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1. Introduction

Let X be a non-empty set, ≤ and d be a partially order and a metric on X
respectively. We call (X, d,≤) an ordered metric space if (X, d,≤) satisfies the
following condition

(C) x ≤ y (resp. y ≤ x) for any x and y in X such that x is the limit of
an increasing (resp. decreasing) sequence {xn} and xn ≤ y (resp. y ≤ xn) for
any integer n.

We say x ≥ y (resp. x < y; x > y) if y ≤ x (resp. x ≤ y and x �= y; y ≤ x and
x �= y).

The continuity and monotonicity of mappings and their modified versions
play essential roles of fixed point theorems in ordered metric spaces (see [2, 3,
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5-7, 10-13, 16-18]). The motivation of our paper is the following example: let
f(t) = t if t is a rational number in the interval (0, 1] and f(t) = 1

2
+ 1

2
t if t is a

irrational number in the interval (0, 1]. We see that f has many fixed points in
(0, 1], but it is neither continuous nor monotone in (0, 1]. We point out that the
relation between x and f(x) can give us the fixed points of f by using iteration
methods. We obtain the following result.

Theorem 1.1. Let A be a non-empty subset of an ordered metric space (X, d,≤),
and f be an operator from X into itself. Suppose that

(i) f(A) ⊂ A and x ≤ f(x) for any x in A,
(ii) each increasing sequence of A has a limit in X and an upper bound in A.

Then f has a fixed point in A.

Applying this result we solve a class of elliptic equations in the last section.

2. Proof of Theorem 1.1

We will prove the theorem by using the lemmas, what follow.

Lemma 2.1. Let W be a non-empty subset of an ordered metric space (X, d,≤),
and g be a mapping from W into W . Suppose that

(i) x ≤ g(x) for any x in W , and
(ii) {g(xn)} has a limit in X and an upper bound in W for any increasing

sequence {xn} in W .
Then W has a maximal element y, i.e. a = y whenever a is in W and y ≤ a.

Proof. By Hausdorff’s principle, there exists a maximal chain B of W . Now we
prove that B has the greatest element. Let x0 be an arbitrary element of B. We
shall show that there is a sequence {xn} in B having the following property

xn ≥ xn−1 and d(g(x), g(xn)) <
1
n

, ∀ x ∈ {z ∈ B : z ≥ xn}, n ∈ N. (1)

Suppose by contradiction that we only can find a finite family {x0, . . . , xm−1}
satisfying (1), where m is a positive integer. In this case, for each x in {z ∈ B :
z ≥ xm−1}, we can find yx in B such that yx > x and d(g(x), g(yx)) ≥ 1

m .
Hence we can construct an increasing sequence {yk} such that y0 = xm−1 and
d(g(yk+1), g(yk)) ≥ 1

m for any non-negative integer k. Since {yk} is increasing,
{g(yk)} has a limit. This is a contradiction and we get such a sequence {xn}.

Since {xn} is increasing, then {g(xn)} has a limit x in X and an upper bound
y in W . Because xn ≤ g(xn) for any non-negative integer n, y is also an upper
bound of {xn}. Since (X, d,≤) is an ordered metric space, we have x ≤ y. Let z
be in B, we prove that z ≤ y. If z ≤ xn for some positive integer n, then z ≤ y.
Otherwise, z > xn for any positive integer n. Hence d(g(z), g(xn)) < 1

n , for any



On Partially Elliptic and Coercive Boundary Problems 3

positive integer n, which implies z ≤ g(z) = x ≤ y. Since B is a maximal chain,
then y ∈ B and y is the greatest element of B.

Finally, we show that y is a maximal element of W . Suppose by contradiction
that there exists a in W such that a > y. Then B ∪ {a} is a chain containing B
and B is not a maximal chain. This contradiction yields the lemma.

Lemma 2.2. Let W be a non-empty set in an ordered metric space (X, d,≤).
Suppose that each increasing sequence of W has a limit in X and an upper bound
in W . Then W has a maximal element.

Proof. Apply Lemma 2.1 for the case g(x) ≡ x, we get the lemma.

Lemma 2.3. Let U be a non-empty ordered set and f be an operator from U
into U such that x ≤ f(x) for any x in U . Suppose that α is a maximal element
of U . Then α is a fixed point of f .

Proof. We have α ≤ f(α) and f(α) is in U . Thus α = f(α).
Combining Lemmas 2.2 and 2.3, we get the theorem.

Remark 2.4. Our results relax the monotonicity in [2, 3, 5-7, 10-12, 16-18].
In next sections, using this idea, we can solve some equations involving with
operators which may not be monotone.

