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Abstract

The system that describes the dynamics of a Bose-Einstein Con-
densate consists of a quantum Boltzmann equation of the excitation
distribution function and the Gross-Pitaevskii equation of the conden-
sate wave function. We solve the Cauchy problem for the quantum
Boltzmann equation, that approximates the evolution of the distribu-
tion function of the excitations - thermal cloud, at the temperature
regime which is very low compared to the Bose-Einstein Condensation
critical temperature. Such an equation has a cubic kinetic transition
probability kernel. We develop the existence and uniqueness result by
means of abstract ODE’s theory in Banach spaces by characterizing
an invariant bounded, convex, closed subset S of the positive cone as-
sociated with the Banach space C1

(
[0,∞);L1(|p|dp)

)
. The subset S

depends on the kinetic transition probability kernel structure as well
as the interaction law for bosons. It also depends on the shown propa-
gation and creation of polynomial moments accounting for high energy
tails in the sense of L1. In addition, we show the scaled summability
of polynomial moments by studying the propagation and generation of
Mittag-Leffler moments. These estimates implies these solutions have
exponential decaying high energy tails in the sense of L1.
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1 Introduction

After the first Bose-Einstein Condensate (BEC) was produced by Cornell,
Wieman, and Ketterle, which led them to the 2001 Nobel Prize in Physics
[3, 4], there has been an explosion of research on BECs and cold bosonic
gases. Above the condensation temperature, the dynamic of a bose gas is
determined by the Uehling-Uhlenbeck kinetic equation introduced in [46];
see for instance [20, 21] for interesting results and list of references. The
first proof of BECs was done in [33]. Below the condensation temperature,
the bosonic gas dynamics is governed by a system that couples a quantum
Boltzmann and a Gross-Pitaevskii equations. In such a system, the wave
function of the BEC follows the Gross-Pitaevskii equation and the quan-
tum Boltzmann equation describes the evolution of the density function of
the excitations. The coupled system was first derived by Kirkpatrick and
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Dorfmann in [31, 32], using a Green function approach and was revisited by
Zaremba-Nikuni-Griffin and Gardiner-Zoller et. al. in [26, 28, 30, 48]. It
has then been developed and studied extensively in the last two decades by
several authors (see [11, 27, 39, 44], and references therein). In [42], Spohn
gives a heuristic derivation for the one-dimensional version of the coupled
system, using an perturbation theory for the Uehling-Uhlenbeck equation.
A formal derivation, for the full three-dimensional case, can be found at [41].
A mathematically rigorous derivation for the coupled system is still an open
problem. A first step towards this direction may draw the ideas generated
from the work in [16, 19], in combination with techniques from quantum
field theory [41].

In this manuscript we study the excitations dynamics describe by a ki-
netic quantum Boltzmann model for low temperature condensates. More
specifically, we are interested in the dynamics of dilute Bose gases at very
low temperature under the assumption of reference [18, 22, 31, 32], that
is, the BEC is very stable and contains a sizable number of atoms, the in-
teraction between excited atoms is small, being the dominant interaction
the one between excited atoms and the BEC. The evolution of the space
homogeneous probability density distribution function f := f(t, p), with
(t, p) ∈ [0,∞) × R3, for p the momenta state variable, of such Bose gases
can be described by the following bosonic quantum Boltzmann equation:

df

dt
= ncQ[f ] , f(0, ·) = f0 , (1.1)

where the interaction operator is defined as

Q[f ] :=

∫
R3

∫
R3

dp1dp2

[
R(p, p1, p2)−R(p1, p, p2)−R(p2, p1, p)

]
,

R(p, p1, p2) :=

|M(p, p1, p2)|2
[
δ

(
ω(p)

kBT
− ω(p1)

kBT
− ω(p2)

kBT

)
δ(p− p1 − p2)

]
×
[
f(p1)f(p2)(1 + f(p))− (1 + f(p1)(1 + f(p2))f(p)

]
.

(1.2)

where β := 1
kBT

> 0 is the physical constant depending on the Boltzmann
constant kB, and the temperature of the quasiparticles T at equilibrium.
The term M(p, p1, p2) is the transition probability and the particle energy
ω(p) is given by the Bogoliubov dispersion law:

ω(p) =

[
gnc
m
|p|2 +

(
|p|2

2m

)2
]1/2

, (1.3)

3



where p ∈ R3 is the momenta, m is the mass of the particles, g is the
interaction coupling constant and nc = nc(t) := |Ψ|2(t) is the density of
particles corresponding to the dynamics wave function Ψ(x, t) in the BEC.

As mentioned above, Ψ satisfies the cubic nonlinear Schrodinger equation
and the evolution of the condensate density distribution nc, under some
further assumptions, follows the following differential equation (cf. [7, 42,
47]) {

dnc
dt = −nc

∫
R3 Q[f ]dp,

nc(0) = n0 ,
(1.4)

or, equivalently {
d
dt log nc = −

∫
R3 Q[f ]dp,

log(nc(0)) = log(n0).
(1.5)

However, in the scope of our paper, we only focus on the study of the
quantum Boltzmann equation and leave the coupling quantum Boltzmann
equation - nonlinear Schrodinger equation topic for future research. We,
therefore, impose the following condition on the density distribution of the
condensate

n ∈ C1[0,∞), and there exists constants nc, nc > 0 such that

nc < n(t) < nc, ∀t ∈ [0,∞).
(1.6)

This assumption is physically meaningful. It says that the condensate does
not vanish, and its density distribution is uniformly bounded from above
and below in time.
The collision operator Q describes the interaction between the condensed
and the excited atoms. The corresponding equilibrium distribution f∞ of
the collisional equation (1.1)-(1.2) has the form

f∞(p) =
1

eβω(p) − 1
, (1.7)

for β = (kBT )−1, as is usually referred as a Bose-Einstein distribution. In
this work, we restrict the range of the temperature T , the condensate density
nc, and the interaction coupling constant g to values for which kBT is much
smaller than (gnc/m)1/2, i.e. a cold gas regime. Under this condition, the
dispersion law ω(p) in (1.3) is approximated by

1

kBT

[
gnc
m
|p|2 +

(
|p|2

2m

)2
]1/2

≈ c

kBT
|p|, where c :=

√
gnc
m

,
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when (gnc/m)1/2(kBT )−1 = O(1) and kBT � 1. In particular, the energy
will be now defined by the classical phonon dispersion law (still using the
same notation), see [15, 18, 29, 40]

ω(p) = c|p|, for c := c(t) =

√
gnc(t)

m
. (1.8)

Under this very cold gas regime, the transition probability M is approxi-
mated by

|M|2 = κ|p||p1||p2| (1.9)

where

κ =
9c

64π2mnc
. (1.10)

We observe that O(
√
c) ≤ c(t) ≤ O(

√
c) and O(

√
c
−1

) ≤ κ ≤ O(
√
c−1)

uniformly in time.
Different from previous mathematical works [7, 5, 8, 9], we do not trun-

cate the transition probability |M|2 from above, or assume that it is cut-off
near the origin.

Thus, we perform the analysis in the whole momentum space, not in a
piece of it or the torus [43], requiring a detailed control of the solution’s
tails.

Notice that in the pioneering experiments [3, 4, 10], one can observe
the growth of the condensate after fast evaporative cooling. Equation (1.1)-
(1.2) is the main term that leads to the growth of the BEC. Moreover, the
kinetic equation (1.1)-(1.2) is also used to describe phonon interactions in
anharmonic crystal lattices, first derived in this context by Peierls [37, 38],
then by several other authors [15, 43].

In particular the linearization of the Quantum Boltzmann equation (1.1)-
(1.2) about Bose-Einstein states is perform by setting

f(t, p) = f∞(p) + f∞(p)
(
1 + f∞(p)

)
Ω(t, p), (1.11)

evaluated into collision operator in (1.2) and restricting the evaluation to
the linear terms. The resulting linearized equation was obtained in [23]

f∞(p)
(
1 + f∞(p)

)∂Ω

∂t
(t, p) = −M(p)Ω(t, p) +

∫
R3

dp′ U(p, p′)Ω(t, p′),(1.12)

for some explicit function M(p) and measure U(p, p′). The Cauchy problem
and the convergence toward equilibrium of such linearized model (1.12) were
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addressed in the aforementioned reference. The discrete theory of the equa-
tion, based on a dynamical system approach, was done in [17]. In reference
[36], it has been proved that positive classical solutions of the model have a
Gaussian in momenta barrier from below.

From now on, and without loss of generalization for the existence and
uniqueness results as well as high energy tails behavior, we assume the tem-
perature T � 1, such that 0 < c(kBT )−1 < c(kBT )−1 < 1 in the reduced
phonon dispersion law (1.8), and so the quantum collisional integral (1.2)
becomes

Q[f ] :=

∫
R3

∫
R3

dp1dp2

[
R(p, p1, p2)−R(p1, p, p2)−R(p2, p1, p)

]
,

R(p, p1, p2) := |p||p1||p2|
[
δ (|p| − |p1| − |p2|) δ(p− p1 − p2)

]
×
[
f(p1)f(p2)(1 + f(p))− (1 + f(p1)(1 + f(p2))f(p)

]
.

(1.13)

Clearly, from the interaction law p = p1 + p2 and |p| = |p1| + |p2| mod-
eled in the collision operator by the singular Dirac delta masses, this cubic
collisional form (1.13) is reduced into a quadratic one, that can be split in
the difference of two positive quadratic operators, as will be shown in the
existence result.
In addition the low temperature quantum collisional form (1.13) can be split
into gain and loss operator forms

Q[f ](t, p) = Q+[f ](t, p)−Q−[f ](t, p)

= Q+[f ](t, p)− f(t, p) ν[f ](t, p),
(1.14)

as is done with the classical Boltzmann operator acting on an f(t, v), for
binary elastic interactions, when the transition probability (or collision ker-
nel) is an integrable function with respect to the scattering angle as much
as is integrable respect with a velocity v∗, the interacting with the velocity
v in the binary process.

Here, the gain operator is also defined by the positive contributions in
the total rate of change in time of the collisional form Q(f)(t, p) in (1.13),

Q+[f ](t, p) :=

∫
R3

∫
R3

dp1dp2|p||p1||p2|δ(p− p1 − p2)

× δ(|p| − |p1| − |p2|)f(t, p1)f(t, p2) + 2

∫
R3

∫
R3

dp1dp2|p||p1||p2|

× δ(p1 − p− p2)δ(|p1| − |p| − |p2|)
[
2f(t, p)f(t, p1) + f(t, p1)

]
.

(1.15)
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In analog, the loss operator models the negative contributions in the total
rate of change in time of same collisional form Q(f)(t, p). It is local in f(t, p)
and so written Q−[f ] := f ν[f ], where ν[f ](t, p), referred as the collision
frequency or attenuation coefficient, defined by

ν[f ](t, p) :=

∫
R3

∫
R3

dp1dp2|p||p1||p2|δ(p− p1 − p2)

× δ(|p| − |p1| − |p2|)
[
2f(t, p1) + 1

]
+ 2

∫
R3

∫
R3

dp1dp2|p||p1||p2|

× δ(p1 − p− p2)δ(|p1| − |p| − |p2|)f(t, p2) ,

(1.16)

is nonlocal in f(t, p).

