

+

∫ L1

−R

∂

∂v
Φn1,k

∂

∂v
ϕn1dv +

∫ L1

−R
2
f ′3
f3

∂

∂v
Φn1,kϕ

n
1dv − qΦn1,k(L1)ϕn1 (L1).

Considering (5.6) on T × (L1, R) and taking ϕn+1
2 in H1(L1, R) as a test function satisfying

ϕn+1
2 (L1) = ϕn1 (L1), we get

− ∂

∂v
Φn+1

2,k (L1)ϕn+1
2 (L1) + qΦn+1

2,k (L1)ϕn+1
2 (L1) (5.15)

=

∫ R

L1

∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
ϕn+1

2 dxdtdv

+

∫ R

L1

∂

∂v
Φn+1

2,k

∂

∂v
ϕn+1

2 dv +

∫ R

L1

2
f ′3
f3

∂

∂v
Φn+1

2,k ϕ
n+1
2 dv + qΦn+1

2,k (L1)ϕn+1
2 (L1).

Since ϕn+1
2 (L1) = ϕn1 (L1), equation (5.7) leads to

− ∂

∂v
Φn+1

2,k (L1)ϕn+1
2 (L1)+qΦn+1

2,k (L1)ϕn+1
2 (L1) = −f4(L1)

f3(L1)

[
∂

∂v
Φn1,k(L1)ϕn1 (L1)− qΦn1,k(L1)ϕn1 (L1)

]
,

which, together with (5.14) and (5.15) imply

−f4(L1)

f3(L1)

[∫ L1

−R

∫ ∞
0

∫
T
en1f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
ϕn1dxdtdv
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+

∫ L1

−R

∂

∂v
Φn1,k

∂

∂v
ϕn1dv +

∫ L1

−R
2
f ′3
f3

∂

∂v
Φn1,kϕ

n
1dv − qΦn1 (L1)ϕn1 (L1)

]

=

∫ R

L1

∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
ϕn+1

2 dxdtdv

+

∫ R

L1

∂

∂v
Φn+1

2,k

∂

∂v
ϕn+1

2 dv +

∫ R

L1

2
f ′3
f3

∂

∂v
Φn+1

2,k ϕ
n+1
2 dv + qΦn+1

2,k (L1)ϕn+1
2 (L1).

In the above equality, choose ϕn+1
2 to be Φn+1

2,k , and ϕn1 to be the extension of Φn+1
2,k over (−R,L1)

like in (5.2) such that there exists a constant C satisfying

‖ϕn1‖H1(−R,L1) ≤ C‖Φn+1
2,k ‖H1(L1,R), ‖ϕn1‖L2(−R,L1) ≤ C‖Φn+1

2,k ‖L2(L1,R), (5.16)

to get

−f4(L1)

f3(L1)

(∫ L1

−R

∫ ∞
0

∫
T
en1f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
ϕn1dxdtdv

+

∫ L1

−R

∂

∂v
Φn1,k

∂

∂v
ϕn1dv +

∫ L1

−R
2
f ′3
f3

∂

∂v
Φn1,kϕ

n
1dv − qΦn1,k(L1)ϕn1 (L1)

)
(5.17)

=

∫ R

L1

∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
Φn+1

2,k dxdtdv

+

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv +

∫ R

L1

2
f ′3
f3

∂

∂v
Φn+1

2,k Φn+1
2,k dv + q(Φn+1

2,k (L1))2.

