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Abstract

Motivated by the idea of imposing paralleling computing on solving stochastic differential equations (SDEs), we introduce a new
domain decomposition scheme to solve forward–backward stochastic differential equations (FBSDEs) parallel. We reconstruct the
four step scheme in Ma et al. (1994) [1] and then associate it with the idea of domain decomposition methods. We also introduce a
new technique to prove the convergence of domain decomposition methods for systems of quasilinear parabolic equations and use
it to prove the convergence of our scheme for the FBSDEs.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

Motivés par l’idée d’utiliser le calcul parallèle pour résoudre les équations différentielles stochastiques, on introduit un nouveau
schéma de décomposition de domaines pour les FBSDEs. On reconstruit le schéma à quatre étapes de Ma et al. (1994) [1] et on le
combine avec la méthode de décomposition de domaines. On introduit aussi une nouvelle technique pour étudier la convergence des
méthodes de décomposition de domaines pour les systèmes d’équations paraboliques quasi-linéaires, et on l’utilise pour montrer
la convergence de notre schéma.
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The theory of forward–backward stochastic differential equations (FBSDEs) is a very active field of research since
the first work of Pardoux and Peng [2] and Antonelli [3] came out in the early 1990s. These equations appear in a
large number of application fields in stochastic control and financial mathematics. We refer to the monograph [4] for
details, further development and applications. Such systems strongly couple a forward stochastic differential equation
with a backward one; and they can be written as a kind of stochastic two-point boundary value problems:
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{
dXt = b(t,Xt , Yt ,Zt ) dt + σ(t,Xt , Yt ) dWt ,

dYt = −b̂(t,Xt , Yt ,Zt ) dt − Zt dWt ,

X0 = x, YT = g(XT ).

(1.1)

Together with the theoretical studies on the systems (see [1–3,5–9]) finding an efficient numerical scheme for FBSDEs
has also become an important part of the theory. In order to solve a system of FBSDEs, we need to use the “decoupling
PDE” technique, based on the so-called four step scheme (see [1,8,9]). In which, the system of FBSDEs is associated
with a quasilinear parabolic system of the following type:⎧⎪⎨

⎪⎩
∂θ

∂t
+

n∑
i,j=1

ai,j

∂2θ

∂xi∂xj

+ 〈∇θ, b(t, x, θ,∇θ)
〉 + b̂(t, x, θ,∇θ) = 0, in (0, T ) × Rn,

θ(T , x) = g(x), on Rn,

(1.2)

where θ(t, x) is a vector of m components θ = (θ1, . . . , θm), m ∈ N.
From here, there are two directions to solve FBSDEs. The first trend is to solve FBSDEs by using the decoupling

technique combining with some probability methods to avoid treating the PDEs directly (see [6,10–12]). The second
trend is to solve directly the PDEs. The first paper in this direction is the one of Douglas, Ma, Protter [13], in which
the PDE is treated by a finite difference method. Later in 2008, Ma, Shen and Zhao proposed a new approach based on
the Hermite-spectral method to treat the PDE (see [14]), that is then proved to be much more better than the previous
one.

These systems of nonlinear PDEs are in high dimension and due to the large number of unknowns involved in the
computation, it is an absolute necessity to split the computation between several processors. Therefore, transmission
rules between the processors must be defined, which from a mathematical viewpoint means domain decomposition and
transmission conditions between the sub-domains. In this paper, we present a new approach, still based on the second
trend, to the coupled FBSDEs problem, by combining the classical four step scheme with domain decomposition
methods or Schwarz methods, with waveform relaxation. The idea is to impose parallel computing on solving SDEs
numerically. We reconstruct the four step scheme with some new conditions and then associate it with Schwarz
waveform relaxation methods to parallelize the system of quasilinear parabolic equations (1.2): System (1.2) is divided
into I subproblems, and each problem is solved separately. The scheme is then proved to be well-posed and stable.
To our knowledge, this is the first attempt trying to apply domain decomposition algorithms to stochastic differential
equations.

In the pioneer work [15–17], P.-L. Lions laid the foundations of the modern theory for the continuous approach of
Schwarz algorithms. With the development of parallel computers, the interest in Schwarz methods has grown rapidly,
as these methods lead to inherently parallel algorithms. During the last two decades, many domain decomposition
algorithms have been introduced, but the problem of convergence of Schwarz methods still remains an open problem
up to now. In his pioneer work [15–17], P.-L. Lions has proved that the classical Schwarz method for linear Laplace
equation is in fact equivalent to a sequence of projections in a Hilbert space. Moreover, he also observed that the
Schwarz sequences of linear elliptic equations is related to minimum methods over product spaces. This observation
was used later by L. Badea in [18] to prove the convergence of the classical Schwarz method for a class of linear
elliptic equations.

Later, in [19] and [20], M.J. Gander and A.M. Stuart and E. Giladi and H.B. Keller applied Schwarz methods
to the 1-dimensional linear heat and advection–diffusion equations. Referring to the paper [21], they call Schwarz
methods adapted to parabolic equations Schwarz waveform relaxation algorithms. In these papers, the convergence of
the algorithms is proven by Laplace and Fourier transforms. An extension to the nonlinear reaction–diffusion equation
in 1-dimension was considered in [22]. With the hypothesis f ′(c) � C, proofs of linear convergence on unbounded
time domains, and superlinear convergence on finite time intervals were then given in case of n sub-domains, based on
some explicit computations on the linearized equations. Recently, an extension to systems of 1-dimensional semilinear
reaction–diffusion equations was investigated in [23]. This is the first paper trying to apply Schwarz methods to a
system of PDEs in 1-dimension and the proof of convergence is based strongly on the technique introduced in [22].
Another extension to nonlinear PDEs in higher dimension with monotone iterations was considered by Lui in [24–26].
The main idea of the papers is based on the sub–super solutions method in the theory of partial differential equations
and the initial guesses are usually sub- or super-solutions of the equations.

In order to solve FBSDEs by Schwarz methods, we encounter the system of quasilinear parabolic equations (1.2) in
n-dimension. To our knowledge, a good tool to study the convergence of Schwarz methods has not appeared, and the



Author's personal copy

M.-B. Tran / J. Math. Pures Appl. 96 (2011) 377–394 379

convergence problem remains to be a difficult problem up to now. We then introduce a new technique, that allows us
to study the convergence of Schwarz algorithms for systems of nonlinear equations in n-dimension. Different from the
systems and equations considered previously, our parabolic system contains nonlinearity in all advection and diffusion
terms. The technique is based on an exponential decay estimate (Step 1 in the proof of Theorem 3.1) and an estimate
of the errors on the boundaries (Step 2 in the same proof). Our long term goal is to construct some new tools to study
the convergence problem of Schwarz methods and this technique takes us a step closer to it.