Remark 1.1 In order to grant the split of the collision operator in gain
and loss parts, it is necessary that ν[f ](t, p) is well defined. This is se-
cured whenever solutions have at least the second moment finite throughout
the evolution. This property will be automatically granted by the proofs of
creation and propagation of statistical moments in Section 4 and the corre-
sponding existence theorem in Section 5.

Thus, our goal is to study the Cauchy problem of radial solutions for the
quantum Boltzmann gas model at low temperature (1.1)-(1.13), or equiva-
lently by (1.14, 1.15, 1.16). In addition we will show that the unique solu-
tions of this Cauchy problem have exponential decaying tails in the sense
of L1(R3), which we referred as Mittag-Leffler moments. This is the first
step to solve an equation of the kind without cut-off assumptions in the
transition probability kernels.

The existence and uniqueness arguments are based on techniques devel-
oped in the last few years for the classical Boltzmann equation in [2, 12, 24,
25, 45]. We point out that the propagation of polynomial moments enable
us to find a natural space to show existence and uniqueness of solutions
for equation using abstract ODE theory, without need of bounded initial
entropy.

A technical difficulty in the analysis is the fact that the natural con-
servation law for the model is energy conservation, that is, the solution’s
first moment, whereas the homogeneity of the kinetic potential kernel in the
model is 3. Due to this fact, it is essential to perform high moment analysis
which, in contrast, it is not central for the Cauchy problem in the classical
Boltzmann equation, refer to [6, 25, 35].
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The organization of the paper is as follows. In Section 2 we present the
weak formulation and recall the main conservation laws as well entropy
estimate and corresponding analog to an h-Theorem for (1.1) with the low
temperature regime collisional form (1.13).

The next three sections regard the Cauchy problem and high energy tail
behavior, which will be fully developed in context of radially symmetric so-
lutions. Section 3 is devoted to a key a priori estimate on the moments
of equation (1.1)-(1.13) which will be used several times along the paper,
Proposition 3.1. Using Proposition 3.1, we prove the creation and prop-
agation of polynomial moments, Theorem 4.1 in Section 4. Then, using
the a priori estimates of Section 4, we prove, in Section 5, existence and
uniqueness of solutions of radially symmetric solutions for equation (1.1)-
(1.13)under natural conditions. Existence is based on a Hölder estimate and
a condition of the sub-tangent type for Q, see Theorem 5.2. Uniqueness is
based on a one-side Lipschitz estimate.

Theorems 6.1 and 6.2 are the main results of Section 6. They address
the propagation and creation of Mittag-Leffler moments for such solutions
to low temperature quantum collision evolution given by (1.1)-(1.13).

2 Conservation of energy and momentum

For notational convenience, we will usually omit the time variable t unless
some stress is necessary in the context.
The following properties hold for the the low temperature quantum colli-
sional form (1.13).

Proposition 2.1 (Weak Formulation) For any suitable test function ϕ,
the following weak formulation holds for the collision operator (1.13)∫

R3

dp ncQ[f ](p)ϕ(p) =

∫
R3

∫
R3

∫
R3

dp dp1 dp2 nc|p||p1||p2|δ(p− p1 − p2)

× δ(|p| − |p1| − |p2|)
[
f(p1)f(p2)− f(p1)f(p)− f(p2)f(p)− f(p)

]
×
[
ϕ(p)− ϕ(p1)− ϕ(p2)

]
.

(2.1)

Proof. In this proof we use the short-hand
∫

:=
∫
R9 dp dp1 dp2. First,
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observe that∫
R3

dp ncQ[f ](p)ϕ(p) =∫
nc|p||p1||p2|δ(p− p1 − p2)δ(|p| − |p1| − |p2|)R(p, p1, p2)ϕ(p)

−
∫
nc|p||p1||p2|δ(p− p1 − p2)δ(|p| − |p1| − |p2|)R(p1, p, p2)ϕ(p)

−
∫
nc|p||p1||p2|δ(p− p1 − p2)δ(|p| − |p1| − |p2|)R(p2, p1, p)ϕ(p) .

(2.2)

Second, interchanging variables p↔ p1 and p↔ p2,∫
nc|p||p1||p2|R(p1, p, p2)ϕ(p) =

∫
nc|p||p1||p2|R(p, p1, p2)ϕ(p1) , (2.3)

and∫
nc|p||p1||p2|R(p2, p1, p)ϕ(p) =

∫
nc|p||p1||p2|R(p, p1, p2)ϕ(p2) . (2.4)

Finally, combining (2.2), (2.3), (2.4), we get (2.1).

Corollary 2.1 (Conservation laws) If f is a solution of (1.1)-(1.13), it
formally conserves momentum and energy∫

R3

dp f(t, p) p =

∫
R3

dp f0(p) p , (2.5)∫
R3

dp f(t, p) |p| =

∫
R3

dp f0(p) |p| . (2.6)

Remark 2.1 Since f is the density function of the thermal cloud, the mass
is not conserved due to the fact that atoms could move in and out of the
condensate. In order words, the total mass of the system thermal cloud -
condensate is unchanged as time evolves, but the mass of each component of
the system the thermal cloud and the condensate is not conserved.

Now, let us look at the system that couples the two equations (1.1) and
(1.4). Integrating Equation (1.1) in p and taking the sum with the second
equation (1.5), we obtain

d

dt

(∫
R3

f(t, p)dp + nc(t)

)
= 0, (2.7)

which confirms that the total mass of the whole system is conserved.
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Corollary 2.2 (H-Theorem) If f(t, p) is a solution of (1.1)-(1.13), then

d

dt

∫
R3

dp
[
f(p) log f(p)−

(
1 + f(p)

)
log
(
1 + f(p)

)]
≤ 0.

A radially symmetric equilibrium of the equation has the following form

f(p) =
1

eαω(p) − 1
, for some α > 0. (2.8)

Proof. We observe that

d

dt

∫
R3

dp
[
f(p) log f(p)−

(
1 + f(p)

)
log
(
1 + f(p)

)]
=∫

R3

dp ∂tf(p) log

(
f(p)

f(p) + 1

)
.

In addition, we can rewrite∫
R3

dp ncQ[f ](p)ϕ(p) =

∫
R9

nc|p||p1||p2|δ(p− p1 − p2)δ(|p| − |p1| − |p2|)

×
(
1 + f(p)

)(
1 + f(p1)

)(
1 + f(p2)

)
×
(

f(p1)

f(p1) + 1

f(p2)

f(p2) + 1
− f(p)

f(p) + 1

)[
ϕ(p)− ϕ(p1)− ϕ(p2)

]
dpdp1dp2.

Choosing ϕ(p) = log
(

f(p)
f(p)+1

)
we obtain, in the case of equality, that

f(p1)

f(p1) + 1

f(p2)

f(p2) + 1
− f(p)

f(p) + 1
= 0,

or equivalently, putting h(p) = log
(

f(p)
f(p)+1

)
, we get

h(p1) + h(p2) = h(p). (2.9)

The fact that h(·) is radially symmetric yields h(p) = −αω(p), for all p ∈ R3

and some positive constant α. This proves the claim.

The rest manuscript concerns the existence,uniqueness and high energy
tail behavior of radially symmetric solutions.
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3 A priori estimates on a solution’s moments

f(t, p) = f(t, |p|) .

Furthermore, we consider solutions of (1.1)-(1.13) that lie in C
(
[0,∞);L1(R3, |p|kdp)

)
where

L1(R3, |p|kdp) :=
{
f measurable

∣∣ ∫
R3

dp |f(p)||p|k <∞, k ≥ 1
}
.

That is, in sections 3 and 4 the a priori estimates assume the existence
of a radially symmetric solution enjoying time continuity in such Lebesgue
spaces for k sufficiently large. Define the solution’s moment of order k as

Mk〈f〉(t) :=

∫
R3

dpf(t, |p|)|p|k . (3.1)

Using spherical coordinates, the integral with respect to dp on R3 can be
reduced to an integral on R+ with respect to d|p|. Therefore, we also use
the line-moment on R+

mk〈f〉(t) :=

∫ ∞
0

d|p| f(t, |p|)|p|k . (3.2)

We are going to use the definition of moments in two contexts: In one hand,
in sections 3, 4 and 6 we always consider the moment applied to a given
radial solution of the equation. Thus, there is no harm to omit the function
dependence and just write Mk(t), Mk, mk(t) or mk to denote moments
and line-moments for simplicity. In the other hand, in section 5 we will
use moments as norms of the spaces L1(R3, |p|kdp), as a consequence, the
functional dependence will be important. In addition, time dependence will
not be key in this section, thus, we will write line-moments as mk〈·〉. Note
that, for radially symmetric functions,Mk and mk+2 are equivalent. Then,
according to the conservation law (2.6) and assuming initial energy finite,
the following estimate hold

M1(t) =M1(0) <∞ , m3(t) = m3(0) <∞ .

Proposition 3.1 (Line-Moment Ordinary Differential Inequalities)
For 1/k ≤ γ ≤ 1, k > 1, we have the following a priori estimate on the
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moments valid with some universal constants C1 and C2

d

dt
mkγ+2(t)

≤C1

[ k+1
2 ]∑
i=1

(
k

i

)
(miγ+4m3+(k−i)γ +miγ+3m4+(k−i)γ)(t)− C2mkγ+8(t) .

(3.3)

In order to prove Proposition 3.1, we first need the following lemmata.

Lemma 3.1 For k > 3, we have the following equation for mk

d

dt
mk(t) = C(π)

∫
R+

∫
R+

dr1 dr2 nc(r1 + r2)r3
1r

3
2

[
f(t, r1)f(t, r2)

− 2f(t, r1)f(t, r1 + r2)− f(t, r1 + r2)
]
×
[
|r1 + r2|k−2 − rk−2

1 − rk−2
2

]
.

(3.4)

Proof. For simplicity we omit the t-time variable in this proof. Using
|p|k−2 as a test function in (1.1)-(1.13) and recalling that the line-moment
mk is equivalent to Mk−2, we obtain

d

dt
mk = C

∫
R3

∫
R3

∫
R3

dp dp1 dp2 |p||p1||p2|δ(p− p1 − p2)

× δ(|p| − |p1| − |p2|)
[
f(t, p1)f(t, p2)− f(t, p1)f(t, p)

− f(t, p2)f(t, p)− f(t, p)
]
×
[
|p|k−2 − |p1|k−2 − |p2|k−2

]
,

where C is some positive constant varying from line to line. The above
integral, thanks to the Dirac measure δ(p−p1−p2), can be reduced from an
integral on R3 × R3 × R3 of dp dp1 dp2 to an integral on R3 × R3 of dp1 dp2

d

dt
mk =

∫
R3

∫
R3

dp1dp2nc|p1 + p2||p1||p2|δ(|p1 + p2| − |p1| − |p2|)

×
[
f(t, p1)f(t, p2)− f(t, p1)f(t, p1 + p2)− f(t, p2)f(t, p1 + p2)

− f(t, p1 + p2)
]
×
[
|p1 + p2|k−2 − |p1|k−2 − |p2|k−2

]
.

Using spherical coordinates one has dp2 = |p2|2 sin γ d|p2|dγ dρ, with γ ∈
[0, π], ρ ∈ [0, 2π], and

δ(|p1 + p2| − |p1| − |p2|) = δ(1− cos γ) .