We now bound the right hand side of (5.17) from below and the left hand side of (5.17) from above.
Consider the first term on the right hand side of (5.17)

∫ R

L1

∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3

(
2αk − iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
Φn+1

2,k dxdtdv

= 2αk

∫ R

L1

∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3Φn+1
2,k dxdtdv

+

∫ R

L1

∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3

(
−iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
Φn+1

2,k dxdtdv

= 2αk

∫ R

L1

∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3Φn+1
2,k dxdtdv

+

∫ R

L1

[(
−iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)(∫ ∞
0

∫
T
en+1

2 f1,kf2,kf3dxdt

)
Φn+1

2,k

]
dv

= 2αk

∫ R

L1

|Φn+1
2,k |

2dv +

∫ R

L1

[(
−iv2πk − 2

(
f ′3
f3

)2

+
f ′′3
f3

)
|Φn+1

2,k |
2

]
dv

≥ 2αk

∫ R

L1

|Φn+1
2 |2dv −

(
|v2πk|+ 2

∥∥∥∥f ′3f3

∥∥∥∥2

L∞
+

∥∥∥∥f ′′3f3

∥∥∥∥
L∞

)∫ R

L1

∫ ∞
0

∫
T
|en+1

2 f1,kf2,kf3Φn+1
2,k |dxdtdv
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=

(
2αk − |v2πk| − 2

∥∥∥∥f ′3f3

∥∥∥∥2

L∞
−
∥∥∥∥f ′′3f3

∥∥∥∥
L∞

)∫ R

L1

|Φn+1
2,k |

2dv

≥ αk

∫ R

L1

|Φn+1
2,k |

2dv,

where in the last inequality, we use (5.3), (5.4). Therefore the right hand side of (5.17) could be
bounded from below by the use of Cauchy inequality

∫ R

L1

αk|Φn+1
2,k |

2dv +

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv +

∫ R

L1

2
f ′3
f3

∂

∂v
Φn+1

2,k Φn+1
2 dv

≥
∫ R

L1

αk|Φn+1
2,k |

2dv +

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv − ∥∥∥∥f ′3f3

∥∥∥∥
L∞

∫ R

L1

2

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣ ∣∣Φn+1
2

∣∣ dv
≥

∫ R

L1

αk|Φn+1
2,k |

2dv +

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv − ∥∥∥∥f ′3f3

∥∥∥∥
L∞

∫ R

L1

(
ε

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 +
1

ε
|Φn+1

2,k |
2

)
dv

≥
(
αk −

1

ε

∥∥∥∥f ′3f3

∥∥∥∥
L∞

)∫ R

L1

|Φn+1
2,k |

2dv +

(
1− ε

∥∥∥∥f ′3f3

∥∥∥∥
L∞

)∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
≥

∫ R

L1

αk
2
|Φn+1

2,k |
2dv +

1

2

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv, (5.18)

the last inequality follows from (5.3), (5.4), ε is a positive constant could be chosen to be (2
∥∥∥ f ′

3

f3

∥∥∥
L∞

)−1.

By Cauchy inequality, the Sobolev imbedding theorem, Holder inequality and (5.2) with the notice
that (−R,L1) ⊂ (−R,L2)

∫ L1

−R
αk|Φn1,k||ϕn1 |dv ≤ αk

2

∫ L1

−R
|Φn1,k|2dv +

αk
2

∫ L1

−R
|ϕn1 |2dv

≤ αk
2
‖Φn1,k‖2L2(−R,L2) + Cαk

2
‖Φn+1

2,k ‖
2
L2(L1,R),∫ L1

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣ ∣∣∣∣ ∂∂vϕn1
∣∣∣∣ dv, ≤ 1

2

∫ L1

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv +
1

2

∫ L1

−R

∣∣∣∣ ∂∂vϕn1
∣∣∣∣2 dv,

≤ 1

2
‖Φn1,k‖2H1(−R,L2) +

C
2
‖Φn+1

2,k ‖
2
H1(L1,R)∫ L1

−R
2

∣∣∣∣f ′3f3

∣∣∣∣ ∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣ |ϕn1 |dv ≤
∥∥∥∥f ′3f3

∥∥∥∥
L∞

∫ L1

−R
2

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣ |ϕn1 |dv,
≤

∫ L1

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 +

∥∥∥∥f ′3f3

∥∥∥∥2

L∞

∫ L1

−R
|ϕn1 |2dv

≤ ‖Φn1,k‖2H1(−R,L2) + Cαk‖Φn+1
2,k ‖

2
L2(L1,R),

and by the trace theorem (5.3)

q|Φn1,k(L1)||ϕn1 (L1)| ≤ qC∗‖Φn1,k‖2H1(−R,L1) + qC∗‖ϕn1‖2H1(−R,L1)