Our paper is organized as follows:
Section 2 introduces the FBSDEs we want to study. Definitions of the problem will be given in Sections 2.1 and 2.2

will give existence and uniqueness proofs.
In Section 3, we introduce our four step domain decomposition scheme and its proof of convergence. The scheme

will be defined in Section 3.1 and the proofs will be given in Sections 3.2, 3.3 and 3.4.

2. Forward–backward stochastic differential equations

The structure of this section is as follows: In Section 2.1, we will give the definition of forward–backward stochastic
differential equations, then state some results on the existence and uniqueness of the equations; these results will be
proved in Section 2.2.

2.1. Existence and uniqueness results

Let {Wt : t � 0} be a d-dimensional Brownian motion defined on the probability space (Ω,F,P ). We define by
{Ft } the σ -field generated by W . We suppose that {Ft } contains all the null sets of F and consider the following
forward–backward SDEs: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xt = x +
t∫

0

b(s,Xs,Ys) ds +
t∫

0

σ(s,Xs,Ys) dWs,

Yt = g(XT ) +
T∫

t

b̂(s,Xs,Ys) ds +
T∫

t

σ̂ (s,Xs,Ys,Zs) dWs,

(2.1)

where t belongs to [0, T ]; the processes X, Y , Z take values in Rn, Rm, Rm×d , respectively and b, b̂, σ , σ̂ , g take
values in Rn, Rm, Rn×d , Rm×d and Rm, respectively.

Since we are only looking for ordinary adapted solutions of the FBSDEs (2.1) (i.e. solutions which are {Ft }-
adapted and square-integrable, and satisfy (2.1) P -almost surely), we can write (2.1) in the following form:⎧⎨

⎩
dXt = b(t,Xt , Yt ) dt + σ(t,Xt , Yt ) dWt ,

dYt = −b̂(t,Xt , Yt ) dt − σ̂ (t,Xt , Yt ,Zt ) dWt ,

X0 = x, YT = g(XT ).

(2.2)

Now we state the conditions that we impose on (2.1) and (2.2):

(A1) The functions b, b̂, σ , σ̂ , g are bounded C1-functions; and g is bounded in C2+δ(Rm) for some δ in (0,1).
(A2) The matrix σ satisfies ∣∣σ(t, x, y)

∣∣ � C,

and

σ(t, x, y)σT (t, x, y) � ν
(|y|)I, ∀(t, x, y) ∈ [0, T ] × Rn × Rm,

where ν is a positive continuous function, and C is a positive constant.
(A3) There exist a positive function η and a positive constant C such that for all (t, x, y,0) and (t, x,0, z) in

[0, T ] × Rn × Rm × Rm×n, ∣∣b(t, x, y,0)
∣∣ � η

(|y|),



Author's personal copy

380 M.-B. Tran / J. Math. Pures Appl. 96 (2011) 377–394

and ∣∣b̂(t, x,0, z)
∣∣ � C.

(A4) We suppose also that for all k ∈ {1, . . . ,m} and for all (t, x, y1, . . . , yk−1, yk+1, . . . , ym, ξ) in
[0, T ] × Rn × Rm−1 × Rm×n,

b̂k(t, x, y1, . . . , yk−1,0, yk+1, . . . , ym, ξ) = 0,

and b̂k(t, x, y1, . . . , yk−1, yk, yk+1, . . . , ym, ξ) is decreasing in yk .

Assuming that Yt takes the form θ(t,Xt ), P -almost surely, for all t in [0, T ], by Itô’s formula, we can transform
the backward SDE in (2.2) into the following system of PDEs:⎧⎪⎨

⎪⎩
∂θ

∂t
+

n∑
i,j=1

ai,j (t, x, θ)
∂2θ

∂xi∂xj

+ 〈∇θ, b(t, x, θ,∇θ)
〉 + b̂(t, x, θ,∇θ) = 0, in (0, T ) × Rn,

θ(T , x) = g(x), on Rn,

(2.3)

where we define σT (t, x, θ) to be the transposed matrix of σ(t, x, θ) and (ai,j )(t, x, θ) to be 1
2σ(t, x, θ)σT (t, x, θ).

The result on the existence and uniqueness of solutions of (2.2) then follows.

Theorem 2.1 (Existence and uniqueness theorem). Suppose that conditions (A1)–(A4) above are satisfied, then
Eq. (2.2) admits a unique solution (X,Y,Z) defined as follows:

The process X is the solution of the following forward SDE,

Xt = x +
t∫

0

b
(
s,Xs, θ(s,Xs),∇θ(s,Xs)

)
ds +

t∫
0

σ
(
s,Xs, θ(s,Xs)

)
ds, (2.4)

where θ is the unique solution of (2.3).
The processes Yt , Zt are then θ(t,Xt ) and z(t,Xt , θ(t,Xt ),∇θ(t,Xt )), where z is a smooth mapping from

[0, T ] × Rn × Rm × Rm×n to Rm×d defined as follows:

z(t, x, y, ξ) = −ξσ (t, x, y), ∀(t, x, y, ξ) ∈ [0, T ] × Rn × Rm × Rm×n. (2.5)

Remark 2.1. Assumptions (A1)–(A3) are similar to Assumptions (A1)–(A4) in [1]. (A4) will be used later in the
proof of convergence for the parallel four steps domain decomposition scheme.

2.2. Proof of existence and uniqueness results

This subsection is devoted to the proof of the existence and uniqueness results stated in Section 2.1. The following
proposition states a result on the existence and uniqueness of solutions to (2.3):

Proposition 2.1. Suppose that (A1)–(A4) hold. Then the system (2.3) admits a unique classical solution θ(t, x), such
that θ(t, x), ∂

∂t
θ(t, x), ∇θ(t, x), 
θ(t, x) are bounded in C((0, T ) × Rn).

Proof. We first recall a useful result. Letting ω be a bounded and smooth enough domain of Rn, we consider the
system: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂φ

∂t
+

n∑
i,j=1

ai,j (t, x, θ)
∂2φ

∂xi∂xj

+ 〈∇φ,b(t, x,φ,∇φ)
〉 + b̂(t, x,φ,∇φ) = 0, in (0, T ) × ω,

φ(t, x) = g(t, x), on [0, T ] × ∂ω,

φ(T , x) = g(T , x), on ω.