Thus, we can reduce the integral of dp2 on R3 to an integral of d|p2| on R+.

d

dt
mk = C(π)

∫
R3

∫
R+

dp1 d|p2|nc|p1 + p2||p1||p2|
[
f(t, p1)f(t, p2)

− f(t, p1)f(t, p1 + p2)− f(t, p2)f(t, p1 + p2)− f(t, p1 + p2)
]

×
[
|p1 + p2|k−2 − |p1|k−2 − |p2|k−2

]
|p2|2 .
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This implies, by a similar change of variables, that one is able to reduce dp1

to d|p1|. More specifically,

d

dt
mk = C(π)

∫
R+

∫
R+

d|p1| d|p2|nc(|p1|+ |p2|) |p1|3|p2|3×[
f(t, |p1|)f(t, |p2|)− f(t, |p1|)f(t, |p1|+ |p2|)− f(t, |p2|)f(t, |p1|+ |p2|)
− f(t, |p1|+ |p2|)

]
×
[
|p1 + p2|k−2 − |p1|k−2 − |p2|k−2

]
.

This estimate completes the proof of this Lemma 3.1.

Lemma 3.2 (From Ref. [13]) Assume that k > 1, let
[
k+1

2

]
denote the

integer part of k+1
2 . Then for all a, b > 0, the following inequality holds

[ k+1
2 ]−1∑
i=1

(
k

i

)
(aibk−i + ak−ibi)

≤ (a+ b)k − ak − bk ≤
[ k+1

2 ]∑
i=1

(
k

i

)
(aibk−i + ak−ibi) .

(3.5)

Proof. (of Proposition 3.1) For simplicity we omit t, the time variable,
in the argument of this proof. From (3.4), we eliminate the negative term
−2f(t, r1)f(t, r1 + r2) and take into account the fact that

|r1 + r2|kγ − rkγ1 − r
kγ
2 > 0 ,

to get

d

dt
mkγ+2(t) ≤ C(π)

∫
R+

∫
R+

dr1dr2nc(r1 + r2)r3
1r

3
2

[
f(t, r1)f(t, r2)−

− f(t, r1 + r2)
]
×
[
|r1 + r2|kγ − rkγ1 − r

kγ
2

]
.

(3.6)

By applying the inequality

|r1 + r2|kγ ≤ (|r1|γ + |r2|γ)k , (3.7)

with 1/k ≤ γ ≤ 1 into (3.6), it yields

d

dt
mkγ+2(t) ≤ C(π, nc)

∫
R+

∫
R+

dr1dr2(r1 + r2) r3
1 r

3
2 f(t, r1)f(t, r2)×

[
(|r1|γ + |r2|γ)k − rkγ1 − r

kγ
2

]
− C(π, nc)

∫
R+

∫
R+

dr1dr2(r1 + r2)r3
1r

3
2

× f(t, r1 + r2)
[
|r1 + r2|kγ − rkγ1 − r

kγ
2

]
.

(3.8)
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In order to obtain (3.3), we estimate the two terms on the right hand side
of (3.8). Using Lemma 3.2 with a = rγ1 and b = rγ2 , the first term can be
estimated as follows∫
R+

∫
R+

dr1dr2(r1 + r2) r3
1 r

3
2

[
(|r1|γ + |r2|γ)k − rkγ1 − r

kγ
2

]
f(t, r1)f(t, r2)

≤
∫
R2
+

dr1dr2(r1 + r2)r3
1r

3
2

[
k+1
2

]∑
i=1

(
k

i

)(
riγ1 r

(k−i)γ
2 + r

(k−i)γ
1 riγ2

)
f(t, r1)f(t, r2) ,

which, by a simple expansion process, can be bounded by

∫
R+

∫
R+

dr1dr2

[
k+1
2

]∑
i=1

(
k

i

)(
riγ+4

1 r
3+(k−i)γ
2 + riγ+3

1 r
4+(k−i)γ
2

+ r
(k−i)γ+4
1 riγ+3

2 + r
(k−i)γ+3
1 riγ+4

2

)
f(t, r1)f(t, r2)

≤ 2

[
k+1
2

]∑
i=1

(
k

i

)(
miγ+4m3+(k−i)γ +miγ+3m4+(k−i)γ

)
(t) .

(3.9)

Note that in the above inequality, we only use the definition of miγ+3, miγ+4,
m(k−i)γ+3, and m(k−i)γ+4. Regarding the second term on the right side of
(3.8), we rewrite it using the change of variables r1 +r2 → r and r1 → r−r2

−
∫
R+

∫
R+

dr1dr2(r1 + r2)r3
1r

3
2

[
|r1 + r2|kγ − rkγ1 − r

kγ
2

]
f(t, r1 + r2)

=

∫ ∞
0

∫ r

0
dr2dr r (r − r2)3 r3

2

[
|r − r2|kγ + rkγ2 − |r|

kγ
]
f(t, r) .

(3.10)

Set

I :=

∫ r

0
dr2 r (r − r2)3 r3

2

[
|r − r2|kγ + rkγ2 − |r|

kγ
]
.

Then, by (3.7), I ≤ 0. By the change of variables r2 → r − r2, one gets the
following identity∫ r

0
dr2(r − r2)3+kγr3

2 =

∫ r

0
dr2(r − r2)3r3+kγ

2 ,

which implies the equality

I =

∫ r

0
dr2(r − r2)3r3

2

[
2rkγ2 − r

kγ
]
. (3.11)
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Develop (r − r3)3 in the above integral, the following equality holds

I =

∫ r

0
dr2(r − r2)3r3

2

[
2rkγ2 − r

kγ
]

=

∫ r

0
dr2

[
r3 − 3r2r

2 + 3r2
2r − r3

2

][
2rkγ+3

2 − rkγr3
2

]
=

∫ r

0
dr2

[
2rkγ+3

2 r3 − 6rkγ+4
2 r2 + 6rkγ+5

2 r − 2rkγ+6
2

− rkγ+3r3
2 + 3rkγ+2r4

2 − 3rkγ+1r5
2 + r6

2r
kγ
]

= −Crkγ+7 ,

(3.12)

where the last equality follows by evaluating the integral of dr2 in (0, r).
Since I ≤ 0, the constant C is explicit and positive. Combining (3.10),
(3.11), (3.12), we get the following equation for the second term on the right
hand side of (3.8)

−
∫
R+

∫
R+

dr1dr2(r1 + r2) r3
1 r

3
2

[
|r1 + r2|kγ − rkγ1 − r

kγ
2

]
f(t, r1 + r2)

= −C
∫ ∞

0
rkγ+8f(t, r)dr = −Cmkγ+8 .

(3.13)

Putting together (3.6),(3.9) and (3.13), we obtain the ordinary differential
line-moments inequality

d

dt
mkγ+2 ≤ C

[ k+1
2 ]∑
i=1

(
k

i

)(
miγ+4m3+(k−i)γ+miγ+3m4+(k−i)γ

)
−C ′mkγ+8.

that shows inequality (3.3). Thus, the proof of Proposition 3.1 is now com-
plete.

4 Creation and propagation of polynomial moments

Let us write the main result of this section.

Theorem 4.1 Suppose that f0(p) = f0(|p|), m3(0) <∞ and mk(t) defined
in (3.2). Then, there exists a constant Ck(h3) that depends only on h3 :=
h3(m3(0)), and on k such that we have the following creation of the kth line
moment

mk(t) ≤ Ck(h3)
(
1− e−Ckt

)− k−3
6 , ∀ k > 3 . (4.1)
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Moreover, if mk(0) < ∞, we have the following propagation of the kth line
moment

mk(t) ≤ max
{
mk(0), Ck(h3)

}
. (4.2)

Lemma 4.1 (Moment interpolation) The line-moment mk = mk(t) sat-
isfies

mρ ≤ mγ
ρ1m

1−γ
ρ2 , (4.3)

where the positive constants ρ, ρ1, ρ2, γ satisfy 0 < ρ1 ≤ ρ ≤ ρ2, 0 < γ < 1,
and ρ = γρ1 + (1− γ)ρ2.

Proof. The proof of this statement is straightforward. Indeed, Hölder’s
inequality imply

mγ
ρ1m

1−γ
ρ2 =

(∫
R+

dr |r|ρ1f(r)

)γ (∫
R+

dr |r|ρ2f(r)

)1−γ

≥
∫
R+

dr |r|ρ1γ+ρ2(1−γ)f(r) ≥
∫
R+

dr |r|ρf(r) ≥ mρ .

Proof. (of Theorem 4.1) In this proof, we will use Lemma 3.1 with γ = 1
which reduces to

d

dt
mk+2 ≤ C1

[ k+1
2 ]∑
i=1

(
k

i

)(
mi+4m3+(k−i) +mi+3m4+(k−i)

)
− C2mk+8 ,

where C1 and C2 are some universal positive constants. For the sake of
simplicity, we shift k + 2→ k in the above inequality to get

d

dt
mk ≤ C1

[ k−1
2 ]∑
i=1

(
k − 2

i

)(
mi+4m1+(k−i) +mi+3m2+(k−i)

)
−C2mk+6 . (4.4)

From (4.4), our goal is to construct a differential inequality for mk = mk(t)
from which the boundedness of mk could be deduced. In order to do that, we
will estimate the right hand side of(4.4) by some function of mk, which leads
to a uniform in time upper bound of mk. First, let us start bounding the
right hand side of (4.4) by estimating the term mi+4m1+k−i with Hölder’s
inequality,

mi+4 ≤ m
k+2−i
k+3

3 m
i+1
k+3

k+6 = Cm
i+1
k+3

k+6,
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where we notice that, by the conservation of energy (2.6), m3 and m
k+1−i
k+2

3

are constants. Multiplying mi+4 by m1+k−i and using Young’s inequality

mi+4m1+k−i ≤ Cm
i+1
k+3

k+6m1+k−i ≤
m

(i+1)p
k+3

k+6 εp

p
+
mq

1+k−i
qεq

. (4.5)

We set q = k+3
k+2−i and p = k+3

i+1 and choose ε > 0 in the sequel. The quantity
m1+k−i could be bounded by Hölder’s inequality again

m1+k−i ≤ m
k−i−2
k−3

k m
i−1
k−3

3 .

Therefore, from (4.5) and the aforementioned bound on m1+k−i, we obtain
the estimate for the term mi+4m1+k−i on the right side of (4.4)

mi+4m1+k−i ≤
mk+6ε

p

p
+
m

(k+3)(k−i−2)
(k+2−i)(k−3)

k

qεq
. (4.6)

Since
1

2
<

(k + 3)(k − i− 2)

(k + 2− i)(k − 3)
<
k − 1

k − 3
,

an interpolation argument applied to inequality (4.6) leads to

mi+4m1+k−i ≤
mk+6ε

p

p
+ C

m
1/2
k

qεq
+ C

m
k−1
k−3

k

qεq
, (4.7)

where C is some positive constant that can vary from line to line. Sec-
ond, we continue estimating the right side of (4.4) by controling the term
mi+3m2+k−i. We consider two cases: (1) i ≥ 2 (then 2 + k− i ≤ k), and (2)
i = 1 (then i+ 3 = 4 ≤ k). Let us start with the latter.