3. Applications to Elliptic Equations with Discontinuity

Let N be a positive integer, Ω be a smooth bounded open subset of RN and p
and r be in (1,∞). We denote by Ls(Ω) and W 1,s

0 (Ω) the usual Lebesgue space
and Sobolev space as in [1] for any s in [1,∞). Let a1, . . . , aN be real functions
on Ω × R × R

N , f be a real function on Ω × R × R × R
N having the following

properties.
(A0) The functions a1, . . . , aN satisfy the Caratheodory conditions on Ω ×R×
R

N .
(A1) There exist k0 ∈ Lp/p−1(Ω), a non-negative real number C0, and u and u
in W 1,p

0 (Ω) ∩ Lr(Ω) such that for all (s, ζ) in [u(x), u(x)] × R
N and for almost

everywhere x in Ω, we have

|ai(x, s, ζ)| ≤ k0(x) + C0(|s|
r(p−1)

p + |ζ|p−1) ∀ i = 0, . . . , N.

(A2) For almost everywhere x in Ω, all s in [u(x), u(x)] and any ζ �= ζ′ in R
N

N∑
i=1

[ai(x, s, ζ) − ai(x, s, ζ′)](ζi − ζ′i) > 0.

(A3) There exist C1 > 0 and k1 ∈ L1(Ω) such that for all (s, ζ) in [u(x), u(x)]×
R

N and for almost everywhere x in Ω
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N∑
i=1

ai(x, s, ζ)ζi ≥ C1|ζ|p − k1(x).

(F1) There exist a function k2 ∈ Lp/p−1(Ω) and a constant C2 ≥ 0 such that

|f(x, t, s, ζ)| ≤ k2(x)+C2(|s|
r(p−1)

p +|ζ|p−1) a.e.x ∈ Ω, ∀ ζ ∈ RN , t, s ∈ [u(x), u(x)]

(F2) The function f satisfies the Caratheodory conditions on Ω × R
N+2, and

there exist a continuous real function a on R and a non-negative real number C3

such that: the function f(x, ., s, ζ) + a(.) is increasing on [u(x), u(x)] for almost
everywhere x in Ω and for any (s, ζ) ∈ [u(x), u(x)] × R

N , and

|a(t)| ≤ C3(1 + |t|
r(p−1)

p ) and [a(t1) − a(t2)](t1 − t2) ≥ 0 for any t ∈ R.

Remark 3.1. For almost everywhere x in Ω, we only need the conditions (A1),
(A2), (A3), (F1) and (F2) for any s in [u(x), u(x)] instead of in the whole R,
therefore our results can be applied to the cases that we partially have the
ellipticity, coercivity and compactness.

In this section we consider the following equation⎧⎨
⎩−

N∑
i=1

∂

∂xi
ai(x, u,∇u) = f(x, u, u,∇u) in Ω,

u = 0 on ∂Ω.
(2)

Let u be in W 1,p
0 (Ω). Then u is called a solution (resp. subsolution, supersolution)

of (2) if

∫
Ω

N∑
i=1

ai(x, u,∇u)
∂ϕ

∂xi
dx +

∫
Ω

f(x, u, u,∇u)ϕdx = 0 (resp. ≤ ,≥)

for all v ∈ W 1,p
0 (Ω), v ≥ 0.

The main result of this section is the following theorem.

Theorem 3.2. Suppose that the conditions (A0), (A1)-(A3), (F1) and (F2) are
satisfied, u and u are a subsolution and a supersolution of (2) respectively. Then
(2) has a solution u in [u, u].

In order to prove the theorem we need following lemmas.

Lemma 3.3. For any u in W 1,p
0 (Ω), we put

T (u(x)) =

⎧⎪⎨
⎪⎩

u(x) if u(x) > u(x),
u(x) if u(x) ≤ u(x) ≤ u(x),
u(x) if u(x) < u(x),
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and we define S1(u) in (W 1,p
0 (Ω))∗ as follows

< S1(u), ϕ >=
∫
Ω

N∑
i=1

ai(x, T (u),∇u)
∂ϕ

∂xi
dx ∀ϕ ∈ W 1,p(Ω).

Then S1 is a (S)+ operator on W 1,p(Ω), i.e. it has the following properties.
(i) {S1(un)} converges weakly to S1(u) in (W 1,p

0 (Ω))∗ for any sequence {un}
converging strongly to u in W 1,p

0 (Ω).
(ii) Let {un} be a sequence in W 1,p

0 (Ω) such that {un} converges weakly to u
in W 1,p

0 (Ω). Then {un} converges strongly to x in W 1,p
0 (Ω) if

lim sup
n→∞

< S1(un), un − u >≤ 0.