(2.6)
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Recalling Theorem 7.1, Chapter VII of [27] and Lemma 3.2 of [1], we have the following lemma:

Lemma 2.1. Suppose that all the functions aij , bi , b̂ are smooth, g is bounded in C1+δ,2+δ([0, T ] × ω) with δ

belonging to (0,1); and for all (t, x, y) ∈ [0, t] × Rn × Rm, we have:

ν1
(|y|)I �

(
aij (t, x, y)

)
� ν2

(|y|)I, (2.7)∣∣b(
t, x, y, z(t, x, y, ξ)

)∣∣ � μ
(|y|)(1 + |ξ |), (2.8)∣∣∣∣ ∂

∂xl

aij (t, x, y)

∣∣∣∣ +
∣∣∣∣ ∂

∂yk

aij (t, x, y)

∣∣∣∣ � μ
(|y|), (2.9)

for some continuous positive functions ν1(.), ν2(.), μ(.), and∣∣b̂(
t, x, y, z(t, x, y, ξ)

)∣∣ � C1
(
1 + |y|), (2.10)∣∣〈b̂(

t, x, y, z(t, x, y, ξ)
)
, y

〉∣∣ � C2
(
1 + |y|2), (2.11)

for some positive constants C1, C2. Then (2.6) admits a unique classical solution φ in C1,2((0, T ) × ω). Moreover,
φ, ∂φ

∂t
, ∇φ, 
φ are bounded in C((0, T ) × Rn) by a constant which does not depend on ω, and there exists a positive

number δ′ in (0,1) such that φ belongs to C1+δ′,2+δ′
((0, T ) × ω).

Now, we will apply this lemma to our case. First of all, we verify that the conditions of Lemma 2.1 hold. We can
see that (2.7) is a consequence of (A2), (2.8) is a consequence of (A4) and (2.9) is a consequence of (A1). We only
need to prove (2.10) and (2.11).

Conditions (A1) and (A4) infer that∣∣b̂(t, x, y, z)
∣∣ �

∣∣b̂(t, x, y, z) − b̂(t, x,0, z)
∣∣ + ∣∣b̂(t, x,0, z)

∣∣ � C1
(
1 + |y|),

and this implies, ∣∣〈b̂(t, x, y, z), y
〉∣∣ � C′

1

(
1 + |y|)|y| � C2

(
1 + |y|2),

where C′
1 is a positive constant. Lemma 2.1 then implies that there exists a solution φ(t, x) for all ω in Rn bounded

and smooth enough.
We now have a convergence argument similar as in [1]: we consider the ball BR with center at the origin and radius

to be R; using Lemma 2.1 with ω to be BR , we see that there exists a unique bounded solution θ(t, x;R) for (2.6)

and θ(t, x;R), ∂
∂t

θ(t, x;R), ∇θ(t, x;R), 
θ(t, x;R) are bounded uniformly; then a diagonalization argument shows
that there exists a subsequence θ(t, x;R) converging to θ(t, x) as R tends to infinity. We deduce that (2.3) admits a
unique classical solution θ , such that θ , ∂

∂t
θ , ∇θ , 
θ are bounded in C((0, T ) × Rn). �

We consider the forward SDE on X from (2.2), with the assumption that Yt can be written under the form θ(t,Xt ):{
dXt = b

(
t,Xt , θ(t,Xt ),∇θ(t,Xt )

)
dt + σ

(
t,Xt , θ(t,Xt )

)
dWt,

X0 = x.
(2.12)

From the Lipschitz condition (A1), we can conclude that (2.12) has a unique solution X, which belongs to L2(0, T ).
Basing on the previous proposition and following a similar argument as in [1], we get Theorem 2.1. �
3. The parallel four step domain decomposition scheme

This section is devoted to the construction of the parallel four step domain decomposition scheme and its proof of
well-posedness and stability.

3.1. Definition of the scheme

We now define a new parallel four step domain decomposition scheme, based on the results obtained in Section 2.

Step 1. Let z be the smooth mapping satisfying (2.5).
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Step 2. Choose l to be a constant large enough and consider the domain Ol = (−l, l)n. On Ol , consider the following
problem instead of (2.3):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂θ l

∂t
+

n∑
i,j=1

ai,j

(
t, x, θ l

) ∂2θ l

∂xi∂xj

+ 〈∇θ l, b
(
t, x, θ l,∇θ l

)〉 + b̂
(
t, x, θ l,∇θ l

) = 0, in (0, T ) ×Ol ,

θ l(t, x) = g(x), on (0, T ) × ∂Ol ,

θ l(T , x) = g(x), on Ol .

(3.1)

The same arguments as in the proof of Proposition 2.1 show that (3.1) has a unique classical solution θ l(t, x), where
θ l(t, x), ∂

∂t
θ l(t, x), ∇θ l(t, x), 
θl(t, x) are bounded. Suppose that θ l(t, x) = g(x) on (0, T ) × (Rn \Ol ), then these

arguments also show that

lim
l→∞

∥∥θ l − θ
∥∥

(L∞((0,T )×Rn))m
= 0,

lim
l→∞

∥∥∇θ l − ∇θ
∥∥

(L∞((0,T )×Rn))m
= 0.

Step 3. Solve Eq. (3.1) iteratively in the following manner:

• Divide Ol into I sub-domains,

Ol =
I⋃

p=1

Ωp =
I⋃

p=1

(−l, l)n−1 × (ap, bp),

where −l = a1 < a2 < b1 < · · · < aI < bI−1 < bI = l. Denote Si to be bi − ai+1 for i belonging to {1, . . . , I − 1}
and Li to be bi − ai for i belonging to {1, . . . , I }.

• Choose a bounded initial guess θ l
0 in C∞(Rn) at step 0. Associate each sub-domain Ωp with a function θ l

p,0 such

that θ l
p,0 = θ l

0 on Ωp .
• Solve the following p-th subproblem at iteration #q ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θ l
p,q

∂t
+

n∑
i,j=1

ai,j

(
t, x, θ l

p,q

) ∂2θ l
p,q

∂xi∂xj

+ 〈∇θ l
p,q , b

(
t, x, θ l

p,q ,∇θ l
p,q

)〉 + b̂
(
t, x, θ l

p,q ,∇θ l
p,q

) = 0,

in (0, T ) × Ωp,

θl
p,q(., ., ap) = θ l

p−1,q−1(., ., ap), on (0, T ) × (−l, l)n−1,

θ l
p,q(., ., bp) = θ l

p+1,q−1(., ., bp), on (0, T ) × (−l, l)n−1,

θ l
p,q(t, x) = g(x), on (0, T ) × (

∂Ol \ (
(0, T ) × (−l, l)n−1 × ({ap} ∪ {bp}))),

θ l
p,q(T , x) = g(x), on (−l, l)n−1 × (ap, bp).

(3.2)

For the extreme sub-domain Ω1 (resp. ΩI ), we consider the boundary condition θ l
1,q (t, x, a1) = g(x) on the left

(resp. θ l
I,q(t, x, bI ) = g(x) on the right) in (3.2).