≤ qC∗‖Φn1,k‖2H1(−R,L2) + qC∗C‖Φn+1
2,k ‖

2
H1(L1,R).
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Summing all of the above inequalites, we infer that the left hand side of (5.17) is bounded from
above by

f4(L1)

f3(L1)

(∫ L1

−R
αk|Φn1 ||ϕn1 |dv +

∫ L1

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣ ∣∣∣∣ ∂∂vϕn1
∣∣∣∣ dv (5.19)

+

∫ L1

−R
2

∣∣∣∣f ′3f3

∣∣∣∣ ∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣ |ϕn1 |dv + q|Φn1,k(L1)||ϕn1 (L1)|

)

≤ f4(L1)

f3(L1)

[(
αk + 3

2
+ qC∗

)∫ L2

−R
αk|Φn1,k|2dv +

(
3

2
+ qC∗

)∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv
]

+
f4(L1)

f3(L1)
C

[(
3αk + 1

2
+ qC∗

)∫ R

L1

|Φn+1
2,k |

2dv +

(
3

2
+ qC∗

)∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
]

≤ f4(L1)

f3(L1)

(
3

2
+ qC∗

)(∫ L2

−R
|Φn1,k|2dv +

∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv
)

+
f4(L1)

f3(L1)
C (3 + qC∗)

(∫ R

L1

αk|Φn+1
2,k |

2dv +

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
)

≤ 1

8

(∫ L2

−R
αk|Φn1,k|2dv +

∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv
)

+
1

8

(∫ R

L1

αk|Φn+1
2,k |

2dv +

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
)
,

where we have used (5.4).
Combine (5.17), (5.18) and (5.19)

1

2

(∫ R

L1

αk|Φn+1
2,k |

2dv +

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
)

≤ 1

8

(∫ L2

−R
αk|Φn1,k|2dv +

∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv
)

+
1

8

(∫ R

L1

αk|Φn+1
2,k |

2dv +

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
)
.

Therefore∫ R

L1

|Φn+1
2,k |

2dv +
1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv ≤ 1

3

(∫ L2

−R
|Φn1,k|2dv +

1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv
)
.

Similarly∫ L2

−R
|Φn+1

1,k |
2dv +

1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦn+1
1,k

∣∣∣∣2 dv ≤ 1

3

(∫ R

L1

|Φn2,k|2dv +
1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦn2,k

∣∣∣∣2 dv
)
.

Take the sum of the previous two inequalities to get∫ L2

−R
|Φn+1

1,k |
2dv +

1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦn+1
1,k

∣∣∣∣2 dv +

∫ R

L1

|Φn+1
2,k |

2dv +
1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
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≤ 1

3

(∫ L2

−R
|Φn1,k|2dv +

1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv +

∫ R

L1

|Φn2,k|2dv +
1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦn2,k

∣∣∣∣2 dv
)
,

which leads to

∞∑
k=−∞

(∫ L2

−R
|Φn+1

1,k |
2dv +

1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦn+1
1,k

∣∣∣∣2 dv +

∫ R

L1

|Φn+1
2,k |

2dv +
1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦn+1
2,k

∣∣∣∣2 dv
)

≤ 1

3

∞∑
k=−∞

(∫ L2

−R
|Φn1,k|2dv +

1

αk

∫ L2

−R

∣∣∣∣ ∂∂vΦn1,k

∣∣∣∣2 dv +

∫ R

L1

|Φn2,k|2dv +
1

αk

∫ R

L1

∣∣∣∣ ∂∂vΦn2,k

∣∣∣∣2 dv
)
.