Case (2). Using Hölder inequality (4.3) and the conservation of momen-
tum on m3

m2+k−i ≤ m
4+i
k+3

3 m
k−i−1
k+3

k+6 = Cm
k−i−1
k+3

k+6 .

Multiplying the this inequality by mi+3 and employing Hölder’s inequality
again, we have

mi+3m2+k−i ≤ Cmi+3m
k−i−1
k+3

k+6 ≤
mr
i+3

rεr
+
m

s(k−i−1)
k+3

k+6 εs

s
, (4.8)
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where we set s = k+3
k−1−i and r = k+3

i+4 . Since i + 3 ≤ k, we can use Hölder’s
inequality

mi+3 ≤ m
i

k−3

k m
k−3−i
k−3

3 .

One concludes that

mi+3m2+k−i ≤
mk+6ε

s

s
+
m

i
k−3

k+3
i+4

k

rεr
=
mk+6ε

s

s
+
m

k+3
5(k−3)

k

rεr
. (4.9)

For Case (1) a similar argument is made to conclude that

mi+3 ≤ m
k+3−i
k+3

3 m
i

k+3

k+6 = Cm
i

k+3

k+6 .

Multiplying mi+3 by m2+k−i and using Young’s inequality

mi+3m2+k−i ≤ Cm
i

k+3

k+6m2+k−i ≤
m

is′
k+3

k+6ε
s′

s′
+
mr′

2+k−i
r′εr′

,

where we set r′ = k+3
k+3−i and s′ = k+3

i . The quantity m2+k−i can be bounded
as

m2+k−i ≤ m
k−i−1
k−3

k m
i−2
k−3

3 .

Therefore, we obtain the estimate for the term mi+3m2+k−i for the right
side of (4.4)

mi+3m2+k−i ≤
mk+6ε

p

p
+
m

(k+3)(k−i−1)
(k+3−i)(k−3)

k

qεq
.

Since
1

2
<

(k + 3)(k − i− 1)

(k + 3− i)(k − 3)
<
k − 1

k − 3
,

we can interpolate to conclude that

mi+3m2+k−i ≤
mk+6ε

s′

s′
+ C

m
1
2
k

r′εr′
+ C

m
k−1
k−3

k

r′εr′
. (4.10)

Combining (4.4), (4.5), (4.9) and (4.10), we get

d

dt
mk ≤ C(ε)mk+6 + C ′(ε)

[
m

k−1
k−3

k +m
k+3

5(k−3)

k +m
1
2
k

]
− C ′′mk+6, (4.11)

where C(ε) and C ′(ε) are positive constants satisfying C(ε)→ 0 and C ′(ε)→
∞ as ε → 0, and C ′′ is a positive constant depending only on h3 := m3(0).
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Notice also that C(ε) and C ′(ε) also depend on k. For ε > 0 sufficiently
small, the constant C(ε) is absorbed by C ′′ and we infer from (4.11) that

d

dt
mk ≤ Ck

[
m

k−1
k−3

k +m
k+3

5(k−3)

k +m
1
2
k

]
− C ′′

2
mk+6 , (4.12)

for some Ck > 0 depending only on k > 3. In order to obtain a differential
inequality for mk, it remains to estimate mk+6. Indeed, using Hölder’s
inequality (4.3)

m
k−3
k+3

k+6m
6
k+3

3 ≥ mk ,

which implies mk+6 ≥ m
k+3
k−3

k . As a consequence, from (4.12) we finally arrive
to

d

dt
mk(t) ≤ Ck

[
m

k−1
k−3

k +m
k+3

5(k−3)

k + m
1
2
k

]
(t) − C ′′

2
m

k+3
k−3

k (t) . (4.13)

By Young inequality, there are positive constants C(ε) and ε such that

m
k−1
k−3

k ≤ εm
k+3
k−3

k (t) + C(ε), m
k+3

5(k−3)

k ≤ εm
k+3
k−3

k (t) + C(ε),

and by Cauchy inequality

m
1
2
k ≤

1

2
mk +

1

2
.

Combining the above inequalities, for ε small, with (4.13) we conclude that
there are positive constants, still denoted by Ck and C ′′/2, such that

d

dt
mk(t) ≤ Ck

(
1 + mk(t)

)
− C ′′m

k+3
k−3

k (t) . (4.14)

By comparing (4.14) with the solution of the Bernoulli equation

d

dt
Y (t) ≤ CkY (t) − C ′′Y

k+3
k−3 (t) ,

which is

Y (t) =
[(
Y (0)e−Ckt

)− 6
k−3 +

C ′′

Ck

(
1− e−

Ck6t

k−3
)]− k−3

6

≤ Ck(h3)
(
1− e−

Ck6t

k−3
)− k−3

6 ,

where Ck(h3) :=
(
Ck/C

′′) k−3
6 is a constant depending linearly on

√
nc and√

nc, since C ′′ depends only on h3 = m3(0) and Ck only on k. Hence in-
equality (4.1) holds. In addition, if the initial kth line-moment mk(0) is
finite, then clearly the bound may be improved at t = 0, and mk(t) clearly
satisfies inequality (4.2).
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5 The Cauchy Problem

This section is devoted to show existence and uniqueness of positive solutions
of the initial value problem associated to equation (1.14), (1.15) and (1.16),
which corresponds the to solutions of the initial value problem for equation
(1.1)-(1.13) where the collision operator has a transition probability given
by |M|2 = κ|p||p1||p2| from (1.9) for p = p1 + p2 and |p| = |p1|+ |p2|.

The approach we use is based on an abstract framework for solving
ODE’s in Banach spaces applied in this context to find uniqueness of non-
negative homogeneous radially symmetric solutions of the quantum Boltz-
mann equation for bosons at very low temperature in L1

(
R3, |p|dp

)
, the set

of measurable functions, integrable w.r.t. the measure |p|dp.
More specifically, we have the following theorem, whose proof can be

found in the Appendix 7.

Theorem 5.1 Let E := (E, ‖·‖) be a Banach space, S be a bounded, convex
and closed subset of E, and Q : S → E be an operator satisfying the following
properties:

Hölder continuity condition∥∥Q[f ]−Q[g]
∥∥ ≤ C‖f − g‖β, β ∈ (0, 1), ∀ f, g ∈ S , (5.1)

Sub-tangent condition

lim inf
h→0+

h−1dist
(
f + hQ[f ], S

)
= 0, ∀ f ∈ S , (5.2)

and, one-sided Lipschitz condition[
Q[f ]−Q[g], f − g

]
≤ C‖f − g‖, ∀ f, g ∈ S , (5.3)

where
[
ϕ, φ

]
:= limh→0− h

−1
(
‖φ+ hϕ‖ − ‖φ‖

)
.

Suppose that n = n(t) is a continuous function in C1([0,∞) and n is bounded
uniformly from below and above by positive constants n and n.
Then the equation

∂tf = nQ[f ] on [0,∞)× E, f(0) = f0 ∈ S (5.4)

has a unique solution in C1((0,∞), E) ∩ C([0,∞),S).
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This theorem is an extension of Theorem A.1 proved in [14] by Bressan in
the context of solving the elastic Boltzmann equation for hard spheres in 3
dimension. We point out that [14] does not properly show that (5.2) is sat-
isfied in that case. For completeness of this manuscript we rewrite Bressan’s
unpublished proof in the Appendix. The Bressan’s needed techiques can be
found in [34]. Indeed, referring to the argument given in [1], using conditions
(5.1) and (5.2) combined with [34, Theorem VI.2.2] one has that conditions
(C1), (C2) and (C3) in [34, pg. 229] are satisfied and hence, together with
(5.3), all needed conditions for the existence and uniqueness theorem [34,
Theorem VI.4.3] for ODEs in Banach spaces are fulfilled.

For our particular case, we need to identify a suitable Banach space and
a corresponding bounded, convex and closed subset S.

Indeed, choosing E = L1
(
R3, |p|dp

)
, the choice of the subspace S, de-

fined below in (5.5), specifically depend on the estimates to solutions of the
quantum Boltzmann equation (1.14), (1.15) and (1.16), whose collisional
operator satisfy conditions (5.1), (5.2) and (5.3) when the transition proba-
bility (1.9) is given by |M|2 = κ|p||p1||p2| for p = p1+p2 and |p| = |p1|+|p2|.

More specificallly, such subset S ⊂ L1
(
R3, |p|dp

)
is characterized by the

Hölder continuity and sub-tangent conditions (5.1) and (5.2), respectively,
(to be shown next in subsection 5.2), and it is defined as follows:

S :=

{
f ∈ L1

(
R3, |p|dp

) ∣∣ i. f nonnegative & radially symmetric ,

ii. m3〈f〉 =

∫
R+

d|p| f(|p|)|p|3 = h3 ,

iii. m10〈f〉 =

∫
R+

d|p| f(|p|)|p|10 ≤ h10

}
,

(5.5)

where h3 is an arbitrary initial energy, and the specific h10 is defined below
in (5.29). We are now in conditions to state and prove the existence and
uniqueness theorem.

Theorem 5.2 (Existence and Uniqueness) Let f0(p) = f0(|p|) ∈ S.
Then, equation (1.1)-(1.13) with (1.9) has a unique momentum and energy
conservative solution

0 ≤ f(t, p) = f(t, |p|) ∈ C
(
[0,∞);S

)
∩ C1

(
(0,∞);L1

(
R3, |p|dp

))
. (5.6)

Proof. The proof of this theorem consists of verifying the three conditions
(5.1), (5.2), and (5.3) in Subsections 5.1, 5.2, and 5.3, respectively. We start
first with the Hölder continuity condition.
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5.1 Hölder Estimate for Q

Recall the definition of mk

〈
f〉, the kth-line-moment of a radially symmetric

f(p) := f(|p|)
mk〈f〉 :=

∫
R+

dp f(|p|)|p|k , k ≥ 0 , (5.7)

and observe that m3〈|f |〉 is equivalent to the usual norm for a radially sym-
metric function in L1

(
R3, |p|dp

)
.

Lemma 5.1 (Hölder continuity) The collision operator

Q : S → L1
(
R3, |p|dp

)
is Hölder continuous, with the following Hölder estimate

m3

〈
|Q[f ]−Q[g]|

〉
≤ A1m3

〈
|f − g|

〉 1
7 +A2m3

〈
|f − g|

〉
, (5.8)

valid for all f, g ∈ S. The constants Ai, for i = {1, 2}, depend only on h3

and h10.

Proof. We first observe that for any f ∈ S, properties i. and ii. in (5.5)
yield the interpolation estimates shown in (4.3) for moments m5〈f〉 ≤ C5

and m6〈f〉 ≤ C6, with γ = 2
7 and γ = 3

7 and positive constants depending
only on h3 and h10, respectively.

Next, in order to estimate the L1
(
R3, |p|dp

)
-norm of the difference of the

collision operator on any pair of functions f and g in S, we use the weak
formulation shown in Proposition 2.1 applied to the test function ϕ(p) =
sign

(
Q[f ]−Q[g]

)
(p), yielding the identity∫

R3

dp
∣∣Q[f ]−Q[g]

∣∣(p)|p| = ∫
R3

dp
(
Q[f ]−Q[g]

)
(p)sign

(
Q[f ]−Q[g]

)
(p)|p|

=

∫
R9

dp dp1dp2 |p p1p2|δ(p− p1 − p2)δ(|p| − |p1| − |p2|)

×
[
f(p1)f(p2)− 2f(p2)f(p)− f(p)− g(p1)g(p2) + 2g(p2)g(p) + g(p)

]
×
[
|p|sign

(
Q[f ]−Q[g]

)
(p)− |p1|sign

(
Q[f ]−Q[g]

)
(p1)

− |p2|sign
(
Q[f ]−Q[g]

)
(p2)

]
.