• Suppose that we stop at the iteration #q while solving (3.2).

The following two theorems insist that Step 2 of the algorithm is well-posed and show that the solutions of the
subproblems (3.2) converge to the solution of the main problem (3.1) when q tends to infinity.

Theorem 3.1 (Well-posedness theorem). Suppose that (A1)–(A4) hold, then at each iteration #q in each
sub-domain #p, there exists a unique classical solution θ l

p,q(t, x) for (3.2), such that θ l
p,q(t, x), ∂

∂t
θ l
p,q(t, x),

∇θ l
p,q(t, x), 
θl

p,q(t, x) are bounded and the sequence {θ l
p,q}p∈{1,...,I }; q∈N is uniformly bounded (with respect to

p and q) in C((0, T ) ×Ol).
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Theorem 3.2. Under Assumptions (A1)–(A4), we have the convergence:

lim
q→∞ sup

p∈{1,...,I }

∥∥θ l
p,q − θ l

∥∥
(L∞((0,T )×(−l,l)n−1×(ap,bp)))m

= 0,

lim
q→∞ sup

p∈{1,...,I }
∥∥∇θ l

p,q − ∇θ l
∥∥

(L∞((0,T )×(−l,l)n−1×(ap,bp)))m
= 0. (3.3)

Step 4. We will continue with the values θ l
p,q , p ∈ {1, . . . , I }, that we get at the end of Step 2.

• Let θ l
q be a function defined on [0, T ] ×Ol such that θ l

q(t, x) = θ l
p,q(t, x) on [0, T ] × (Ωp \ (Ωp−1 ∪ Ωp+1)) for

p ∈ {2, . . . , I − 1}, on [0, T ] × (Ωp \ Ωp−1) for p = I , and on [0, T ] × (Ωp \ Ωp+1) for p = 1. We can choose
θ l
q(t, x) such that it is Lipschitz, differentiable with respect to x and t in Rn and R, and

lim
q→∞

∥∥θ l
q − θ l

∥∥
(L∞([0,T ]×Ol ))

m = 0,

lim
q→∞

∥∥∇θ l
q − ∇θ l

∥∥
(L∞([0,T ]×Ol ))

m = 0. (3.4)

• Use θ l
q , solve the following forward SDE:

X
q,l
t = x +

t∫
0

b̄q

(
s,X

q,l
s

)
ds +

t∫
0

σ̄q

(
s,X

q,l
s

)
dWs, (3.5)

where b̄q is b(t, x, θ l
q(t, x),∇θ l

q(t, x)) and σ̄q(t, x) is σ(t, x, θ l
q(t, x)).

Using the same arguments as the ones used for (2.12), we can conclude that (3.5) has a unique solution in
L2(0, T ).

Set Y
q,l
t = θ l

q(t,X
q,l
t ) and Z

q,l
t = z(t,X

q,l
t , θ l

q(t,X
q,l
t ),∇θ l

q(t,X
q,l
t )). The following theorem says that the sequence

(X
q,l
t , Y

q,l
t ,Z

q,l
t ) converges to (Xt , Yt ,Zt ) as q and l tend to infinity.

Theorem 3.3 (Convergence theorem). Suppose that all the assumptions in Section 2.1 hold, then as q and l tend to
infinity, (X

q,l
t , Y

q,l
t ,Z

q,l
t ) converges to the solution (Xt , Yt ,Zt ) of (2.1) in the following sense:

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Xq,l

t − Xt

∣∣2)
dt = 0,

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Yq,l

t − Yt

∣∣2)
dt = 0,

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Zq,l

t − Zt

∣∣2)
dt = 0.

3.2. Proof of Theorem 3.1

First of all, we introduce some useful notations. We set:

M0 = max
{∥∥θ l

0

∥∥
C([0,T ]×Rn)

,‖g‖C(Rn)

}
,

and define ρp,q(t, x) to be θ l
p,q(T − t, x) for p ∈ {1, . . . , I } and q ∈ N.
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We can reformulate systems (3.2) into the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂ρp,q

∂t
+

n∑
i,j=1

ai,j

∂2ρp,q

∂xi∂xj

+ 〈∇ρp,q, b(t, x, ρp,q,∇ρp,q)
〉 + b̂(t, x, ρp,q,∇ρp,q) = 0, in (0, T ) × Ωp,

ρp,q(., ., ap) = ρp−1,q−1(., ., ap), on (0, T ) × (−l, l)n−1,

ρp,q(., ., bp) = ρp+1,q−1(., ., bp), on (0, T ) × (−l, l)n−1,

ρp,q(t, x) = g(x), on (0, T ) × (
∂Ol \ (

(−l, l)n−1 × ({ap} ∪ {bp}))),
ρp,q(0, x) = g(x), on (−l, l)n−1 × (ap, bp).

(3.6)

One can see that (3.6) are parabolic systems with the initial condition g.
Now, we will prove the theorem by induction.
At iteration #1, and in the p-th sub-domain, using the same argument as in Proposition 2.1, we can prove that (3.2)

admits a unique classical solution θ l
p,1(t, x), where θ l

p,1(t, x), ∂
∂t

θ l
p,1(t, x), ∇θ l

p,1(t, x), 
θl
p,1(t, x) are bounded.

Consider the following k-th equation of (3.6), for k in {1, . . . ,m}:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂ρk
p,1

∂t
+

n∑
i,j=1

ai,j

∂2ρk
p,1

∂xi∂xj

+ 〈∇ρk
p,1, b(t, x, ρp,1,∇ρp,1)

〉 + b̂(t, x, ρp,1,∇ρp,1) = 0, in (0, T ) × Ωp,

ρk
p,1(., ., ap) = ρk

p−1,0(., ., ap), on (0, T ) × (−l, l)n−1,

ρk
p,1(., ., bp) = ρk

p+1,0(., ., bp), on (0, T ) × (−l, l)n−1,

ρk
p,1(t, x) = gk(x), on (0, T ) × (

∂Ol \ (
(−l, l)n−1 × ({ap} ∪ {bp}))),

ρk
p,1(0, x) = gk(x), on (−l, l)n−1 × (ap, bp).

(3.7)

Using (A4), we deduce from (3.7) that

−∂ρk
p,1

∂t
+

n∑
i,j=1

ai,j

∂2ρk
p,1

∂xi∂xj

+ 〈∇ρk
p,1, b(t, x, ρp,1,∇ρp,1)

〉 + c(t, x)ρk
p,1 = 0,

where

c(t, x) =
⎧⎨
⎩

b̂k(t,x,ρp,1,∇ρp,1)−b̂k(t,x,ρ1
p,1,...,ρ

k−1
p,1 ,0,ρk+1

p,1 ,...,ρm
p,1,∇ρp,1)

ρk
p,1

if ρk
p,1(t, x) 
= 0,

0 otherwise.