Step 3: We have proved that

Sn ≤
1

3n
S0 <

C

3n

∫ ∞
0

(
‖e0

1‖2L2(T,H1(−R,L2)) + ‖e0
2‖2L2(T,H1(−R,L2))

)
exp(−8t)dt =:

C∗

3n
,

which leads to
∞∑

k=−∞

(∫ L2

−R
|Φn1,k|2dv +

∫ R

L1

|Φn2,k|2dv

)
<
C∗

3n
.

Since according to our hypothesis f3, f4 > β > 0 on [−R,R], we have that

|Φn1,k(v)| =
∣∣∣∣∫ ∞

0

ên1 (k)(v) exp(−αkt)dt
∣∣∣∣ f3(v) > β

∣∣∣∣∫ ∞
0

ên1 (k)(v) exp(−αkt)dt
∣∣∣∣ ,

|Φn2,k(v)| =
∣∣∣∣∫ ∞

0

ên2 (k)(v) exp(−αkt)dt
∣∣∣∣ f4(v) > β

∣∣∣∣∫ ∞
0

ên2 (k)(v) exp(−αkt)dt
∣∣∣∣ .

Therefore

∞∑
k=−∞

(∫ L2

−R

∣∣∣∣∫ ∞
0

ên1 (k) exp(−αkt)dt
∣∣∣∣2 dv +

∫ R

L1

∣∣∣∣∫ ∞
0

ên2 (k) exp(−αkt)dt
∣∣∣∣2 dv

)
<

C∗

3nβ
. (5.20)

Recall that in (5.4), we choose αk ≥ Ak. Therefore (5.20) holds true for all αk ≥ Ak. Moreover,
since the functions

Fk(αk) =

∫ L2

−R

∣∣∣∣∫ ∞
0

ên1 (k) exp(−αkt)dt
∣∣∣∣2 dv,Gk(αk) =

∫ R

L1

∣∣∣∣∫ ∞
0

ên2 (k) exp(−αkt)dt
∣∣∣∣2 dv,

are bounded and continous on [0,∞), there exists α∗k such that Fk(α∗k) = sup[Ak,∞) Fk(αk),

Gk(α∗∗k ) = sup[Ak,∞)Gk(αk). Then choose αk to be α∗k and α∗∗k respectively in (5.20), we get

∞∑
k=−∞

sup
αk∈[Ak,∞)

(∫ L2

−R

∣∣∣∣∫ ∞
0

ên1 (k) exp(−αkt)dt
∣∣∣∣2 dv

)
<

C∗

3nβ
,

∞∑
k=−∞

sup
αk∈[Ak,∞)

(∫ R

L1

∣∣∣∣∫ ∞
0

ên2 (k) exp(−αkt)dt
∣∣∣∣2 dv

)
<

C∗

3nβ
,

As a consequence, we get the convergence in the norm of L. �
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6. Numerical experiments

In this section we provide some numerical tests to support the theoretical analysis of the previous
sections.

6.1. Model problem

We consider the initial boundary value problem

∂u

∂t
+ v

∂u

∂x
− ∂2u

∂v2
= f in (0, T )× [0, 1]× [−1, 1]

u(t, 0, v) = u(t, 1, v) on (0, T )× [−1, 1]

u(t, x,−1) = 0 on (0, T )× [0, 1]

u(t, x, 1) = 0 on (0, T )× [0, 1]

(6.1)

equipped with homogeneous Dirichlet boundary conditions in v and periodic boundary conditions
in x. We claim that different choices of boundary condition in v = −1 and v = 1 do not affect the
results we show in what follows. Since the problem is linear, we can directly test the convergence
on the error equation (i.e. letting f ≡ 0) whose unknown, with a little abuse of notation, we still
denote by u.

6.2. Finite dimensional approximation on a single domain

We briefly describe here the numerical approximation of equation (6.1), and we focus for presen-
tation purposes on a single domain. We discretize equation (6.1) by an operator splitting technique
(see e.g. [29]), where we first solve a parabolic problem in (t, v) for half the time step, and we cor-
rect it by explicitly advancing the transport part of the equation in (t, x). Let then ∆t be the time
discretization step, and set τ = ∆t/2.