So, using the triangle inequality, it follows∫
R3

dp
∣∣Q[f ]−Q[g]

∣∣(p)|p|
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≤
∫
R9

dpdp1dp2 |p p1p2|δ(p− p1 − p2)δ(|p| − |p1| − |p2|) (5.9)

×
∣∣∣f(p1)f(p2)− 2f(p2)f(p)− f(p)− g(p1)g(p2) + 2g(p2)g(p) + g(p)

∣∣∣
×
[
|p|+ |p1|+ |p2|

]
.

Hence, using the same change of coordinates (3.10) used to obtained the a
priori moment’s estimates, now applied to the above inequality (5.9), yields∫

R+

dr
∣∣Q[f ]−Q[g]

∣∣(r)r3 ≤

C

∫ ∞
0

∫ r

0
dr2dr |r − r2|3|r2|3r

∣∣f(r − r2)f(r2)− 2f(r2)f(r)− f(r)

− g(r − r2)g(r2) + 2g(r2)g(r) + g(r)
∣∣(|r|+ |r − r2|+ |r2|

)
,

(5.10)

where C is a explicit positive constant that varies from line to line. Now,
since |r| + |r − r2| + |r2| = 2r in the 0 ≤ r2 ≤ r domain of integration, the
simplified expression follows∫

R+

dr
∣∣Q[f ]−Q[g]

∣∣(r)r3 ≤

C

∫ ∞
0

∫ r

0
drdr2r

2|r − r2|3|r2|3
∣∣f(r − r2)f(r2)− 2f(r2)f(r)− f(r)

− g(r − r2)g(r2) + 2g(r2)g(r) + g(r)
∣∣

= Q1 + Q2 + Q3 ,

(5.11)

where the Qi, with i ∈ {1, 2, 3}, are defined by

Q1[f, g] :=

C

∫ ∞
0

∫ r

0
dr2dr r2|r − r2|3|r2|3

∣∣f(r − r2)f(r2)− g(r − r2)g(r2)
∣∣ , (5.12)

Q2[f, g] := C

∫ ∞
0

∫ r

0
dr2dr r2|r − r2|3|r2|3

∣∣f(r2)f(r)− g(r2)g(r)
∣∣ , (5.13)

and

Q3[f, g] := C

∫ ∞
0

∫ r

0
dr2dr r2|r − r2|3|r2|3

∣∣f(r)− g(r)
∣∣ . (5.14)

Therefore, the proof of the Hölder estimate for the collision operator follows
from estimating these three terms.
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Estimating Q1. First, splitting f(r− r2)f(r2)− g(r− r2)g(r2) as the sum
of f(r− r2)(f(r2)− g(r2)) and g(r2)(f(r− r2)− g(r− r2)) and applying the
triangle inequality from (5.12) yields

Q1[f, g] ≤ C
∫ ∞

0

∫ r

0
dr2dr r2|r − r2|3|r2|3|f(r − r2)||f(r2)− g(r2)|

+ C

∫ ∞
0

∫ r

0
dr2dr r2|r − r2|3|r2|3|g(r2)||f(r − r2)− g(r − r2)| .

(5.15)

Exchanging variables r − r2 → r1, the right side of (5.15) is bounded by∫
R+

dr
∣∣Q1[f ]−Q1[g]

∣∣(r)r3 ≤ C
∫
R2
+

dr1dr2(r1 + r2)2r3
1r

3
2|f(r1)||f − g|(r2)

+ C

∫
R2
+

dr1dr2(r1 + r2)2r3
1r

3
2|g(r2)||f − g|(r1) .

Next, using the inequality (r1+r2)2 ≤ 2(r2
1 +r2

2), the right hand side integral
is simplifies to

Q1[f, g] ≤ C
∫
R2
+

dr1dr2

(
r5

1r
3
2 + r3

1r
5
2

)
|f(r1)||f(r2)− g(r2)|

+ C

∫
R2
+

dr1dr2

(
r5

1r
3
2 + r3

1r
5
2

)
|g(r2)||f(r1)− g(r1)|

≤ C (h3 + C5)

∫
R+

dr|f(r)− g(r)|
(
|r|3 + |r|5

)
,

(5.16)

where last inequality holds by the propagation of moments estimate∫
R+

dr r3 max{f, g}(r) ≤ h3 ,

∫
R+

dr r5 max{f, g}(r) ≤ C5 . (5.17)

Finally, using Hölder inequality∫
R+

dr |f(r)− g(r)||r|5 ≤
(∫

R+

dr |f(r)− g(r)||r|3
)1/3

×
(∫

R+

dr |f(r)− g(r)||r|6
)2/3

≤ C2/3
6

(∫
R+

dr |f(r)− g(r)||r|3
)1/3

,

leads to estimate for the term Q1 as follows,

Q1[f, g] ≤ C h3 C2/3
6

(∫
R+

dr |f(r)− g(r)||r|3
)1/3

+ C C5

∫
R+

dr|f(r)− g(r)||r|3 ,
(5.18)
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where, we recall, the constants C5 and C6 are controlled by h3 and h10.

Estimating Q2. Expressing f(r2)f(r) − g(r2)g(r) as the sum of (f(r2) −
g(r2))f(r) and g(r2)(f(r)− g(r)) we estimate (5.13) as

Q2[f,g] ≤ C
∫ ∞

0

∫ r

0
dr2dr r2|r − r2|3|r2|3||f(r2)− g(r2)||f(r)|

+ C

∫ ∞
0

∫ r

0
dr2dr r2|r − r2|3|r2|3||f(r)− g(r)||g(r2)| .

(5.19)

Since |r − r2| ≤ |r|, we obtain from (5.19) that

Q2[f,g] ≤ C
∫ ∞

0

∫ r

0
dr2dr |r|5|r2|3||f(r2)− g(r2)||f(r)|

+ C

∫ ∞
0

∫ r

0
dr2dr |r|5|r2|3||f(r)− g(r)||g(r2)|

≤ Ch3

∫
R+

dr |f(r)− g(r)||r|5 + C C5

∫
R+

dr |f(r)− g(r)||r|3 ,

(5.20)

where we have used in the last inequality (5.17). By the same argument as
(5.18), we get

Q2[f, g] ≤ C h3 C2/3
6

(∫
R+

dr|f(r)− g(r)||r|3
)1/3

+ C C5

∫
R+

dr|f(r)− g(r)||r|3 . (5.21)

Estimating Q3. Integrating in r2, we can rewrite (5.14) as an integral in r
only

Q3[f, g] = C

∫
R+

dr|f(r)− g(r)||r|9 , (5.22)

where C is some other universal constant. Thus, using Hölder inequality as
in (4.3) on |f − g|(r) with γ = 6

7 , one obtains

C−1Q3[f, g] =

∫
R+

dr |f − g|(r)|r|9

≤
(∫

R+

dr|f − g|(r)|r|10

)6/7

×
(∫

R+

dr |f − g|(r)|r|3
)1/7

≤ (2h10)6/7

(∫
R+

dr |f − g|(r)|r|3
)1/7

.

(5.23)

Therefore, estimate (5.8) follows by gathering (5.18), (5.21) and (5.23).
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5.2 Sub-tangent condition

This condition, jointly with the Hölder continuity, characterize the subset
S ⊂ L1

(
R3, |p|dp

)
defined in (5.5).

First, we show that the collision operator Q can be split as the sum of a
gain and a loss operators, as mentioned earlier in (1.14)

Q[f ] = Q+[f ]− f ν[f ] ,

provided ν[f ] is finite whenever f ∈ S. Indeed, this property follows by the
nature of the interaction law (i.e. the form of the singular mass term in the
integrand) and transition probability M, since

ν[f ](p) =

∫
R3

dp1|p||p1||p− p1|δ(|p| − |p1| − |p− p1|)
[
2f(p1) + 1

]
+ 2

∫
R3

dp2|p||p+ p2||p2|δ(|p+ p2| − |p| − |p2|)f(p2)

=

∫ |p|
0

dr |p|r3(|p| − r)
[
2f(r) + 1

]
+ 2

∫
R+

dr|p|(|p|+ r)r3f(r)

≤ C |p|
(
m3〈f〉

5
4 +m4〈f〉+ |p|5

)
,

(5.24)

and, therefore, ∣∣ν[f ](p)
∣∣ ≤ C(h3, h10)|p|

(
1 + |p|5

)
, ∀f ∈ S . (5.25)

The sub-tangent condition (5.2) follows as a corollary of next Proposi-
tion 5.1.

Proposition 5.1 Fix f ∈ S. Then, for any ε > 0, there exists h1 :=
h1(f, ε) > 0, such that the ball centered at f + hQ[f ] with radius h ε > 0
intersects S, that is,

B(f + hQ[f ], hε) ∩ S, is non-empty for any 0 < h < h1.

Proof. First, set χR(p) the characteristic function of the ball of radius
R > 0 and introduce the truncated function fR(p) := χR(p)f(p), then set
wR := f + hQ[fR].

We can control wR from below to show it is possible to find an h1 such
that wR remains non-negative for as long 0 < h < h1. Indeed, for any f ∈ S
its truncation fR(p) ∈ S as well, and since Q+ is a positive operator,

wR = f +Q+[fR]− hfR ν[fR] ≥ f − hfR ν[fR]
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≥ f
(

1− hC(h3, h10)R
(
1 + |R|5

))
≥ 0 (5.26)

for any 0 < h < h1 := 1/C(h3, h10)R
(
1 + |R|5

)
. In addition, since fR ∈

S, Q[fR] ∈ L1
(
R3, |p|dp

)
by Lemma 5.1, and, as a consequence, wR ∈

L1
(
R3, |p|dp

)
as well. Moreover, by conservation of energy

∫
R3 dpQ[fR]

)
|p|3 =

0 , yielding

m3〈wR〉 =

∫
R3

dpwR(|p|)|p|3 =

∫
R3

dp
(
f + hQ[fR]

)
|p|3

=

∫
R3

dp f(|p|)|p|3 = h3 ,

(5.27)

with h3 independent of the parameterR. In particular, wR satisfies,uniformly
in R, property i. in the characterization of the S defined in (5.5).

Finally we need to show that wR also satisfies property ii. in the set S.
First, recall the a priori estimate for developed in (4.13) for the line-moment
inequalities, namely∫

R3

dpQ[f ]|p|k ≤ Lk
(
mk〈f〉

)
:=

Ck

[
mk〈f〉

k−1
k−3 +mk〈f〉

k+3
5(k−3) +mk〈f〉

1
2

]
− C ′′

2
mk〈f〉

k+3
k−3 ,

(5.28)

holds for any k > 3 and Ck only depending on k, and C ′′ only depending on
m3〈f〉 = h3. Note that the map Lk : [0,∞)→ R has only one root, denoted
as hk∗, at which Lk changes from positive to negative for any k > 3. Note
that this root only depends on h3 and k. Thus, it is always the case that∫

R3

dpQ[f ]|p|k ≤ Lk
(
mk〈f〉

)
≤ max

0≤x≤hk∗
{Lk(x)}, f ∈ S.