Since c(t, x) is negative, by applying the maximum principle (see [28]) to this equation, we can see that the maximum
and minimum of ρk

p,1 can be obtained on the boundaries, for all k in {1, . . . ,m}. This means that ‖ρp,1‖C([0,T ]×Ωp) is

bounded by M0, and then M0 is also an upper bound of ‖θ l
p,1‖C([0,T ]×Ωp).

Suppose that up to iteration #q0, the unique classical solution θ l
p,q0

(t, x) exists, θ l
p,q0

(t, x), ∂
∂t

θ l
p,q0

(t, x),
∇θ l

p,q0
(t, x), 
θl

p,q0
(t, x) are bounded, and for all p in {1, . . . , I }, ‖θ l

p,q0
‖C([0,T ]×Ωp) is bounded by M0. We will

show that the conclusion is still correct for the step q0 + 1. The existence and uniqueness of θ l
p,q0+1 can be inferred

by using the same argument as in iteration #1 and Proposition 2.1. Now, we consider the following equation, for k in
{1, . . . ,m},⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂ρk
p,q0+1

∂t
+

n∑
i,j=1

ai,j

∂2ρk
p,q0+1

∂xi∂xj

+ 〈∇ρk
p,q0+1, b(t, x, ρp,q0+1,∇ρp,q0+1)

〉 + b̂(t, x, ρp,q0+1,∇ρp,q0+1) = 0,

in (0, T ) × Ωp,

ρk
p,q0+1(., ., ap) = ρk

p−1,q0
(., ., ap), on (0, T ) × (−l, l)n−1,

ρk
p,q0+1(., ., bp) = ρk

p+1,q0
(., ., bp), on (0, T ) × (−l, l)n−1,

ρk
p,q0+1(t, x) = gk(x), on (0, T ) × (

∂Ol \ (
(0, T ) × (−l, l)n−1 × ({ap} ∪ {bp}))),

ρk
p,q0+1(0, x) = gk(x), on (−l, l)n−1 × (ap, bp).

(3.8)
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Again, by a maximum principle argument applied to Eq. (3.8), we can see that the maximum and minimum of ρk
p,q0+1

can only be obtained on the boundaries, for all k in {1, . . . ,m}. However, we know that ‖θ l
p,q0+1‖C([0,T ]×Ωp) is

bounded by M0 for all p in {1, . . . , I }, from the definition of M0. We then deduce that ‖θ l
p,q0+1‖C([0,T ]×Ωp) is bounded

by M0.
We conclude that at each iteration #q in the p-th sub-domain, there exists a unique classical solution θp,q(t, x) for

(3.2) and the sequence {θ l
p,q}p∈1,I ; q∈N is uniformly bounded with respect to p and q in C((0, T ) ×Ol) by M0. This

finishes the proof.

3.3. Proof of Theorem 3.2

In this section, we introduce a completely new framework to study the convergence of domain decomposition
methods. The framework contains 2 steps.

Step 1. An exponential decay estimate.
Setting ep,q to be θ l

p,q − θ l , we deduce the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ep,q

∂t
+

n∑
i,j=1

ai,j

(
t, x, θ l

p,q

) ∂2ep,q

∂xi∂xj

+ 〈∇ep,q, b
(
t, x, θ l

p,q ,∇θ l
p,q

)〉 + c
(
t, x, θ l

p,q , θ l
) = 0, in (0, T ) × Ωp,

ep,q(., ., ap) = ep−1,q−1(., ., ap), on (0, T ) × (−l, l)n−1,

ep,q(., ., bp) = ep+1,q−1(., ., bp), on (0, T ) × (−l, l)n−1,

ep,q(t, x) = 0, on (0, T ) × (
∂Ol \ (

(0, T ) × (−l, l)n−1 × ({ap} ∪ {bp}))),
ep,q(T , x) = 0, on (−l, l)n−1 × (ap, bp),

(3.9)

where

c
(
t, x, θ l

p,q , θ l
) =

[
n∑

i,j=1

[
ai,j

(
t, x, θ l

p,q

) − ai,j

(
t, x, θ l

)] ∂2θ l

∂xi∂xj

]

+ 〈∇θ l,
[
b
(
t, x, θ l

p,q ,∇θ l
p,q

) − b
(
t, x, θ l,∇θ l

)]〉
+ [

b̂
(
t, x, θ l

p,q ,∇θ l
p,q

) − b̂
(
t, x, θ l,∇θ l

)]
.

Now, defining εp,q(t, x, y, z) to be ep,q(T − t, x, y, z), we change the system into,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂εp,q

∂t
−

n∑
i,j=1

ai,j

(
t, x, θ l

p,q

) ∂2εp,q

∂xi∂xj

− 〈∇εp,q, b
(
t, x, θ l

p,q ,∇θ l
p,q

)〉 − c
(
t, x, θ l

p,q , θ l
) = 0, in (0, T ) × Ωp,

εp,q(., ., ap) = εp−1,q−1(., ., ap), on (0, T ) × (−l, l)n−1,

εp,q(., ., bp) = εp+1,q−1(., ., bp), on (0, T ) × (−l, l)n−1,

εp,q(t, x) = 0, on (0, T ) × (
∂Ol \ (

(−l, l)n−1 × ({ap} ∪ {bp}))),
εp,q(0, x) = 0, on (−l, l)n−1 × (ap, bp).

(3.10)

We define:

Φp,q(t, x) =
m∑

k=1

(
εk
p,q

)2 exp
(
β(xn − ω) − γ t

)
,

where β , ω, γ will be fixed below, and consider the following parabolic operator,

L(Φ) = ∂Φ

∂t
− 〈∇Φ,b

(
t, x, θ l,∇θ l

)〉 − n∑
i,j=1

aij

∂2Φ

∂xixj

+
n∑

i=1

βai,n

∂Φ

∂xi

. (3.11)

A direct computation gives:
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L(Φp,q) =
m∑

k=1

(−γ − βbn
(
t, x, θ l

p,q ,∇θ l
p,q

) + βan,n − β2an,n

)(
εk
p,q

)2 exp
(
β(xn − ω) − γ

)

+ 2εk
p,q

[
−〈∇εk

p,q, b
(
t, x, θ l

p,q ,∇θ l
p,q

)〉 − n∑
i,j=1

ai,j ε
k
p,q + ∂εk

p,q

∂t

]