Moreover S1 is pseudomonotone, i.e.
(iii) If {un} weakly converges to x in W 1,p

0 (Ω) and

lim sup
n→∞

< S1(xn), xn − x >≤ 0,

then {S1(xn)} weakly converges to S1(x) in (W 1,p
0 (Ω))∗ and

lim
n→∞ < S1(xn), xn − x >= 0.

Proof. (i) We note that T is a bounded and continuous operator from W 1,p
0 (Ω)

into itself (see [8]). Let w be in W 1,p
0 (Ω), we see that |Tw(x)| ≤ (|u(x)|+ |u(x)|),

therefore Tw belongs to Lr(Ω) by (A1) and for all ζ in R
N and for almost

everywhere x in Ω, we have

|ai(x, Tw(x), ζ)| ≤ k0(x) + C0(|u(x)| + |u(x)|) r(p−1)
p + C0|ζ|p−1 ∀ i = 0, . . . , N.

Applying a result on superposition operators (see [14, p. 30]), we get the con-
tinuity of the map w 
→ ai(x, Tw(x),∇w) from W 1,p

0 (Ω) into Lp/p−1(Ω), and
(i).

(ii) and (iii) Let {un} be a sequence weakly converging to u in W 1,p
0 (Ω) such

that
lim sup

n→∞
< S1un, un − u >≤ 0.

We shall prove (ii) and (iii) by the following steps.
Step 1. We show that {∇un} converges pointwise to ∇u almost everywhere in
Ω.

Using (A2), we have

<S1un, un − u > =
∫
Ω

N∑
i=1

[ai(x, T (un),∇un) − ai(x, T (un),∇u)]
∂

∂xi
(un − u)dx
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+
∫
Ω

N∑
i=1

ai(x, T (un),∇u)
∂

∂xi
(un − u)dx

≥
∫
Ω

N∑
i=1

ai(x, T (un),∇u)
∂

∂xi
(un − u)dx.

Note that the sequence
{

∂

∂xi
(un − u)

}
converges weakly to 0 in Lp(Ω). By

the Sobolev embedding theorem, (A1) and the Lebesgue dominated convergence
theorem, we see that {ai(x, T (un),∇u)} converges strongly to ai(x, T (u),∇u) in
Lq(Ω). Therefore, we obtain

lim
n→∞

∫
Ω

N∑
i=1

ai(x, T (un),∇u)
∂

∂xi
(un − u)dx = 0.

Since lim sup
n→∞

< S1un, un − u >≤ 0, it follows that

lim
n→∞ < S1un, un − u >= 0. (3)

Thus

lim
n→∞

∫
Ω

N∑
i=1

[ai(x, T (un),∇un) − ai(x, T (un),∇u)]
∂

∂xi
(un − u)dx = 0.

By (A2), it implies the convergence in L1(Ω) of the sequence of non-negative
functions {

N∑
i=1

[ai(x, T (un),∇un) − ai(x, T (un),∇u)]
∂

∂xi
(un − u)

}
.

By Theorem IV.9 in [4], we can assume that

lim
n→∞

N∑
i=1

[ai(x, T (un),∇un) − ai(x, T (un),∇u)]
∂

∂xi
(un − u) = 0 a.e. in Ω (4)

and there is a non-negative integrable function h on Ω such that

N∑
i=1

[ai(x, T (un),∇un) − ai(x, T (un),∇u)]
∂

∂xi
(un − u) ≤ h(x) a.e. in Ω. (5)

Denote by Ω0 the set of all x in Ω such that
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lim
n→∞

N∑
i=1

[ai(x, T (un)(x),∇un(x)) − ai(x, T (un)(x),∇u(x))]
∂(un − u)

∂xi
(x) = 0

(6)
and

lim
n→∞T (un)(x) = T (u)(x). (7)

We see that the measure of Ω \ Ω0 is null. Let x be in Ω0, we shall prove
that {∇un(x)} converges to ∇u(x). Assume by contradiction that there is a
subsequence {∇unm(x)} of {∇un(x)} such that |∇unm(x) − ∇u(x)| > ε for
some positive real number ε and for every integer m. Denote ∇u(x), ∇unm(x),
T (unm(x)) and T (u(x)) by ρ, ρm, sm and s respectively. We can suppose that{

ρm − ρ

|ρm − ρ|
}

converges to ρ∗ in R
N . Note that |ρ∗| = 1. Using (A2), we have

N∑
i=1

[ai(x, sm, ρm) − ai(x, sm, ρ + ε
ρm−ρ
|ρm−ρ|)](ρmi − ρi)

=
|ρm − ρ|

|ρm − ρ| − ε

N∑
i=1

[
ai(x, sm, ρm) − ai(x, sm, ρ + ε

ρm−ρ
|ρm−ρ| )

]
×

×
(

1 − ε

|ρm − ρ|
)

(ρmi − ρi)

≥ 0, (8)

0 ≤
N∑

i=1

[ai(x, sm, ρ + ε
ρm−ρ
|ρm−ρ|) − ai(x, sm, ρ)](ρmi − ρi) (9)

=
N∑

i=1

[ai(x, sm, ρ + ε
ρm−ρ
|ρm−ρ| ) − ai(x, sm, ρm)](ρmi − ρi)

+
N∑

i=1

[ai(x, sm, ρm) − ai(x, sm, ρ)](ρmi − ρi).