Step 1. Solve, in [t, t+ τ ], for all x ∈ [0, 1],
∂

∂t
w(t, x, v)− ∂2

∂v2
w(t, x, v) = 0.

Step 2. For all x ∈ [0, 1], u(t+ ∆t, x, v) = w(t, x− τv, v).

We discretize the parabolic part of equations (6.1) with an implicit Euler scheme in t, and by finite
elements in the v direction (see e.g. [31]). The transport part is solved explicitly by interpolation
on the solution computed at Step 1. We denote by hx and hv the discretization steps in the x
and v variable, respectively, and by Nx and 2Nv the corresponding grid point numbers. We let
xm = mhx (m = 0, .., Nx − 1), vi = −1 + i hv (i = 0, .., 2Nv − 1), we denote by {ϕj}j=0,..,2Nv−1 a
nodal basis for the finite element space associated to v, and we can approximate u(tn, xm, v) by

u(tn, xm, v) ∼ um(tn, v) =

Nv∑
j=0

uj,m(tn)ϕj(v).

For the sake of compactness in notations, for allm = 0, .., Nx, we let um(t) = [u1,m(t), ..., u2Nv,m(t)]T

and unm = um(tn).

The numerical approximation of (6.1) is then computed by the following operator splitting scheme.
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Given
{
uni,m

}
i=1,..,2Nv,m=1,..,Nx

Step 1. For m = 0, ..., Nx − 1, solve

1

τ
Mun+1/2

m + Sun+1/2
m =

1

τ
Munm, (6.2)

where M and S are the mass and stiffness matrices, whose entries (i, j) are given by

[M ]ij =

∫ 1

0

ϕjϕi dv [S]ij =

∫ 1

0

dϕj
dv

dϕi
dv

dv. (6.3)

Let then u
n+1/2
m =

[
u
n+1/2
1,m , ..., u

n+1/2
2Nv,m

]T
.

Step 2. For i = 0, .., Nv − 1, set

un+1
i,m = (1− |vi| τ)u

n+1/2
i,m + (|vi|τ )u

n+1/2
i,m+1 for m = 1, ..., Nx − 1

un+1
i,Nx

= un+1
i,1 .

(6.4)

For i = Nv, .., 2Nv − 1, set

un+1
i,1 = (1− |vi| τ)u

n+1/2
i,m + (|vi|τ )u

n+1/2
i,m−1 for m = 1, ..., Nx − 1

un+1
i,1 = un+1

i,Nx
.

(6.5)

Remark 6.1. In the numerical tests of the following section, we use linear finite elements and
a Cavalieri-Simpson quadrature rule to evaluate these entries. Since the Cavalieri-Simpson rule
is third order accurate, the matrices M and S are computed exactly. The numerical procedure
described above is a classical operator splitting technique (see [29]).

6.3. Schwarz Waveform Relaxation

We decompose the computational domain Ω = [0, T ]× [0, 1]× [−1, 1] into two subdomains

Ω1 = [0, T ]× [0, 1]× [−1, β] Ω2 = [0, T ]× [0, 1]× [α, 1], (6.6)

which may or may not overlap (β−α ≥ 0). As a matter of fact, even if the analysis was carried on
in the case of overlapping subdomains only, the use of Robin interface conditions in an Optimized
Schwarz Waveform Relaxation (OSWR) algorithm guarantees convergence also in the absence of
overlap, a feature not shared by the Classical Schwarz Waveform Relaxation (CSWR) one. In what
follows we denote by L = β − α the size of the overlap between the two subdomains.
We introduce the interface variables

λ1(t, x, β) = Q1 u2(t, x, β) λ2(t, x, 0) = Q2 u1(t, x, 0), (6.7)

where the operators Q1 and Q2 are given by

Q1 w = w Q2 w = w



TITLE WILL BE SET BY THE PUBLISHER 23

for the CSWR, and by

Q1 w =

(
p+

∂

∂v

)
w Q2 w =

(
q − ∂

∂v

)
w

for the OSWR. With these positions, the Schwarz Waveform Relaxation algorithms read as follows.