Fix k = 10 and define

h10 := h10
∗ + max

0≤x≤h10∗
{L10(x)}. (5.29)

For any f ∈ S, we have two possibilities: m10〈f〉 ≤ h10
∗ , or m10〈f〉 > h10

∗ .
For the former, it readily follows that

m10〈wR〉 =

∫
R3

dpwR(|p|)|p|10 =

∫
R3

dp
(
f + hQ[fR]

)
|p|10

≤ h10
∗ + h max

0≤x≤h10∗
{L10(x)} ≤ h10,
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where in the last inequality we have assumed h ≤ 1 without loss of generality.
For the latter, we can choose R := R(f) sufficiently large such that

m10〈fR〉 ≥ h10
∗ , and therefore,∫

R3

dpQ[fR]|p|10 ≤ L10

(
m10〈fR〉

)
≤ 0 .

As a consequence,

m10〈wR〉 =

∫
R3

dp
(
f + hQ[fR]

)
|p|10 ≤

∫
R3

dp f |p|10 ≤ h10 .

The conclusion is that for any f ∈ S, it is always the case that

m10〈wR〉 ≤ h10 , (5.30)

which ensures that wR satisfies property ii. of the set S in (5.5). We infer,
thanks to (5.26), (5.27) and (5.30), that wR ∈ S for any 0 < h < h∗ where

h∗ = min
{

1, 1/
(
C(h3)R(f)

(
1 + |R(f)|5

) )}
. (5.31)

The argument ends using the Hölder estimate from Lemma 5.1 to obtain

h−1m3

〈
|f+hQ[f ]− wR|

〉
= m3

〈
|Q[f ]−Q[fR]|

〉
≤ A1m3

〈
|f − fR|

〉 1
7 +A2m3

〈
|f − fR|

〉
≤ ε ,

for R := R(ε) sufficiently large. Then, wR ∈ B(f + hQ[f ], hε) for this
choice. Thus, choosing R = max{R(f), R(ε)} and h1 := h1(f, ε) as in (5.31)
one concludes that wR ∈ B(f + hQ[f ], hε) ∩ S. Consequently,

h−1dist
(
f + hQ[f ],S

)
≤ ε , ∀ 0 < h < h1 .

The proof of Proposition 5.1 is now complete.

5.3 One-side Lipschitz condition

Using dominate convergence theorem one can show that[
ϕ, φ

]
≤
∫
R3

dpϕ(p)sign(φ)|p| .

Thus, the one-side Lipschitz condition is met after proving the following
lemma showing a Lipschitz condition for quantum-Boltzmann operator. The
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following proof, which yields a uniqueness results, is in the same spirit of
the original Di Blassio [?] uniqueness proof for initial value problem to the
homogeneous Boltzmann equation for hard spheres, using data with enough
initial moments.

Lemma 5.2 (Lipschitz condition) Assume f, g ∈ S. Then, there exists
constant C := C(h3, h10) > 0 such that∫

R3

dp
(
Q[f ](p)−Q[g](p)

)
sign(f − g)

(
|p|1 + |p|2

)
≤ Cm3

〈
|f − g|

〉
.

Proof. We start with the identity valid for radial functions f := f(|p|) and
ϕ := ϕ(|p|)∫

R3

dpQ[f ](p)ϕ(p) = 2(2π)2

∫ ∞
0

∫ ∞
0

dr1dr2(r1 + r2)r3
1r

3
2

×
[
ϕ(r1 + r2)− ϕ(r1)− ϕ(r2)

]
R(f)(r1, r2) ,

where

R(f)(r1, r2) := f(r1)f(r2)− 2f(r1)f(r1 + r2)− f(r1 + r2) .

Thus,∫
R3

dp
(
Q[f ](p)−Q[g](p)

)
ϕ(p) = 2(2π)2

∫ ∞
0

∫ ∞
0

dr1dr2(r1 + r2)r3
1r

3
2

×
[
ϕ(r1 + r2)− ϕ(r1)− ϕ(r2)

](
R(f)(r1, r2)−R(g)(r1, r2)

)
,

(5.32)

where, by definition

R(f)(r1, r2)−R(g)(r1, r2) =
(
f(r1)f(r2)− g(r1)g(r2)

)
− 2
(
f(r1)f(r1 + r2)− g(r1)g(r1 + r2)

)
−
(
f(r1 + r2)− g(r1 + r2)

)
.

Now, let us particularize for ϕ := ϕk = | · |ksign(f − g), with k ∈ {1, 2}, and
control each of the natural 3 terms appearing in the right side of (5.32). For
the first, use simply |ϕk| ≤ | · |k to obtain(
f(r1)f(r2)− g(r1)g(r2)

)[
ϕk(r1 + r2)− ϕk(r1)− ϕk(r2)

]
≤
(∣∣f(r1)− g(r1)

∣∣f(r2) + g(r1)
∣∣f(r2)− g(r2)

∣∣)[|r1 + r2|k + |r1|k + |r2|k
]
.
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Since |r1 + r2|k + |r1|k + |r2|k ≤ 2
(
r1 + r2

)k
, it readily follows that∫ ∞

0

∫ ∞
0

dr1dr2(r1 + r2)r3
1r

3
2

×
[
ϕ(r1 + r2)− ϕ(r1)− ϕ(r2)

](
f(r1)f(r2)− g(r1)g(r2)

)
≤ 2k+1m3

〈
f + g

〉
mk+4

〈
|f − g|

〉
+ 2k+1mk+4

〈
f + g

〉
m3

〈
|f − g|

〉
.

(5.33)

Similar argument for the second term, together with the change of variable
r1 + r2 → r2, leads to

− 2

∫ ∞
0

∫ ∞
0

dr1dr2(r1 + r2)r3
1r

3
2

×
[
ϕ(r1 + r2)− ϕ(r1)− ϕ(r2)

](
f(r1)f(r1 + r2)− g(r1)g(r1 + r2)

)
≤ 2m3

〈
g
〉
mk+4

〈
|f − g|

〉
+ 2mk+4

〈
f
〉
m3

〈
|f − g|

〉
.

(5.34)

Now, the absorption (third) term is nonpositive for k = 1 since

−
(
f(r1 + r2)− g(r1 + r2)

)[
ϕ1(r1 + r2)− ϕ1(r1)− ϕ1(r2)

]
≤
∣∣f(r1 + r2)− g(r1 + r2)

∣∣[|r1|+ |r2| − |r1 + r2|
]

= 0 .

In addition, for k = 2 it follows that

−
(
f(r1 + r2)− g(r1 + r2)

)[
ϕ2(r1 + r2)− ϕ2(r1)− ϕ2(r2)

]
≤
∣∣f − g∣∣(r1 + r2)

[
|r1|2 + |r2|2 − |r1 + r2|2

]
= −2r1r2

∣∣f − g∣∣(r1 + r2) .

In turn, this leads to

−
∫ ∞

0

∫ ∞
0

dr1dr2(r1 + r2)r3
1r

3
2

[
ϕ(r1 + r2)− ϕ(r1)− ϕ(r2)

](
f − g

)
(r1 + r2)

≤ −2

∫ ∞
0

∫ ∞
0

dr1dr2(r1 + r2)r4
1r

4
2

∣∣f(r1 + r2)− g(r1 + r2)
∣∣ (5.35)

= −2

∫ ∞
0

dr r|f − g|(r)
∫ r

0
dr1r

4
1(r − r1)4 = −Cm10

〈
|f − g|

〉
,

for some universal C > 0. Gathering (5.33), (5.34) and (5.35) we conclude
that for f, g ∈ S∫

R3

dp
(
Q[f ](p)−Q[g](p)

)(
|p|1 + |p|2

)
sign(f − g) ≤ c1m3

〈
|f − g|

〉
+ c2m5

〈
|f − g|

〉
+ c3m6

〈
|f − g|

〉
− Cm10

〈
|f − g|

〉
≤ c4m3

〈
|f − g|

〉
,
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where the constants ci, with i ∈ {1, 2, 3, 4}, depend on h3 and h10. The last
inequality follows noticing that c1r

3 + c2r
5 + c3r

6 − Cr10 ≤ c4r
3 for any

r ≥ 0.

The proof of Theorem 5.2 is now completed, as an application of Theorem
5.4, where the three conditions (5.1), (5.2), and (5.3) have been verified in
Subsections 5.1, 5.2, and 5.3, respectively.

6 Mittag-Leffler moments

6.1 Propagation of Mittag-Leffler tails

In this section we are interested in studying the propagation and creation of
Mittag-Leffler moments of order a ∈ [1,∞) and rate α > 0. In terms infinite
sums, see [45], this is equivalent to control the integral∫

R3

dp f(t, p)Ea(αa|p|) =
∞∑
k=1

Mk(t)α
ak

Γ(ak + 1)
, (6.1)

where

Ea(x) :=
∞∑
k=1

xk

Γ(ak + 1)
≈ ex1/a − 1 , x� 1 . (6.2)

We have excluded the term k = 0 to account for the fact that equation
(1.1)-(1.13) does not conserves mass. For convenience define for any α > 0
and a ∈ [1,∞) the partial sums

Ena (α, t) :=
n∑
k=1

Mk(t)α
ak

Γ(ak + 1)
and Ina,ρ(α, t) :=

n∑
k=1

Mk+ρ(t)α
ak

Γ(ak + 1)
, ρ > 0 .

This notation will be of good use throughout this section.

Theorem 6.1 (Propagation of Mittag-Leffler tails) Let f be a solu-
tion of -(1.13) in S associated to the initial condition f0 ≥ 0, a ∈ [1,∞),
and suppose that there exists positive α0 such that∫

R3

dp f0(p) Ea(αa0|p|) ≤ 1 .

Then, there exists positive constant α := α(M1(0), α0, a) such that∫
R3

dp f(t, p) Ea(αa|p|) ≤ 2 , ∀ t ≥ 0 . (6.3)
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Lemma 6.1 (From Ref. [45]) Let k ≥ 3, then for any a ∈ [1,∞), we
have

[ k+1
2 ]∑
i=1

(
k

i

)
B
(
ai+ 1, a(k − i) + 1

)
≤ Ca(ak)−1−a,

for some constant Ca depending on a.

Lemma 6.2 (Moment interpolation)

Mρ ≤Mγ
ρ1M

1−γ
ρ2 , (6.4)

where the positive constants ρ, ρ1, ρ2, γ satisfy 0 < ρ1 ≤ ρ ≤ ρ2, 0 < γ < 1,
and ρ = γρ1 + (1− γ)ρ2.

Remark 6.1 Contrary to section 4, we will work in this section with the
moments Mk rather than work with the line-moments mk. It turns out to
be clearer in terms of notation.

Lemma 6.3 Let α > 0, a ∈ [1,∞). Then, the following estimate holds

n∑
k=k0

[ k+1
2 ]∑
1

(
k

i

)(
Mi+2M1+(k−i) +Mi+1M2+(k−i)

) αak

Γ(ak + 1)

≤ Ca
ak0 + 1

(ak0)1+a
Ena Ina,3 , n ≥ k0 ≥ 1 ,

(6.5)

with universal constant Ca depending only on a.