Combining (8) and (9), we get

0 ≤
N∑

i=1

[ai(x, sm, ρ + ε
ρm − ρ

|ρm − ρ| ) − ai(x, sm, ρ)]
ρmi − ρi

|ρm − ρ|

≤ 1
|ρm − ρ|

N∑
i=1

[ai(x, sm, ρm) − ai(x, sm, ρ)](ρmi − ρi). (10)

Since |ρm − ρ| > ε, by (6) and (A0), we have

N∑
i=1

[ai(x, s, ρ + ερ∗) − ai(x, s, ρ)]ρ∗i = 0.
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Therefore, ρ∗ = 0 by (A2). This is a contradiction and the sequence {∇un(x)}
should converge to ∇u(x) and we get the first step.
Step 2. {un} converges strongly to u in W 1,p

0 (Ω).
Let E be a measurable subset of Ω, by (A1), (A3), we have

C1

∫
E

|∇un|pdx ≤
∫
E

k1(x)dx +
∫
E

N∑
i=1

ai(x, T (un),∇un)
∂un

∂xi
dx

=
∫
E

k1(x)dx +
4∑

j=1

Ij ,

where

I1 =
∫
E

N∑
i=1

[ai(x, T (un),∇un) − ai(x, T (un),∇u)]
∂(un − u)

∂xi
dx ≤

∫
E

h(x)dx,

I2 =
∫
E

N∑
i=1

ai(x, T (un),∇un)
∂u

∂xi
dx

≤
N∑

i=1

⎛
⎝∫

E

|ai(x, T (un),∇un)| p
p−1 dx

⎞
⎠

p−1
p

⎛
⎝∫

E

| ∂u

∂xi
|pdx

⎞
⎠

1/p

≤
N∑

i=1

∥∥∥k0 + C0|T (un)| r(p−1)
p + C0|∇un|p−1

∥∥∥
L

p
p−1 (E)

⎛
⎝∫

E

| ∂u

∂xi
|pdx

⎞
⎠

1/p

≤
N∑

i=1

∥∥∥k0(x) + C0(|u|
r(p−1)

p + |u| r(p−1)
p ) + C0|∇un|p−1

∥∥∥
L

p
p−1 (E)

×

×
⎛
⎝∫

E

| ∂u

∂xi
|pdx

⎞
⎠

1/p

≤
N∑

i=1

{
||k0||Lq(E) + C0||u||

r(p−1)
p

Lr(E) + C0||u||
r(p−1)

p

Lr(E) + C0||∇un||p−1
Lp(E)

}
×

×
⎛
⎝∫

E

| ∂u

∂xi
|pdx

⎞
⎠

1/p

,

I3 =
∫
E

N∑
i=1

ai(x, T (un),∇u)
∂un

∂xi
dx
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≤
N∑

i=1

⎡
⎣∫

E

|ai(x, T (un),∇u)|
p

p−1 dx

⎤
⎦

p−1
p

⎛
⎝∫

E

|∂un

∂xi
|pdx

⎞
⎠

1/p

≤
N∑

i=1

{
‖k0||Lq(E) + C0||u‖

r(p−1)
p

Lr(E) + C0‖u‖
r(p−1)

p

Lr(E) + C0‖∇u‖p−1
Lp(E)

}
×

×
⎛
⎝∫

E

|∂un

∂xi
|pdx

⎞
⎠

1/p

,

I4 = −
∫
E

N∑
i=1

ai(x, T (un),∇u)
∂u

∂xi
dx

≤
N∑

i=1

⎡
⎣∫

E

|ai(x, T (un),∇u)| p
p−1 dx

⎤
⎦

p−1
p

⎛
⎝∫

E

| ∂u

∂xi
|pdx

⎞
⎠

1/p

≤
N∑

i=1

{
‖k0||Lq(E) + C0||u‖

r(p−1)
p

Lr(E) + C0‖u‖
r(p−1)

p

Lr(E) + C0‖∇u‖p−1
Lp(E)

}
×

×
⎛
⎝∫

E

| ∂u

∂xi
|pdx

⎞
⎠

1/p

.