−
n∑

i,j=1

2ai,j

(
t, x, θ l

p,q

)∂εk
p,q

∂xi

∂εk
p,q

∂xj

�
m∑

k=1

[(−γ − βbn
(
t, x, θ l

p,q ,∇θ l
p,q

) − β2an,n

)(
εk
p,q

)2 exp
(
β(xn − ω) − γ

) + 2εk
p,qck

(
t, x, θ l

p,q , θ l
)]

,

(3.12)

where ck is the k-th component of the vector c.
We consider the following term of (3.12):

A =
m∑

k=1

{(−γ − βbn
(
t, x, θ l

p,q ,∇θ l
p,q

) + βan,n − β2an,n

)(
εk
p,q

)2 + 2εk
p,qck

(
t, x, θ l

p,q , θ l
)}

=
m∑

k=1

{(−γ − βbn
(
t, x, θ l

p,q ,∇θ l
p,q

) + βan,n − β2an,n

)(
εk
p,q

)2

+ 2εk
p,q

[
n∑

i,j=1

[
ai,j

(
t, x, θ l

p,q

) − ai,j

(
t, x, θ l

)] ∂2θ l,k

∂xi∂xj

+ 〈∇θ l,k,
[
b
(
t, x, θ l

p,q ,∇θ l
p,q

) − b
(
t, x, θ l,∇θ l

)]〉
+ [

b̂
(
t, x, θ l

p,q ,∇θ l
p,q

) − b̂
(
t, x, θ l, ,∇θ l

)]]}

�
{

m∑
k=1

(−γ − βbn
(
t, x, θ l

p,q ,∇θ l
p,q

) + βan,n − β2an,n

)(
εk
p,q

)2

+ N1
(
εk
p,q

)2∥∥
θl
∥∥

C(Rn)
+ N2

(
εk
p,q

)2∥∥∇θ l
∥∥

C(Rn)
+ N3

(
εk
p,q

)2

}

�
m∑

k=1

{(−γ − βbn
(
t, x, θ l

p,q

) + βan,n − β2an,n

)(
εk
p,q

)2 + N4
(
εk
p,q

)2}
, (3.13)

where N1, N2, N3, N4 are constants depending only on the coefficients of the system and the bound M0 of θ l
p,q and g in

C(Rn). Since all solutions of the subproblems {θ l
p,q} are uniformly bounded, according to classical results on a priori

estimates (for example [29, Theorem 5, p. 64]), {∇θ l
p,q} are uniformly bounded also. Hence A is negative when γ is

large enough and β is suitable chosen. This implies that L(Φp,q) is negative. According to the maximum principle,
the maximum of Φp,q can only be attained on the boundary of the domain. Which means that the maximum of

m∑
k=1

(
ek
p,q

)2 exp
(
β(xn − ω) − γ t

)

can only be attained on {0} × Rn−1 × [ap, bp], on (0, T ) × (∂Ol \ ((−l, l)n−1 × ({ap} ∪ {bp}))) or on
([0, T ] × Rn−1 × {ap}) ∪ ([0, T ] × Rn−1 × {bp}).

Since Φp,q(t, x) is equal to 0 on {0} × Rn−1 × [ap, bp] and on (0, T ) × (∂Ol \ ((−l, l)n−1 × ({ap} ∪ {bp}))), we
have the following cases:
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If 1 < p < I ,
m∑

k=1

(
ek
p,q(t, x)

)2 exp
(
β(xn − ω) − γ t

)

� max

{
max

(t,x)∈[0,T ]×[−l,l]n−1×{ap}

m∑
k=1

(
ek
p,q(t, x)

)2 exp
(
β(ap − ω) − γ t

)
,

max
(t,x)∈[0,T ]×[−l,l]n−1×{bp}

m∑
k=1

(
ek
p,q(t, x)

)2 exp
(
β(bp − ω) − γ t

)}
. (3.14)

If p = 1,
m∑

k=1

(
ek

1,q (t, x)
)2 exp

(
β(xn − ω) − γ t

)

� max
(t,x)∈[0,T ]×[−l,l]n−1×{b1}

m∑
k=1

(
ek

1,q (t, x)
)2 exp

(
β(b1 − ω) − γ t

)
. (3.15)

If p = I ,
m∑

k=1

(
ek
I,q(t, x)

)2 exp
(
β(xn − ω) − γ t

)

� max
(t,x)∈[0,T ]×[−l,l]n−1×{aI }

m∑
k=1

(
ek
I,q(t, x)

)2 exp
(
β(aI − ω) − γ t

)
. (3.16)

Step 2. Proof of the convergence.

Step 2.1. Estimate of the right boundaries of the sub-domains.
For x in [−l, l]n, we denote x by (X,xn), where X ∈ [−l, l]n−1 and xn ∈ [−l, l]. Moreover, we define:

Eq = max
p∈{1,...,I }

{
max

(t,x)∈[0,T ]×[−l,l]n
m∑

k=1

(
ek
p,q(t, x)

)2 exp(−γ t)

}
.

Considering the I -th domain, at the q-th step, we can see that (3.16) infers:
m∑

k=1

(
ek
I,q(t,X,xn)

)2 exp
(
β(xn − aI ) − γ t

)
� max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I,q(t,X,aI )

)2 exp(−γ t),

where ω is replaced by aI .
Replacing xn by bI−1 in the previous inequality, we obtain:

m∑
k=1

(
ek
I,q(t,X,bI−1)

)2 exp
(
β(bI−1 − aI ) − γ t

)
� max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I,q(t,X,aI )

)2 exp(−γ t).

Since ek
I,q(t,X,bI−1) is equal to ek

I−1,q+1(t,X,bI−1), then

m∑
k=1

(
ek
I−1,q+1(t,X,bI−1)

)2 exp
(
β(bI−1 − aI ) − γ t

)
� max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I,q(t,X,aI )

)2 exp(−γ t).

We define β1 to be
√

γ
2 and let β in this case be β1; then if we choose γ large, γ −β2 is large, the inequality becomes:

m∑
k=1

(
ek
I−1,q+1(t,X,bI−1)

)2 exp(−γ t) � exp(−β1SI−1) max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I,q(t,X,aI )

)2 exp(−γ t).
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We deduce that
m∑

k=1

(
ek
I−1,q+1(t,X,bI−1)

)2 exp(−γ t) � exp(−β1SI−1)Eq. (3.17)

Moreover, on the (I − 1)-th domain, at the (q + 1)-th step, (3.14) leads to,

m∑
k=1

(
ek
I−1,q+1(t,X,xn)

)2 exp
(
β(xn − aI−1) − γ t

)

� max

{
max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I−1,q+1(t,X,aI−1)

)2 exp(−γ t),

max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I−1,q+1(t,X,bI−1)

)2 exp
(
β(bI−1 − aI−1) − γ t

)}
,

where ω is replaced by aI−1.
Since ek

I−1,q+1(t,X,bI−2) is equal to ek
I−2,q+2(t,X,bI−2), then

m∑
k=1

(
ek
I−2,q+2(t,X,bI−2)

)2 exp
(
β(bI−2 − aI−1) − γ t

)

� max

{
max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I−1,q+1(t,X,aI−1)

)2 exp(−γ t),

max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I−1,q+1(t,X,bI−1)

)2 exp(βLI−1 − γ t)

}
;

thus
m∑

k=1

(
ek
I−2,q+2(t,X,bI−2)

)2 exp(βSI−2 − γ t)

� max

{
max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I−1,q+1(t,X,aI−1)

)2 exp(−γ t),

max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I−1,q+1(t,X,bI−1)

)2 exp(βLI−1 − γ t)

}
.