Given λ0
1(t, x, β) on [0, T ]× [0, 1], solve for k ≥ 1 until convergence

∂uk1
∂t

+ v
∂uk1
∂x
− ∂2uk1

∂v2
= 0 in Ω1

uk1(t, 0, v) = uk1(t, 1, v) on [0, 1]

uk1(t, x,−1) = 0 on [0, T ]× [0, 1]

Q1 u
k
1(t, x, β) = λk−1

1 (t, x, β) on [0, T ]× [0, 1],

(6.8)

λk2(t, x, α) = Q2 u
k
1(t, x, α) on [0, T ]× [0, 1], (6.9)

∂uk2
∂t

+ v
∂uk2
∂x
− ∂2uk2

∂v2
= 0 in Ω2

uk2(t, 0, v) = uk2(t, 1, v) on [0, T ]× [0, 1]

uk2(t, x, 1) = 0 on [0, T ]× 0, 1],

Q2 u
k
2(t, x, α) = λk2(t, x, α) on [0, T ]× [0, 1]

(6.10)

λk1(t, x, β) = Q1 u
k
2(t, x, β) on [0, T ]× [0, 1]. (6.11)

For a given tolerance ε > 0, the Schwarz Waveform Relaxation algorithm (6.8)-(6.11) is consid-
ered to have reached convergence when∥∥uk1(t, x, v)− uk2(t, x, v)

∥∥
L∞([0,T ]×[0,1])×(α,β)

< ε. (6.12)

Remark 6.2. The Schwarz waveform relaxation algorithm is serial in the form presented in (6.8)-

(6.11), but it can be easily parallelized by just replacing λk2(t, x, α) with λk−1
2 (t, x, α) in (6.10).

6.4. Optimization of the Robin parameters

Since an analytical optimization of the Robin parameters (p, q) is not available, we perform
an empirical optimization both in the case of one-sided (p = q) and two-sided (p 6= q) interface
conditions. We let T = 2, and for the linearity of the problem we test directly the convergence on
the error equation. We discretize the domains Ω1 and Ω2 by a uniform grid. Since the mesh size in
v is not affecting the size of the interface problem, we use the same step hv in both Ω1 and Ω2, with
hv = hx = ∆t = 0.01. As a consequence, the interface problems features 20, 200 unknowns. We
choose an overlap of three elements (L = 3hv). We initialize the interface variable with a random
value for λ0

1(t, x, β), in order to have all the frequencies represented in the initial error. Finally, we
consider the algorithm to have converged when the error (6.12) drops below ε = 10−6.

6.4.1. One-sided Optimized Schwarz Waveform Relaxation: OSWR(p)

In Figure 1 (left) we plot the iteration counts needed to achieve convergence, as the parameter p
varies. In Figure 1 (right) we plot the error after 15 iteration for different values of p. The optimal
parameter is numerically identified as p∗ = 4.23, by sampling the interval (4, 5) with step 0.001.
Although the iteration counts is the same as for p = 4, the Robin parameter p∗ features a steeper
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convergence history. This is the case also for p = 5, which requires 2 more iterations to converge,
but has a smaller error than p = 4 after 15 iterations. Finally, we consider the algorithm to have
converged when the error (6.12) drops below ε = 10−6.
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Figure 1. OSWR(p). Left: iteration counts to reach convergence as a function
of the Robin parameter p. Right: error after 15 iterations as a function of p.

6.4.2. Optimized two-sided Schwarz Waveform Relaxation: OSWR(p,q)

In Figure 2 (left) we plot the iteration counts needed to achieve convergence, as the parameters
p and q vary. In Figure 2 (right) we plot the error after 15 iteration for different values of p and
q. The optimal parameters are numerically identified as p∗ = 11 and q∗ = 2.5, by sampling the
square (10.5, 11.5)× (2, 3) with step 0.002 in both directions.
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Figure 2. OSWR(p,q). Left: iteration counts to reach convergence as a function
of the Robin parameters p and q. Right: error after 15 iterations as a function of
(p, q).