Let ε be a positive real number. By the boundedness of
{‖∇un‖Lp(Ω)

}
, the r-

integrability of u and u, and conditions (A1) and (A3), there is a positive real
number δ such that for any measurable subset E of Ω with Lebesgue measure
m(E) < δ, we have ∫

E

|∇un|pdx ≤ ε ∀ n ∈ N.

Thus the sequence {|∇un|p} is equi-integrable. It follows that {|∇un −∇u|p} is
also equi-integrable. By Vitali’s theorem (see [19]), {∇un} converges to ∇u in
Lp(Ω), which implies {un} converges strongly to u in W 1,p(Ω).
Step 3. {S1(un)} weakly converges to S1(u) in (W 1,p

0 (Ω))∗.
By the previous steps, {T (un)} and {∇un} converge to T (u) and ∇u in Lp(Ω)

respectively. Thus we can find an integrable function k such that

|T (un)|p + |∇un|p ≤ k ∀ n ∈ N.

Therefore, by (A1) and the Lebesgue dominated convergence theorem, we obtain

lim
n→∞

∫
Ω

N∑
i=1

[ai(x, T (un),∇un) − ai(x, T (u),∇u)]
∂ϕ

∂xi
dx = 0 ∀ϕ ∈ W 1,p(Ω).
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Step 4. lim
n→∞ < S1(un), un − u >= 0.

It is just (3). Thus we get the lemma.

Lemma 3.4. Let u, v and w be in W 1,p(Ω) such that v ≤ w. We put

γv,w(u)(x) = (u(x) − w(x))p−1
+ − (v(x) − u(x))p−1

+ .

We define an operator Bv,w from W 1,p
0 (Ω) into (W 1,p

0 (Ω))∗ as follows

< Bv,wu, ϕ >=
∫
Ω

γv,w(u)ϕdx ∀ u, ϕ ∈ W 1,p
0 (Ω).

Then we have
(i) Bv,w is bounded.
(ii) There exist two positive real numbers α and β such that∫

Ω

γv,w(u)udx ≥ α||u||pp − β ∀ u ∈ W 1,p
0 (Ω).

(iii) {Bv,wun} converges strongly to Bv,wu in (W 1,p
0 (Ω))∗ for any sequence

{un} weakly converging to u in W 1,p
0 (Ω).

Proof. The proof of (i) and (ii) can be found in ([15, p. 791]). We prove (iii). Let
{un} be a sequence weakly converging to u in W 1,p

0 (Ω). We can assume that {un}
converges strongly to u in Lp(Ω) and {un(x)} converges to u(x) for a.e. x ∈ Ω,
and there exists a nonnegative function h in Lp(Ω) such that |un(x)| ≤ h(x) for
a.e. x ∈ Ω. Hence {γv,w(un)(x)} converges to γv,w(u)(x) for a.e. x ∈ Ω. We have

|γv,w(un)(x)| ≤ {
[|v(x)| + |un(x)|]p−1 + [|un(x)| + |w(x)|]p−1

}
≤ {

[|v(x)| + h(x)]p−1 + [|w(x)| + h(x)]p−1
}

a.e. x ∈ Ω.

Since [(|v| + h)p−1 + (|w| + h)p−1] is in Lq(Ω), using the Lebesgue dominated
convergence theorem, we obtain

lim
n→∞ ‖γv,w(un) − γv,w(u)‖q = 0, (11)

| < Bv,wun − Bv,wu, ϕ > | =

∣∣∣∣∣
∫
Ω

γv,w(un)ϕ − γv,w(u)ϕdx

∣∣∣∣∣ (12)

≤ ‖γv,w(un) − γv,w(u)‖q‖ϕ‖1,p ∀ ϕ ∈ W 1,p
0 (Ω).

Combining (11) and (12), we get the lemma.

Lemma 3.5. Let v be a subsolution of (2) such that u ≤ v ≤ u. We put
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av(x, u,∇u) = −f(x, v, u,∇u) + a(u(x)) − a(v(x)) ∀ x ∈ Ω,

Then the following equation has a solution w in W 1,p
0 (Ω)

⎧⎨
⎩−

N∑
i=1

∂

∂xi
ai(x, u,∇u) + av(x, u,∇u) = 0 in Ω,

u = 0 on ∂Ω,

(13)

such that v ≤ w ≤ u. Moreover w is also a subsolution of (2).

Proof. We define the operator S2, S3 and S as follows

< S2u, ϕ > =
∫
Ω

a0(x, Tu,∇Tu)ϕdx,

< S3u, ϕ > = M

∫
Ω

γ(x, u)ϕdx

< Su, ϕ > =< (S1 + S2 + S3)u, ϕ > ∀u, ϕ ∈ W 1,p
0 (Ω).