Combining this with (3.17) and the fact that

max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek
I−1,q+1(t,X,aI−1)

)2 exp(−γ t) � Eq+1,

we obtain that
m∑

k=1

(
ek
I−2,q+2(t,X,bI−2)

)2 exp(βSI−2 − γ t) � max
{
Eq exp(βLI−1 − β1SI−1),Eq+1

}
.

Thus
m∑

k=1

(
ek
I−2,q+2(t,X,bI−2)

)2 exp(−γ t) � max
{
Eq exp

(
β(LI−1 − SI−2) − β1SI−1

)
,Eq+1 exp(−βSI−2)

}
.

Defining β2 to be β1
SI−1
LI−1

and choosing β to be β2 such that

β2(−LI−1 + SI−2) + β1SI−1 = β2SI−2,



Author's personal copy

M.-B. Tran / J. Math. Pures Appl. 96 (2011) 377–394 389

we infer:
m∑

k=1

(
ek
I−2,q+2(t,X,bI−2)

)2 exp(−γ t) � max{Ek,Ek+1} exp(−β2SI−2). (3.18)

Using the same techniques as the ones that we use to achieve (3.17) and (3.18), we can prove that

m∑
k=1

(
ek
I−j,q+j (t,X,bI−j )

)2 exp(−γ t) � max{Ek, . . . ,Ek+j−1} exp(−βjSI−j ), (3.19)

where

βj = β1
SI−1

LI−1
· · · SI−j+1

LI−j+1
, j ∈ {2, . . . , I − 1}.

Step 2.2. Estimate of the left boundaries of the sub-domains.
Consider the 1-th domain, at the k-th step. Then (3.15) infers that

m∑
k=1

(
ek

1,q (t,X,xn)
)2 exp

(
β(xn − b1) − γ t

)
� max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

1,q (t,X,b1)
)2 exp(−γ t),

we notice here that ω is replaced by b1.
Replacing xn by a2, we obtain that

m∑
k=1

(
ek

1,q (t,X,a2)
)2 exp

(
β(a2 − b1) − γ t

)
� max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

1,q (t,X,b1)
)2 exp(−γ t).

Since ek
1,q (t,X,a2) is equal to ek

2,q+1(t,X,a2),

m∑
k=1

(
ek

2,q+1(t,X,a2)
)2 exp(−γ t) � max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

1,q(t,X,b1)
)2 exp(−γ t) exp(βS1).

We define β ′
1 to be −

√
γ
2 and let β be β ′

1 in this case. If we choose γ large, γ − β2 is large. The inequality becomes:

m∑
k=1

(
ek

2,q+1(t,X,a2)
)2 exp(−γ t) � exp

(−β ′
1S1

)
max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

1,q (t,X,b1)
)2 exp(−γ t).

We deduce:
m∑

k=1

(
ek

2,q+1(t,X,a2)
)2 exp(−γ t) � exp

(−β ′
1S1

)
Eq. (3.20)

Moreover, on the 2-th domain, at the (q + 1)-th step, (3.14) leads to,

m∑
k=1

(
ek

2,q+1(t,X,xn)
)2 exp

(
β(xn − a2) − γ t

)

� max

{
max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

2,q+1(t,X,a2)
)2 exp(−γ t),

max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

2,q+1(t,X,b2)
)2 exp

(
β(b2 − a2) − γ t

)}
,

notice that ω is replaced by a2.
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Since ek
2,q+1(t,X,a3) is equal to ek

3,q+2(t,X,a3), then

m∑
k=1

(
ek

3,q+2(t,X,a3)
)2 exp

(
β(a3 − a2) − γ t

)

� max

{
max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

2,q+1(t,X,a2)
)2 exp(−γ t),

max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

2,q+1(t,X,b2)
)2 exp

(
β(b2 − a2) − γ t

)}
.

Hence
m∑

k=1

(
ek

3,q+2(t,X,a3)
)2 exp(−γ t)

� exp
(−β(L2 − S2)

)
max

{
max

(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

2,q+1(t,X,a2)
)2

exp(−γ t),

max
(t,X)∈[0,T ]×[−l,l]n−1

m∑
k=1

(
ek

2,q+1(t,X,b2)
)2 exp(βL2 − γ t)

}
.

Combining this inequality, (3.20) and the fact that

m∑
k=1

(
ek

2,q+1(t,X,b2)
)2

exp(−γ t) � Eq+1,

we deduce:
m∑

k=1

(
ek

3,q+2(t,X,a3)
)2 exp(−γ t) � exp

(−β(L2 − S2)
)

max
{
exp

(−β ′
1S1

)
Eq, exp(βL2)Eq+1

}
.

Define β ′
2 to be β ′

1
S1
L2

and choose β to be −β ′
2. We infer that

−β(L2 − S2) − β ′
1S1 = βS2.

This implies:

m∑
k=1

(
ek

3,q+2(t,X,a3)
)2 exp(−γ t) � max{Ek,Ek+1} exp

(−β ′
2S2

)
. (3.21)

Using the same techniques as the ones that we use to achieve (3.20) and (3.21), we can prove that

m∑
k=1

(
ek
j,q+j−1(t,X,aj )

)2 exp(−γ t) � max{Ek, . . . ,Ek+j−2} exp
(−β ′

j−1Sj−1
)
, (3.22)

where

β ′
j = β ′

1
S1

L2
· · · Sj−1

Lj

, j ∈ {2, . . . , I − 1}.

Step 2.3. Convergence result.
Setting:

ε̄ =
√

γ

2

S1 · · ·SI−1

L2 · · ·LI−1
,
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and

Ēk = max
j∈{0,...,I−1}

{Ek+j },

we infer from (3.19) and (3.22) that

Ēk+1 � Ēk exp(−ε̄), ∀k ∈ N.