Proof. First, we estimate the sum of the left side of (6.5) by controlling
the sum Mi+2M1+(k−i) +Mi+1M2+(k−i) with 2MiMk−i+3 for any i ≥ 3.
This can be done using Hölder’s inequality (6.4)

Mi+2 ≤M
k+1−2i
k+3−2i

i M
2

k+3−2i

k−i+3 and M1+(k−i) ≤M
2

k+3−2i

i M
k+1−2i
k+3−2i

k−i+3 .

Thus, the product of these terms is controlled by

Mi+2M1+(k−i) ≤MiMk−i+3 .

Similarly, from (6.4), the following inequalities also hold

Mi+1 ≤M
k−2i+2
k+3−2i

i M
1

k+3−2i

k−i+3 and M2+(k−i) ≤M
1

k+3−2i

i M
k−2i+2
k+3−2i

k−i+3 ,
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which lead to the estimate

Mi+1M2+(k−i) ≤MiMk−i+3 .

As a consequence,

Mi+2M1+(k−i) +Mi+1M2+(k−i) ≤ 2MiM3+(k−i) .

Therefore, it readily follows that

J :=
n∑

k=k0

[ k+1
2 ]∑
i=1

(
k

i

)(
Mi+2M1+(k−i) +Mi+1M2+(k−i)

) αak

Γ(ak + 1)

≤ 2

n∑
k=k0

[ k+1
2 ]∑
i=1

(
k

i

)
MiM3+(k−i)

αak

Γ(ak + 1)
.

(6.6)

Using the following identities for the Beta and Gamma functions

B(ai+ 1, a(k − i) + 1)

=
Γ(ai+ 1) Γ(a(k − i) + 1)

Γ(a(i+ 1) + a(k − i) + 1)
=

Γ(ai+ 1) Γ(a(k − i) + 1)

Γ(ak + 2)
,

and the identity αak = ααiαa(k−i), we deduce from (6.6) that

J ≤ 2
n∑

k=k0

[ k+1
2 ]∑
i=1

(
k

i

)
Miα

ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)

×B(ai+ 1, a(k − i) + 1)
Γ(ak + 2)

Γ(ak + 1)
.

(6.7)

Since Γ(ak+2) = (ak+1)Γ(ak+1), the term Γ(ak+2)
Γ(ak+1) in (6.7) can be reduced

to ak + 1. That is,

J ≤ 2
n∑

k=k0

(ak + 1)

×
[ k+1

2 ]∑
i=1

(
k

i

)
Miα

ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)
B(ai+ 1, a(k − i) + 1) .

(6.8)
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Also, each component in the sum on the right side of (6.8) can be bounded
as

[ k+1
2 ]∑
i=1

(
k

i

)
Miα

ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)
B(ai+ 1, a(k − i) + 1)

≤
[ k+1

2 ]∑
i=1

Miα
ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)

[ k+1
2 ]∑
j=1

(
k

j

)
B(aj + 1, a(k − j) + 1) ,

which implies, by Lemma 6.1, that

[ k+1
2 ]∑
i=1

(
k

i

)
Miα

ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)
B(ai+ 1, a(k − i) + 1)

≤ Ca
(ak)1+a

[ k+1
2 ]∑
i=1

Miα
ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)
.

(6.9)

Combining (6.8) and (6.9) yields the estimate on J

J ≤ 2Ca

n∑
k=k0

ak + 1

(ak)1+a

[ k+1
2 ]∑
i=1

Miα
ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)
. (6.10)

Notice that ak+1
(ak)1+a

decreases towards 0 as k increases to infinity. Therefore,

from (6.10) one concludes that

n∑
k=k0

[ k+1
2 ]∑
i=1

(
k

i

)(
Mi+2M1+(k−i) +Mi+1M2+(k−i)

) αak

Γ(ak + 1)

≤ 2Ca
ak0 + 1

(ak0)1+a

n∑
k=k0

[ k+1
2 ]∑
i=1

Miα
ai

Γ(ai+ 1)

Mk−i+3α
a(k−i)

Γ(a(k − i) + 1)

≤ 2Ca
ak0 + 1

(ak0)1+a

n∑
i=1

Miα
ai

Γ(ai+ 1)

n∑
i=1

Mi+3α
ai

Γ(ai+ 1)
≤ Ca

ak0 + 1

(ak0)1+a
Ena Ina,3.

(6.11)

Lemma 6.4 The following control is valid for any α > 0 and a ∈ [1,∞)

Ina,6(α, t) ≥ 1

α3
Ena (α, t)− 1

α5/2
M1Ea(a− 1/2) . (6.12)
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Proof. Observe that

Ina,6(α, t) =

n∑
k=1

Mk+6(t)αak

Γ(ak + 1)
≥

n∑
k=1

∫
{|p|≥ 1√

α
}

dp
|p|k+6αak

Γ(ak + 1)
f(t, p) .

Note that in the set {|p| ≥ 1√
α
} one has |p|k+6 ≥ |p|

k

α3 , therefore

Ina,6(α, t) ≥ 1

α3

n∑
k=1

∫
{|p|≥ 1√

α
}

dp
|p|kαak

Γ(ak + 1)
f(t, p)

=
1

α3

( n∑
k=1

∫
R3

dp
|p|kαak

Γ(ak + 1)
f(t, p)−

n∑
k=1

∫
{|p|< 1√

α
}

dp
|p|kαak

Γ(ak + 1)
f(t, p)

)
.

In the set {|p| < 1√
α
} one has |p|k < |p|α−(k−1)/2, consequently

Ina,6(α, t) ≥ 1

α3

(
Ena (t)−

n∑
k=1

∫
R3

dp
α−(k−1)/2αak

Γ(ak + 1)
f(t, p)|p|

)

=
1

α3
Ena (t)− M1

α5/2

n∑
k=1

α(a−1/2)k

Γ(ak + 1)
.

Since
n∑
k=1

α(a−1/2)k

Γ(ak + 1)
≤
∞∑
k=1

α(a−1/2)k

Γ(ak + 1)
= Ea(a− 1/2) ,

estimate (6.12) follows.
Proof. (of Theorem 6.1) The proof consists in showing that for any
a ∈ [1,∞), there exists positive constant α such that

Ena (α, t) ≤ 2, ∀ t ≥ 0, ∀n ∈ N\{0}. (6.13)

For this purpose we define for sufficiently small α > 0, chosen in the sequel,
the sequence of times

Tn := sup
{
t ≥ 0

∣∣ Ena (α, τ) ≤ 2,∀ τ ∈ [0, t]
}

and prove that Tn = +∞. This sequence of times is well-defined and posi-
tive. Indeed, for any α ≤ α0

Ena (α, 0) =

n∑
k=1

Mk(0)αak

Γ(ak + 1)
≤

n∑
k=1

Mk(0)αak0

Γ(ak + 1)
=

∫
R3

dp f0(p)Ea(αa0|p|) ≤ 1 .
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Since each term Mk(t) is continuous in t, the partial sum Ena (α, t) is also
continuous in t. Therefore, Ena (α, t) ≤ 2 in some nonempty interval (0, tn)
and, thus, Tn is well-defined and positive for every n ∈ N.

Now, let us establish a differential inequality for the partial sums that
implies Tn = +∞. Note that (3.3), with γ = 1, implies that

d

dt
Mk ≤ C1

[ k+1
2 ]∑
i=1

(
k

i

)(
Mi+2M1+(k−i) +Mi+1M2+(k−i)

)
− C2Mk+6 .

Multiplying the above inequality by αk

Γ(ak+1) and summing with respect to
k in the interval k0 ≤ k ≤ n, with k0 ≥ 1 to be chosen later on sufficiently
large,

d

dt

n∑
k=k0

Mk α
k

Γ(ak + 1)
≤ C1

n∑
k=k0

[ k+1
2 ]∑
i=1

(
k

i

)(
Mi+2M1+(k−i)

+Mi+1M2+(k−i)

) αk

Γ(ak + 1)
− C2

n∑
k=k0

Mk+6 α
k

Γ(ak + 1)
.

(6.14)

We observe that the sum on the left side of (6.14) will become d
dtE

n
a (α, t)

after adding

d

dt

k0−1∑
k=1

Mk α
k

Γ(ak + 1)
≤ C(k0, α0, a) <∞ (6.15)

to this expression. The latter inequality holds due to the choice α ≤ α0 and
the control of moments (3.3). Therefore, from (6.14) and (6.15), we obtain
the differential inequality

d

dt
Ena (α, t) ≤ C1

n∑
k=k0

[ k+1
2 ]∑
i=1

(
k

i

)(
Mi+2M1+(k−i) +

Mi+1M2+(k−i)

) αk

Γ(ak + 1)
− C2

n∑
k=k0

Mk+6 α
k

Γ(ak + 1)
+ C(k0, α0, a).

(6.16)

Let us now estimate the sum on the right side of (6.16). We deduce from
Theorem 4.1 that

k0∑
k=1

Mk+6 α
k

Γ(ak + 1)
≤

k0∑
k=1

Mk+6 α
k
0

Γ(ak + 1)
≤ C(k0, α0, a) ,
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which leads to the following estimate for (6.16)

d

dt
Ena (α, t) ≤ C1

n∑
k=k0

[ k+1
2 ]∑
i=1

(
k

i

)(
Mi+2M1+(k−i) +

Mi+1M2+(k−i)

) αk

Γ(ak + 1)
− C2

n∑
k=1

Mk+6 α
k

Γ(ak + 1)
+ C(k0, α0, a) .

(6.17)

By the definition of Ina,6

d

dt
Ena (α, t) ≤ C1

n∑
k=k0

[ k+1
2 ]∑
i=1

(
k

i

)(
Mi+2M1+(k−i) +

Mi+1M2+(k−i)

) αk

Γ(ak + 1)
− C2 Ina,6 + C(k0, α0, a).

(6.18)

Thus, thanks to Lemma 6.3, we have the control on (6.18)

d

dt
Ena ≤ Ca

ak0 + 1

(ak0)1+a
Ena Ina,3 − C2 Ina,6 + C(k0, α0, a) . (6.19)

We now estimate the right hand side of (6.19) starting with the term Ina,3.

Using Cauchy inequality |p|3 ≤ 1
2 + 1

2 |p|
6 , then

Mk+3 ≤
1

2
Mk +

1

2
Mk+6 , k ≥ 0 .

Multiplying this inequality with αak

Γ(ak+1) and summing with respect to k in
the interval 0 ≤ k ≤ n yields

Ina,3 ≤
1

2
Ena +

1

2
Ina,6 .

Since we are considering t ∈ [0, Tn] one has Ena ≤ 2 and, as a result, the
following inequality is valid

Ina,3 ≤ 1 +
1

2
Ina,6 .

This implies from (6.19) the estimate on

d

dt
Ena ≤ 2Ca

ak0 + 1

(ak0)1+a

(
1 + 1

2I
n
a,6

)
− C2Ina,6 + C(k0, α0, a) . (6.20)
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Choosing k0 sufficiently large, the term 2Ca
ak0+1

2(ak0)1+a
Ina,6 is absorbed by

C2
2 I

n
a,6. Thus,

d

dt
Ena ≤ −

C2

2
Ina,6 + C(M1, α0, a) . (6.21)

Recall that C2 only depends on the energy M1 = M1(0), thus, k0 only
depends on the initial energy and a. Let us estimate the right side of (6.21)
in terms of Ena . Lemma 6.4 provides a lower bound on Ina,6 in terms of Ena
which can be used in (6.21) to obtain

d

dt
Ena ≤ −

C2

2α3
Ena +

C2

2α5/2
M1Ea(a− 1/2) + C(M1, α0, a) .