We prove the lemma by the following steps.
Step 1. S is bounded.

By (A1), we have

| < S1u, ϕ > | =

∣∣∣∣∣
∫
Ω

N∑
i=1

ai(x, Tu,∇u)
∂ϕ

∂xi
dx

∣∣∣∣∣
≤

∫
Ω

N∑
i=1

[k0(x) + C0(|Tu| r(p−1)
p + |∇u|p−1)]| ∂ϕ

∂xi
|dx

≤ N‖ϕ||1,p[||k0||q + C0||u||
r(p−1)

p
r + C0||u‖

r(p−1)
p

r + C0||∇u||p−1
p ],

| < S2u, ϕ > | = |
∫
Ω

a0(x, Tu,∇Tu)ϕdx|

≤
∫
Ω

[k0(x) + C0|Tu| r(p−1)
p + C0|∇Tu|p−1]|ϕ|dx

≤ ||ϕ||1,p[||k0||q + C0||∇Tu||p−1
p + C0||u||

r(p−1)
p

r + C0||u||
r(p−1)

p
r .

According to Lemma 3.4, S3 is bounded. Thus S = S1 + S2 + S3 is bounded.
Step 2. S is pseudomonotone.

By Lemma 3.4, and Proposition 27.7 in [20], it is sufficient to prove that S1+S2

is a pseudomonotone operator on W 1,p
0 (Ω). Let {un} be a sequence converging

weakly to u in W 1,p
0 (Ω) such that lim sup

n→∞
< S1un + S2un, un − u >≤ 0. Note

that
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| < S2un, un − u > | ≤
∫
Ω

|a0(x, Tun,∇Tun)(un − u)|dx

≤ ||un − u||p||a0(x, T (un),∇Tun)||q,

which implies
lim

n→∞ < S2un, un − u > = 0. (14)

Since lim sup
n→∞

< (S1 + S2)un, un − u > ≤ 0, then lim sup
n→∞

< S1un, un − u > ≤ 0.

By Lemma 3.3, {S1un} converges weakly to S1u in (W 1,p
0 (Ω))∗, {un} con-

verges to u in W 1,p
0 (Ω) and lim

n→∞ < S1un, un > = < S1u, u >. Hence {S2un}
weakly converges to S2u in (W 1,p

0 (Ω))∗ and lim
n→∞ < S2un, un >=< S2u, u >.

Consequently, {(S1 +S2)un} weakly converges to (S1 + S2)u in (W 1,p
0 (Ω))∗ and

lim
n→∞ < (S1 + S2)un, un >=< (S1 + S2)u, u >. That means S1 + S2 is pseu-
domonotone. Therefore, S is pseudomonotone.
Step 3. S is coercive.

By (A3), we have

< S1u, u > =
∫
Ω

N∑
i=1

ai(x, T (u),∇u)
∂

∂xi
udx

≥
∫
Ω

[C1|∇u|p − k1(x)]dx (15)

= C1||∇u||pp − ||k1||1,∫
Ω

|∇Tu|pdx =
∫

u≤u≤u

|∇u|pdx +
∫

u<u

|∇u|pdx +
∫

u>u

|∇u|pdx (16)

≤ ||∇u||pp + ||∇u||pp + ||∇u||pp,∫
Ω

|Tu|rdx ≤
∫
Ω

(|u| + |u|)rdx = M0. (17)

Combining (16), (17), using Young’s inequality and the Sobolev embedding the-
orem, we can find a positive constant M1 such that for any positive number
ε

< S2u, u > =
∫
Ω

a0(x, Tu,∇Tu)udx

≥
∫
Ω

[
−C0|Tu|r p−1

p − C0|∇Tu|p−1 − k0(x)
]
|u|dx

≥ −C0||Tu||r
p−1

p
r ||u||p − C0||∇Tu||p−1

p ||u||p − ||k0||q||u||p
≥ −C0M

p−1
p

0 ||u||p − C0

[ ||u||pp
εpp

+
εq||∇Tu||pp

q

]
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≥ −C0M
p−1

p

0 ||u||p − C0

[ ||u||pp
εpp

+
εq||∇u||pp

q

]

− C0

εq[||∇u||pp + ||∇u||pp]
q

− ||k0||q||u||p. (18)

Applying Lemma 3.4, we can find positive real numbers α, β such that

< S3u, u >≥ M(α||u||pp − β). (19)

Combining (15), (18) and (19), we obtain

< Su, u > ≥ C1‖∇u‖p
p − ‖k1‖1 − C0M

p−1
p

0 ‖u‖p − C0

[ ||u||pp
εpp

+
εq||∇u||pp

q

]

− C0
εq[||∇u||pp+||∇u||pp]

q
− ||k0||q||u||p + M(α||u||pp − β). (20)

Choosing a sufficiently small positive real number ε and a sufficiently large pos-

itive real number M such that C1 >
C0ε

q

q
, Mα >

C0

εpp
, we see that

lim
||u||1,p→∞

< Su, u >

||u||1,p
= ∞.