Therefore

Ēn � Ē0 exp(−nε̄), ∀n ∈ N.

Hence Ek tends to 0 as k tends to infinity. Which gives that

lim
q→∞ max

p=1,I

m∑
k=1

∥∥ek
p,q

∥∥
C([0,T ]×Rn−1×[ap,bp]) = 0.

Therefore, according to classical results on a priori estimates (for example [29, Theorem 5, p. 64]), {∇ek
p,q} are

uniformly bounded, and

lim
q→∞ max

p=1,I

m∑
k=1

∥∥∇ek
p,q

∥∥
C([0,T ]×Rn−1×[ap,bp]) = 0

that concludes the proof.

3.4. Proof of Theorem 3.3

Theorem 3.1 infers that {θ l
q} and {∇θ l

q} converge uniformly to {θ l} and {∇θ l}. Moreover, {θ l} and {∇θ l} converge
uniformly to {θ} and {∇θ}. Hence, (2.5) implies that

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Zq,l

t − Zt

∣∣2)
dt = 0.

We start proving,

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Xq,l

t − Xt

∣∣2)
dt = 0.

Subtracting (2.4) and (3.5), we get:

Xt − X
q,l
t =

t∫
0

[
b
(
s,Xs, θ(s,Xs),∇θ(s,Xs)

) − b
(
s,X

q,l
s , θq,l

(
s,Xq,l

)
,∇θq,l

(
s,Xq,l

))]
ds

+
t∫

0

[
σ
(
s,Xs, θ(s,Xs)

) − σ
(
s,X

q,l
s , θq,l

(
s,X

q,l
s

))]
dWs, (3.23)

which leads to

∣∣Xt − X
q,l
t

∣∣2 � 2

( t∫
0

[
b
(
s,Xs, θ(s,Xs),∇θ(s,Xs)

) − b
(
s,X

q,l
s , θ l

q

(
s,X

q,l
s

)
,∇θq,l

(
s,Xq,l

))]
ds

)2

+ 2

( t∫
0

[
σ
(
s,Xs, θ(s,Xs)

) − σ
(
s,X

q,l
s , θ l

q

(
s,X

q,l
s

))]
dWs

)2

. (3.24)
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A simple calculation gives:

E
(∣∣Xt − X

q,l
t

∣∣2) � N5E

t∫
0

∣∣b(
s,Xs, θ(s,Xs),∇θ(s,Xs)

) − b
(
s,X

q,l
s , θ l

q

(
s,X

q,l
s

)
,∇θ l

q

(
s,X

q,l
s

))∣∣2
ds

+ N5E

t∫
0

∣∣σ (
s,Xs, θ(s,Xs)

) − σ
(
s,X

q,l
s , θ l

q

(
s,X

q,l
s

))∣∣2
ds

� N6E

t∫
0

[∣∣Xs − X
q,l
s

∣∣2 + ∣∣θ(s,Xs) − θ l
q

(
s,X

q,l
s

)∣∣2 + ∣∣∇θ(s,Xs) − ∇θ l
q

(
s,X

q,l
s

)∣∣2]
ds

� N6E

t∫
0

∣∣Xs − X
q,l
s

∣∣2
ds

+ N7E

t∫
0

[∣∣θ(
s,X

q,l
s

) − θ l
q

(
s,X

q,l
s

)∣∣2 + ∣∣θ(s,Xs) − θ
(
s,X

q,l
s

)∣∣2]
ds

+ N7E

t∫
0

[∣∣∇θ
(
s,X

q,l
s

) − ∇θ l
q

(
s,X

q,l
s

)∣∣2 + ∣∣∇θ(s,Xs) − ∇θ
(
s,X

q,l
s

)∣∣2]
ds

� N8E

t∫
0

[∣∣Xs − X
q,l
s

∣∣2 + ∣∣θ(
s,X

q,l
s

) − θ l
q

(
s,X

q,l
s

)∣∣2 + ∣∣∇θ
(
s,X

q,l
s

) − ∇θ l
q

(
s,X

q,l
s

)∣∣2]
ds,

(3.25)

where N5, N6, N7, N8 are positive constants.
Since the sequence {θ l

q} converges uniformly to θ l , and the sequence {θ l} converges uniformly to θ , then for all
positive numbers ε, there exists Q(ε) such that∣∣θ(

s,X
q,l
s

) − θ l
q

(
s,X

q,l
s

)∣∣ + ∣∣∇θ
(
s,X

q,l
s

) − ∇θ l
q

(
s,X

q,l
s

)∣∣ <
√

ε, ∀q, l > Q(ε).

Inequality (3.25) leads to,

E
(∣∣Xt − X

q,l
t

∣∣2) � N8E

t∫
0

[∣∣Xs − X
q,l
s

∣∣2 + ε
]
ds, ∀q, l > Q(ε). (3.26)

Now, fixing q, l greater than Q(ε) and setting,

H(t) =
t∫

0

E
(∣∣Xs − X

q,l
s

∣∣2)
ds,

we obtain:

H ′(t) � N9H(t) + N9ε, (3.27)

where N9 is a positive constant. Therefore

H ′(t) exp(−N9t) − N9H(t) exp(−N9t) − N9ε exp(−N9t) � 0.

This implies, (
H(t) exp(−N9t) + ε exp(−N9t)

)′ � 0,
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and this inequality then leads to,

H(t) exp(−N9t) + ε exp(−N9t) � ε.

Consequently,

H(t) � ε
(
exp(N9T ) − 1

)
,

for q , l greater than Q(ε), which leads to,

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Xt − X

q,l
t

∣∣2)
dt = 0.

We next prove that

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Yq,l

t − Yt

∣∣2)
dt = 0.

We can see that
T∫

0

E
(∣∣Yq,l

t − Yt

∣∣2)
dt =

T∫
0

E
(∣∣θ l

q

(
t,X

q,l
t

) − θ(t,Xt )
∣∣2)

dt

�
T∫

0

E
(∣∣θ l

q

(
t,X

q,l
t

) − θ
(
t,X

q,l
t

)∣∣2)
dt +

T∫
0

E
(∣∣θ(

t,X
q,l
t

) − θ(t,Xt )
∣∣2)

dt.

Therefore

lim
l→∞ lim

q→∞

T∫
0

E
(∣∣Yq,l

t − Yt

∣∣2)
dt = 0.

This concludes the proof.

4. Conclusion

We have introduced a new domain decomposition method for a system of SDEs. The method has been studied
theoretically and proved to be well-posed and stable. We have also proposed a new technique to prove the convergence
of domain decomposition methods for systems of nonlinear parabolic equations in n-dimension. The method has the
potential to be used to prove the convergence of domain decomposition methods for many kinds of nonlinear problems.
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