Integrating the differential inequality

Ena ≤ 1 +
2α3

C2

( C2

2α5/2
M1Ea(a− 1/2) + C(M1, α0, a)

)
< 2 , t ∈ [0, Tn] ,

(6.22)
provided that α := α(M1, α0, a) > 0 is such that

2α3

C2

(
C2

2α2
M1Ea(a− 1/2) + C(M1, α0, a)

)
< 1 .

Given the continuity of Ena (α, t) with respect to t, estimate (6.22) contradicts
the maximality of Tn, unless Tn = +∞. Therefore, Ena (α, t) ≤ 2 for t ∈
[0,∞) and n ∈ N\{0}. Now taking the limit as n → ∞ and using the
definition of Mittag-Leffler moments of order a ∈ [1,∞) and rate α > 0, as
defined in (6.1), yields∫

R3

dp f(t, p)Ea(αa|p|) = lim
n→∞

Ena (α, t) ≤ 2 .

This concludes the argument.

6.2 Creation of exponential tails

Theorem 6.2 Let f be a positive solution of (1.1)-(1.13) in S. Then, there
exists constant α > 0 depending only on m3(0) such that∫

R3

dp f(t, p)|p|eαmin{1,t
1
6 }|p| ≤ 1

2α
, ∀ t ≥ 0. (6.23)
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Proof. Thanks to equation (4.1) we have the control

mk(t) ≤ Ck(h3)
(
1− e−Ckt

)− k−3
6 , ∀ k > 3 .

This implies that

En1 (t
1
6α, t) =

∫
R3

dp f(t, p)En1
(
t
1
6α|p|

)
≤ Cn(α) t

1
6 , α > 0 . (6.24)

Fix parameters α, ϑ ∈ (0, 1] and define

Tn := sup
{
t ∈ [0, 1]

∣∣En1 (t
1
6α, t) ≤ t

1−ϑ
6

}
.

We proof that for sufficiently small α > 0 depending only on m3(0), Tn = 1
for all n ∈ N and ϑ ∈ (0, 1]. One notices first that Tn > 0 for each n thanks
to (6.24). Also, for n ≥ k0 ≥ 1 we have

d

dt

n∑
k=ko

Mk(t)
(t

1
6α)k

k!
=

n∑
k=ko

M′k(t)
(t

1
6α)k

k!
+

α

6t
5
6

n∑
k=ko

Mk(t)
(t

1
6α)k−1

(k − 1)!
.

(6.25)
Observe that for the last term in the right side of (6.25)

α

6t
5
6

n∑
k=ko

Mk(t)
(t

1
6α)k−1

(k − 1)!

=
α

6t
5
6

n∑
k=ko+6

Mk(t)
(t

1
6α)k−1

(k − 1)!
+

α

6t
5
6

ko+5∑
k=ko

Mk(t)
(t

1
6α)k−1

(k − 1)!

=
α6

6

n−6∑
k=ko

Mk+6(t)
(t

1
6α)k

(k + 5)!
+

α

6t
5
6

ko+5∑
k=ko

Mk(t)
(t

1
6α)k−1

(k − 1)!

≤ α6

6

n∑
k=ko

Mk+6(t)
(t

1
6α)k

k!
+
αko

t
5
6

C(ko,m3(0)) .

Thus, arguing as in (6.14)-(6.19) we conclude that for the quantities

En1 := En1 (t
1
6α, t) , In1,6 := In1,6(t

1
6α, t) ,

it follows that

d

dt
En1 ≤

C

ko
En1 In1,3 −

(
C2 −

α6

6

)
In1,6 +

α

t
5
6

C(ko,m3(0)) , (6.26)
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for a universal constant C > 0 and constant C2 > 0 depending only m3(0).
Using that

In1,3 ≤
En1
2

+
In1,6
2

and the definition of Tn, it follows from (6.26)

d

dt
En1 ≤

C

2ko
−
(
C2−

α6

6
− C

2ko

)
In1,6 +

α

t
5
6

C(ko,m3(0)) , 0 < t ≤ Tn . (6.27)

Now fix ko ∈ N and α ∈ (0, 1] such that

C

2ko
≤ C2

4
,

α6

6
≤ C2

4
,

to conclude from (6.27) that

d

dt
En1 ≤

C

2ko
− C2

2
In1,6 +

α

t
5
6

C(ko,m3(0)) , 0 < t ≤ Tn . (6.28)

Also observe that

In1,6 =

n∑
k=1

Mk+6(t)
(t

1
6α)k

k!

=
1

tα6

n+6∑
k=7

Mk(t)
(t

1
6α)k

(k − 6)!
≥ 1

tα6

n∑
k=7

Mk(t)
(t

1
6α)k

k!

=
1

tα6
En1 −

1

tα6

6∑
k=1

Mk(t)
(t

1
6α)k

k!
≥ 1

tα6
En1 −

C(m3(0))

t
5
6α5

.

Together with (6.28), this leads finally to

d

dt
En1 ≤

C

2ko
+
C(ko,m3(0))

t
5
6α5

− C2

2tα6
En1 , 0 < t ≤ Tn .

Thus, using a comparison principle for ode’s, we can choose α > 0 sufficiently
small, say

α := C2

[C
ko

+ 2C(ko,m3(0))
]−1
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to deduce that En1 < t
1
6 . That is,∫

R3

dp f(t, p)En1 (t
1
6α|p|) < t

1
6 , 0 ≤ t ≤ Tn .

Time continuity of En1 and the maximality of Tn imply that Tn = 1 for all
n ≥ 1 and ϑ ∈ (0, 1]. In particular, sending ϑ → 0 and, then, n → ∞ one
arrives to ∫

R3

dp f(t, p)E1(t
1
6α|p|) ≤ t

1
6 , 0 ≤ t ≤ 1 .

Furthermore, this estimate shows that∫
R3

dp f(1, p)E1(α|p|) ≤ 1.

Then, using Theorem 6.1, the exponential moment propagates for t > 1,
and choosing α > 0 sufficiently small∫

R3

dp f(t, p)E1(α|p|) ≤ 1 , t ≥ 1 .

The result follows after noticing that

E1(t
1
6α|p|) ≥ t

1
6α|p|et

1
6 α

2
|p|, 0 ≤ t ≤ 1.
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7 Appendix: Proof of Theorem 5.1

Our proof follows the same lines of the argument of Bressan’s proof of The-
orem A.1 in [14]. The proof is divided into three steps:
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Step 1. Since S is bounded, there exists a uniform bound CQ of Q(u),
for all u in S. Let τ be in [0,∞) and u be in S, there exists hu,τ > 0 such
that for 0 < h < hu,τ and for all ε > 0 sufficiently small,

• the intersection B(u+n(τ)hQ(u), ε)∩S\{u+n(τ)hQ(u)} is non-empty;

• and, from properties on n(t) as stated in Theorem 5.1,

|n(τ + s)− n(τ)| ≤ ε

2CQ
,∀s ∈ [0, h]. (7.1)

In addition, since n = n(t) ≤ n, then we can estimate n(τ)‖Q(u)−Q(v)‖ ≤
ε
4 , if ‖u − v‖ ≤ n(CQ + 1)h. Hence, take w to be a point inside B(u +
n(τ)hQ(u), ε) ∩ S\{u+ n(τ)hQ(u)} satisfying

‖w − u− n(τ)hQ(u)‖ ≤ εh

4
.

We consider the linear map

s 7→ ρ(s) = u+
s(w − u)

h
, s ∈ [0, h].

By the convexity of S, ρ(s) ∈ S for all s in [0, h]. Moreover, since ρ̇(s) = w−u
h ,

‖ρ̇(s)− n(τ)Q(u)‖ ≤ ε

4
.

Now, we can see that

‖ρ(s)− u‖ =

∥∥∥∥s(w − u)

h

∥∥∥∥ ≤ ‖w − u‖ ≤ n(τ)h‖Q(u)‖+
εh

4
< n(CQ + 1)h,

which implies

n(τ)‖Q(ρ(s))−Q(u)‖ ≤ ε

4
, ∀ s ∈ [0, h].

Therefore,

‖ρ̇(s)− n(τ)Q(ρ(s))‖ ≤ ε

2
, ∀ s ∈ [0, h]. (7.2)

Using (7.1), we deduce that

‖ρ̇(s)− n(s)Q(ρ(s))‖ ≤ ε, ∀ s ∈ [0, h]. (7.3)
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A consequence of this fact is that

‖ρ̇(s)‖ ≤ 1 + nCQ (7.4)

for all s in [0, h] and ε < 1.

Step 2. From Step 1, we have proved the existence of solution ρ to the
equation (7.3) on an interval [0, h]. From this solution, we carry on the
following process.

(1) We start with the solution ρ, defined on [0, h] of (7.3).

(2) Suppose that the solution ρ of (7.3) is constructed on [0, τ ]. Since
ρ(τ) ∈ S, by the same process as in Step 1, the solution ρ could be
extended to [τ, τ + hτ ].

(3) Suppose that the solution ρ of (7.3) is constructed on a series of inter-
vals [0, τ1], [τ1, τ2], · · · , [τn, τn+1], · · · . Moreover, suppose the increas-
ing sequence {τn} is bounded. Set

τ = lim
n→∞

τn.

Since G(ρ) is bounded by CG on [τn, τn+1] for all n ∈ N, ρ̇ is bounded
by ε+ CG on [0, τ). Therefore, we can define ρ(τ) satisfying

ρ(τ) = lim
n→∞

ρ(τn), ρ̇(τ) = lim
n→∞

ρ̇(τn),

which implies that ρ is a solution of (7.3) on [0, τ ].

By (3) of this process, we can see that if the solution ρ, constructed as above,
is defined on [0, T ), it could be extended to [0, T ]. Suppose that [0, T ] is the
maximal closed interval that ρ could be constructed, by Step 2 of the pro-
cess, ρ could be extended to a larger interval [T, T + Th], which means that
ρ can be constructed on the whole interval [0,∞).

Step 3. Let us now consider two sequences of approximate solutions uε,
wε, where ε tends to 0. From Step 1 and Step 2, one can see that the time
interval [0, T ] can be decomposed into(⋃

γ

Iγ

)⋃
N,
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where Iγ are countably many open intervals and N is of measure 0.
Taking the derivative of the difference ‖uε(t)− wε(t)‖ gives

d

dt
‖uε(t)− wε(t)‖ =

[
uε − wε, u̇ε(t)− ẇε(t)

]
−

≤
[
uε − wε, u̇ε(t)− ẇε(t)

]
−

+ 2ε

≤ L‖uε(t)− wε(t)‖+ 2ε,

which yields
‖uε(t)− wε(t)‖ → 0 as ε→ 0 ,

and we have the convergence uε → u uniformly on [0, T ]. The function u is,
then, a solution of our equation.
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