6.5. Comparison between Optimized and Classical Schwarz Waveform Relax-
ation

We compare in this section the performance of the Classical and Optimized algorithms. We
consider both non-overlapping and overlapping decompositions as in (6.6), always with the overlap
of three element (L = 3hv). Following the results from the previous Section, we implemented
OSWR(p) with p = 4.23, and with OSWR(p,q) with p = 11 and q = 2.5. We consider a reference
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mesh size ∆t = hv = hx = 0.01, and test the behavior of the algorithm in four successive dyadic
mesh refinements, τj = 2−j× 0.01 (τ = ∆t, hx, hv), with j = 0, .., 4. We report the results in Table
1.
In the overlapping case, both OSWR(p) and OSWR(p,q) algorithm appear to be almost insensi-
tive to the mesh refinement, while the CSWR appears to be very sensitive to it. The two-sided
OSWR(p,q) appears globally more robust in terms of iteration counts with respect to the one-sided
OSWR(p), whose iteration counts still remain more than reasonable. Both algorithms outperform
the CSWR.
In the non-overlapping case, a similar pattern is observed for OSWR(p) and OSWR(p,q). Both
algorithms appear to be a little sensitive to the size of the interface problem. However, iteration
counts are higher than in the overlapping case, but not significantly higher. The OSWR(p,q) is
more robust than the OSWR(p), featuring an increase of around 50% in iterations for the most
refined case, while the latter experiences a doubling. For both algorithms, however, the iteration
counts remain reasonable in all cases. As expected, CSWR does not converge in the absence of
overlap. Finally, we plot in Figure 3 the convergence history of the three overlapping algorithms
at level j = 2 of refinement.

∆t = 2−j×0.01 Overlapping
hx = 2−j×0.01 (L = 3× hv)
hv = 2−j×0.01 j = 0 j = 1 j = 2 j = 3 j = 4
CSWR 70 105 132 >150 >150
OSWR(p) 9 12 15 17 18
OSWR(p,q) 9 10 10 10 13

∆t = 2−j×0.01 Non-overlapping
hx = 2−j×0.01 (L = 0)
hv = 2−j×0.01 j = 0 j = 1 j = 2 j = 3 j = 4
CSWR - - - - -
OSWR(p) 12 17 20 23 26
OSWR(p,q) 11 12 13 14 16

Table 1. Classical vs Optimized Schwarz Waveform Relaxation: iteration counts
to achieve convergence for successive dyadic refinements. Overlapping (L = 3hv),
and non-overlapping decomposition (L = 0).

7. Conclusion

We have designed some new Schwarz waveform relaxation algorithms adapted to the context
of the Kolmogorov equations. The domain is split in the v-direction, which is the ’parabolic’ di-
rection of the equation. The algorithms are proven to be well-posed, stable and useful in both
numerical and theoretical senses. The Kolmogorov operator is hypoelliptic and it has properties of
both hyperbolic and parabolic operators. Domain decomposition methods for hyperbolic problems
are sometimes unstable, even for optimized algorithms, which means that the hyperbolicity of the
operator really affects the convergence rates of the algorithm. In our situation, the algorithms are
stable in both cases: classical and optimized algorithms. The theoretical and numerical results
in this paper show that the equation is more parabolic than hyperbolic, in the regime of domain
decomposition. Moreover, according to our results, the Schwarz waveform relaxation algorithms
for the Kolmogorov equation have almost the same properties with an advection diffusion equation
or a heat equation.
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Figure 3. Overlapping Schwarz Waveform Relaxation. Convergence history for
the three different algorithm, CSWR (blue dashed line), OSWR(p) (red dot-
dashed line), and OSWR(p,q) (green solid line).

Acknowledgements. The second author would like to thank his advisor, Professor Enrique
Zuazua, for suggesting this topic to him and for his kind and wise guidance. He is also grateful
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