Therefore, S is coercive.
Step 4. There is a solution of (13) in [v, u].

By Theorem 27.A in [20], there is a solution w of S(u, ϕ) = 0 in W 1,p
0 (Ω). We

prove that w is in the interval [v, u]. Choosing ϕ = (w − u)+, we obtain

0 =
∫
Ω

N∑
i=1

ai(x, Tw,∇w)
∂

∂xi
(w − u)+dx +

∫
Ω

a0(x, T (w),∇T (w))(w − u)+dx

+ M

∫
Ω

(w − u)p
+dx

=
∫
Ω

N∑
i=1

ai(x, u,∇w)
∂

∂xi
(w − u)+dx +

∫
Ω

a0(x, u,∇u)(w − u)+dx

+ M

∫
Ω

(w − u)p
+dx. (21)

Since u is a supersolution of (2) and (w − u)+ ≥ 0, then

∫
Ω

N∑
i=1

ai(x, u,∇u)
∂

∂xi
(w − u)+dx +

∫
Ω

a0(x, u,∇u)(w − u)+dx ≥ 0 (22)

Therefore,



14 Tran Minh Binh, Duong Minh Duc, and Nguyen Duy Thanh

∫
Ω

N∑
i=1

[ai(x, u,∇w)−ai(x, u,∇u)]
∂

∂xi
(w−u)+dx+M

∫
Ω

(w−u)p
+dx ≤ 0. (23)

It follows from (A2) that

∫
Ω

N∑
i=1

[ai(x, u,∇w) − ai(x, u,∇u)]
∂

∂xi
(w − u)+dx ≥ 0. (24)

Combining (23) and (24), we have

M

∫
Ω

(w − u)p
+dx ≤ 0,

which implies that (w − u)+(x) = 0 for a.e. x in Ω. Thus w(x) ≤ u(x) for a.e.
x ∈ Ω. Similarly, we also have w(x) ≥ v(x) for a.e. x ∈ Ω.
Step 5. w is a subsolution of (2).

By (F2), it follows that for any nonnegative function ϕ in W 1,p
0 (Ω)

∫
Ω

N∑
i=1

ai(x, u,∇u)
∂ϕ

∂xi
dx =

∫
Ω

[f(x, v, w,∇w) + a(v) − a(w)]ϕdx

≤
∫
Ω

f(x, w, w,∇w)ϕdx. (25)

Thus w is also a subsolution of (2).

Lemma 3.6. There exists a positive real number M independent of v such that
||w||

W 1,p
0 (Ω)

≤ M for any w in Lemma 3.5.

Proof. Replacing ϕ by w in (25), by (A3), (F1) and (F2), we get

C1‖∇w‖p
p − ‖k1‖1 =

∫
Ω

[C1|∇w|p − k1(x)]dx

≤
∫
Ω

N∑
i=1

ai(x, u,∇w)
∂w

∂xi
dx

=
∫
Ω

[f(x, v, w,∇w) + a(v) − a(w)]udx

≤
∫
Ω

(k2 + C2|∇w|p−1 + C2|w| r(p−1)
p + C3|v|

r(p−1)
p

+ C3|w|
r(p−1)

p + 2C3)|w|dx
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≤
∫
Ω

[k2 + 2C3 + C2|∇w|p−1 + C2(|u| + |w|) r(p−1)
p

+ 2C3(|w| + |w|) r(p−1)
p ](|u| + |u|)dx

≤ ‖k2‖q‖(|u| + |u|)‖p + 2C3||(|u| + |u|)||1
+ (C2 + 2C3)||(|u| + |u|)||

r(p−1)
p

r ||(|u| + |u|)||p
+ C2

∫
Ω

|∇u|p−1(|u| + |u|)

≤ M4 + C2||∇u||p−1
p ||(|u| + |u|)||p,

Thus we have

C1||∇u||pp − ||k1||1 ≤ M4 + M5 + C2||∇u||p−1
p ||(|u| + |u|)||p,

which yields the lemma.

Proof of Theorem 3.2. Denote by S0 the set of subsolutions u in [u, u] of (2)
such that there exists a subsolution v in [u, u] of (2) and u is a solution of (13).
We see that S0 is non-empty and bounded by Lemmas 3.5 and 3.6.

Let u be in S0, by Lemma 3.5, there is a solution u′ ≡ H0(u) in [u, u] of the
following equation⎧⎨

⎩−
N∑

i=1

∂
∂xi

ai(x, u′,∇u′) + a(u′) = f(x, u, u′,∇u′) + a(u) in Ω,

u′ = 0 on ∂Ω.
(26)

It is easy to see that H0(S0) ⊂ S0. Let {wn} be an increasing sequence in S0.
Since S0 is bounded, then {wn} converges weakly to w. Since wn ∈ S0, there
exists vn being a subsolution of (2) such that u ≤ vn ≤ wn ≤ u and for any
nonnegative function ϕ in W 1,p

0 (Ω) we have

∫
Ω

N∑
i=1

ai(x, wn,∇wn)
∂ϕ

∂xi
dx =

∫
Ω

[f(x, vn, wn,∇wn) + a(vn) − a(wn)]ϕdx

≥
∫
Ω

[f(x, u, wn,∇wn) + a(u) − a(wn)]ϕdx

∫
Ω

N∑
i=1

ai(x, wn,∇wn)
∂

∂xi
(wn − w)dx

≤
∫
Ω

[f(x, u, wn,∇wn) + a(u) − a(wn)](wn − w)dx

Thus
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∫
Ω

N∑
i=1

[ai(x, wn,∇wn) − ai(x, wn,∇w)]
∂

∂xi
(wn − w)dx

≤
∫
Ω

N∑
i=1

ai(x, wn,∇w)
∂

∂xi
(wn − w)dx

+
∫
Ω

[f(x, u, wn,∇wn) + a(u) − a(wn)](wn − w)dx.

Using the same argument as in Lemma 3.3, we see that {wn} converges strongly
to w in W 1,p

0 (Ω). We can suppose that {wn(x)} and {∇wn(x)} converge to w(x)
and ∇w(x) for almost everywhere x in Ω. Now, we prove that {wn} has an upper
bound v in S0. Since vn ≤ wn for any integer n, we have

vn ≤ w ∀ n ∈ N. (27)

By (F2) and (27), for any nonnegative function ϕ in W 1,p
0 (Ω), we have

∫
Ω

N∑
i=1

ai(x, wn,∇wn)
∂ϕ

∂xi
dx =

∫
Ω

[f(x, vn, wn,∇wn) + a(vn) − a(wn)]ϕdx

≤
∫
Ω

[f(x, w, wn,∇wn) + a(w) − a(wn)]ϕdx.

By (A0) and (F2), it follows that

∫
Ω

N∑
i=1

ai(x, w,∇w)
∂ϕ

∂xi
dx ≤

∫
Ω

f(x, w, w,∇w)ϕdx.

Thus w is a subsolution of (2). By Lemma 3.5, there exists v in S0 such that
u ≤ w ≤ v ≤ u and ∀ϕ ∈ W 1,p

0 (Ω)

∫
Ω

N∑
i=1

ai(x, v,∇v)
∂ϕ

∂xi
dx =

∫
Ω

[f(x, w, v,∇v) + a(w) − a(v)]ϕdx.

Therefore, v is an upper bound of {wn} in S0. By Theorem 1.1, the operator
H0 has a fixed point w∗ in S0 ⊂ [u, u]. It follows that for any ϕ in W 1,p

0 (Ω)

∫
Ω

N∑
i=1

ai(x, w∗,∇w∗)
∂ϕ

∂xi
dx =

∫
Ω

f(x, w∗, w∗,∇w∗)ϕdx.

Let w∗∗ be a solution of (13) in [u, u] such that w∗ ≤ w∗∗, then w∗∗ ∈ S0. By
Theorem 1.1, we have w∗ = w∗∗ and get the theorem.

Remark 3.7. Theorem 3.2 have been studied in [11] if ai(x, u,∇u) = Ai(x,∇u)
and there is a positive real number c such that
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[a(r1) − a(r2)](r1 − r2) ≥ c|r1 − r2|p ∀r1, r2 ∈ R. (28)

In our results we only need the following condition (see (F2))

[a(r1) − a(r2)](r1 − r2) ≥ 0 ∀r1, r2 ∈ R, r1 �= r2.

Remark 3.8. If 1 < p < 2, we show that the condition (28) is never satisfied

by any a. Indeed, suppose that such a function exists. Put xn =
n∑
1

1
m1/(p−1)

.

We see that {xn} is an increasing sequence converging to a real number x,
thus a(x) ≥ sup

n∈N

a(xn). Since a(xn) − a(xn−1) ≥ c(xn − xn−1)p−1 =
c

n
, then

a(xn) − a(x1) ≥
n∑
2

c

m
, which tends to infinity when n goes to infinity. Hence

a(x) = ∞, which is a contradiction.
Moreover our result only partially needs conditions on compactness, ellipticity

and coercivity.
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